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The present study examines the physical foundation of special relativity concepts and the 
derivations of time dilation and length contraction in special relativity. We find that the logical 
results of special relativity are time contraction and length expansion of the observed frame 
(moving frame). To obtain the same results as the Lorentz ether theory, special relativity calls the 
“relative time dilation” of the observing frame (rest frame) due to the time contraction of the 
observed frame the “time dilation”. Similarly, special relativity calls the “relative length 
contraction” of the observing frame (rest frame) due to the length expansion of the observed 
frame the “length contraction”. The Einsteinian “time dilation” and “length contraction” are the 
opposites of the Lorentzian time dilation and length contraction. We also find that the proper 
time and length of a reference frame are different from those of this frame’s time and length 
observed by another frame, while the proper time and length of the two frames are equal. Since 
physical processes are governed by a frame’s proper time and length, if acceleration does not 
impact a person’s age, the twins in the twin paradox should be the same age when the traveling 
one returns. In replicating Lorentzian results rather than using its logical consequence, special 
relativity makes the Minkowski coordinates incapable of providing time intervals. Since special 
relativity effects are based on the relative velocity between two reference frames, terms such as 
“rest frame” and “moving frame” are inappropriate and ambiguous; they should be replaced by 
“observing frame” and “observed frame” in describing special relativity effects. At least 
regarding time dilation and length contraction, physicists are using the Lorentz ether theory 
rather than Einsteinian special relativity. 

1. Introduction 

The Lorentz transformation has been used in various scenarios in physics. It is generally believed 
that none of the experiments conducted so far to verify special relativity can distinguish between 
the two interpretations of the Lorentz transformation because Lorentzian ether theory and 
Einstein’s special relativity have the same measurable predictions[1][2]. This is unusual given that 
Lorentzian ether theory leads to no paradoxes, while Einstein’s special relativity produces many 
paradoxes. Mainstream physicists adopted Einstein’s special relativity more on assumed 
philosophical grounds than on experimental evidence. Since the two theories differ substantially 
regarding the medium of light, variables in the apparently identical transformation might mean 
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different measurements. What the variables in the Lorentz transformation equations stand for has 
not been clearly defined or scrutinized in special relativity literature[3][4]. 

The commonly expressed forms of the Lorentz transformation from an observing frame K to a 
frame K’ that is moving along the positive direction of the observing frame’s x-axis are 

𝑥′ =
𝑥 − 𝑣𝑡

'1 − 𝑣
!

𝑐!

, 𝑡′ =
𝑡 − 𝑣𝑥/𝑐!

'1 − 𝑣
!

𝑐!

.  (1) 

The inverse transformation from the aforementioned observed frame K’ to the observing frame K 
(now their roles are swapped) is 

𝑥 =
𝑥′ + 𝑣𝑡′

'1 − 𝑣
!

𝑐!

, 𝑡 =
𝑡′ + 𝑣𝑥′/𝑐!

'1 − 𝑣
!

𝑐!

.  (2) 

In a recent study, Ma[5] argues that the Lorentz transformation and the Poincaré transformation 
are transformations of coordinate differences rather than coordinates per se. The Lorentz 
transformation gives people the impression of a coordinate transformation because the initial 
values of variables in the Poincaré transformation all take a 0 value. Since they are 
transformations of coordinate differences, they need a reference point to provide the initial 
values. Therefore, the correct forms of the Lorentz transformation and the Poincaré 
transformation should be 

𝑑𝑥′ =
𝑑𝑥 − 𝑣𝑑𝑡

'1 − 𝑣
!

𝑐!

, 𝑑𝑡′ =
𝑑𝑡 − 𝑣𝑑𝑥/𝑐!

'1 − 𝑣
!

𝑐!

. 𝑑𝑥 =
𝑑𝑥′ + 𝑣𝑑𝑡′

'1 − 𝑣
!

𝑐!

, 𝑑𝑡 =
𝑑𝑡′ + 𝑣𝑑𝑥′/𝑐!

'1 − 𝑣
!

𝑐!

. 

Using the Lorentz transformation, Einstein derived the length contraction and time dilation[6], 
which Lorentz had hypothesized to explain the Michelson-Morley experiment and used to devise 
the Lorentz transformation[7][8][9][10][11]. In Lorentz’s theory, the velocity v in the above equation 
is the one between a moving frame and the ether frame, which is somehow “absolute” in terms of 
the privileged ether frame. Lorentz's theory does not emphasize the synchronization of clocks at 
different locations in a reference frame, so we may consider them ideally synchronized in terms 
of the privileged ether frame. In Einstein’s theory, v is the relative velocity between two frames 
without ether. Clock synchronization has a prominent role in special relativity, which largely 
underlies the relativistic effects through the relativity of simultaneity. How and why the different 
interpretations of v yield the same measurable predictions have not been well explored. 

It is generally agreed that Lorentzian time dilation and length contraction are physical changes 
and Einsteinian ones are measurement effects due to the relativity of simultaneity[9][12]. It seems 
unusual that two different underlying mechanisms produce the same results or predictions. The 
present study analyzes the Einsteinian results from an epistemological perspective and 



investigates how special relativity obtains the same results as those predicted by the Lorentzian 
ether theory. We find that Einstein’s special relativity, based on the relative velocity between two 
frames without ether as the medium for light, cannot produce the Lorentzian results logically; 
hence, the two theories do not give the same predictions. To replicate the Lorentzian results, 
Einsteinian researchers have mis-specified or misinterpreted the Einsteinian derivation of time 
and space effects of relative velocity between two reference frames. The rest of this paper is 
organized as follows: Section 2 presents a thought experiment that raises a question of time 
measurement by two reference frames; Section 3 explains how Lorentz devised the Lorentz 
transformation from length contraction and time dilation; Section 4 examines how Einsteinian 
time dilation and length contraction emerge from measurement with the relativity of 
simultaneity; Section 5 investigates how Einsteinian time dilation explains the twin paradox; 
Section 6 discusses the present findings; Section 7 concludes this study. 

2. Time measured in two reference frames in relative motion 

To illustrate issues in Einsteinian special relativity, we first present a thought experiment (as 
illustrated by Fig.1): 

 

Figure 1. The same time interval is measured by two reference frames K and K’ with a relative 
velocity of 0.995 c. Observer k and observer k’ are stationary at location A of frame K and the 
origin O’ of frame K’, respectively. 

“There are two fixed locations A and B on the x-axis in frame K. Observer k is stationary at 
location A, and another observer k’ moves from location B to A with a velocity of 0.995c. 
Observer k’ is stationary at the origin of frame K’, which uses standard measuring rods and 
clocks identical to those used in frame K. Thus, observer k’ also finds that observer k moves 
from location “A” (we use “A” to indicate the location in frame K’ that corresponds to A when 
the origin O’ of frame K’ coincides with B) to the origin O’ of frame K’ with a velocity of 
0.995c. Our question is if the time used by observer k’ to travel from B to A, as measured by 
frame K, is 6.4 μs, how long will it take for observer k (to travel from A to O’) to meet observer 
k’ as measured in frame K’?” 



Some relativists’ answers are “about 0.64 μs,” resulting from the Lorentzian time dilation 
formula Δ𝑡" = Δ𝑡11 − 𝑣!/𝑐!. If the time measured by the observer in frame K’ is 0.64 μs, then 
is the follow-up question: 

“There are two fixed locations A and B on the x-axis in frame K. Observer k is stationary at 
location A, and another observer k’ moves from location B to A with a velocity of 0.995c. 
Observer k’ is stationary at the origin of frame K’, which uses standard measuring rods and 
clocks identical to those used in frame K. Thus, observer k’ also finds that observer k moves 
from location “A” to the origin O’ of frame K’ with a velocity of 0.995c. Our question is if the 
time used by observer k (to travel from “A” to O’) to meet observer k’ as measured in frame K’ is 
0.64 μs, how long will it take for observer k’ to travel from B to A (i.e., to meet observer k) as 
measured by frame K?” 

Some of those relativists who have answered 0.64 μs answer 0.064 μs. However, the follow-up 
question is the same as the initial question, and the only difference is that the follow-up question 
provides time measured in frame K’ and asks for time measured in frame K. Obviously, the 
answer 0.064 μs contradicts the initial value of 6.4 μs. Some researchers contend that only the 
first question can be asked; the follow-up question is not allowed in special relativity. This seems 
to be a very inadequate treatment of the conflicting answers to the two questions and shows 
discrepancies in people’s understanding of special relativity. In the above thought experiment, if 
we allow the second question, the logically consistent result should be equal time intervals 
measured in the two reference frames. However, if the time interval measured by frame K’ 
should also be 6.4 μs, what is the time dilation value 0.64 μs? This result suggests that the 
Lorentz time dilation formula cannot be used unscrupulously in Einsteinian special relativity. We 
need to understand what the variables in the time dilation formula represent and, more generally, 
what the variables in the Lorentz transformation represent. 

3. From length contraction and time dilation to Lorentz transformation 

Fitzgerald[13] first proposed length contraction to explain the null result of the Michelson-Morley 
experiment that measured the earth’s velocity relative to ether in space[14][15]. Voigt[16] and 
Larmor[17][18] also proposed space and time transformations to explain the null result. Lorentz 
independently used length contraction and time dilation to explain the Michelson-Morley 
experiment[7][8][9]. Length contraction alone can explain the null result of the Michelson-Morley 
experiment, which uses interferometry with equal arms, but not those with unequal arms, such as 
the Kennedy-Thorndike experiment[19]. Lorentz’s objective was to explain the Michelson-Morley 
experiment and find a transformation that ensures the invariance of Maxwell electromagnetic 
equations across reference frames. 

The Fitzgerald-Lorentz length contraction formula is 



𝑙 = 𝑙#31 −
𝑣!

𝑐! .  (3) 

In Eq. (3), l is the length of an object moving at v relative to the ether, and l0 is its length at rest 
with the ether. The observers traveling with the object cannot observe this length contraction 
because they and their measuring rod would also contract proportionally. Only observers at rest 
in the ether frame can find the length contraction at the proportion of	11 − 𝑣!/𝑐!. Length 
contraction can lead to the null result of the Michelson-Morley experiment but not to the 
constancy of the speed of light. It also implies that the same spatial distance measured by the 
moving frame will be larger in its numerical value, 

𝑥$ =
𝑥

'1 − 𝑣
!

𝑐!

.  (4) 

In Eq. (4), 𝑥$ is the coordinate on the x-axis in the ether frame measured with a contracted 
measuring rod, and x is the same spatial distance measured with a measuring rod of the original 
length, that is, the length of the measuring rod when it is at rest in the ether frame. 

The two-way apparent speed of light cr for observers in the moving frame with a solid object of 
length l0 and a velocity of v in the context of ether theory without length contraction should be 

𝑐$ =
2𝑙#
𝑡 =

𝑐! − 𝑣!

𝑐 = 𝑐 −
𝑣!

𝑐 = 𝑐 61 −
𝑣!

𝑐!7 .  (4) 

With length contraction, the two-way apparent speed of light in the moving frame becomes 

𝑐$ =
2𝑙#

𝑡11 − 𝑣!/𝑐!
=

(𝑐! − 𝑣!)

𝑐11 − 𝑣!/𝑐!
= 𝑐31 −

𝑣!

𝑐! .  (5) 

Eq. (5) arises because the observers in the moving frame would still obtain the same value l0 as 
the length at rest in the ether, and the apparent velocity of light in the ether frame measured with 
the contracted rod will be increased[4]. Thus, the light speed will still differ across reference 
frames, even with the Fitzgerald-Lorentz contraction. 

To make the speed of light invariant across reference frames, Lorentz introduced the concept of 
“local time” and proposed that clocks in the moving frame will be slower, with each time unit 
representing a longer time interval, the so-called time dilation or, more precisely, time unit 
dilation. The formula for time dilation in the moving frame is 

𝑡$ = 𝑡31 −
𝑣!

𝑐! .  (6) 



Replacing t in Eq. (5) with tr will return the value of cr to c. 

𝑐$ =
2𝑙#

𝑡$11 − 𝑣!/𝑐!
=

(𝑐! − 𝑣!)

𝑐11 − 𝑣!/𝑐!11 − 𝑣!/𝑐!
= 𝑐.  (7) 

How do length contraction and time dilation affect space and time transformation between the 
ether frame and the moving frame? Lorentz[9] proposed the following transformation between the 
moving frame K’ and the ether frame K, 

𝑥′ =
𝑥

11 − 𝑣!/𝑐!
, 𝑦′ = 𝑦, 𝑧′ = 𝑧.  (8)𝑡′ = 𝑡11 − 𝑣!/𝑐! −

𝑣𝑥/𝑐!

11 − 𝑣!/𝑐!
.  (9) 

In the above equations, x is the corresponding coordinate interval of x’ in frame K, excluding the 
distance vt. Replacing x in Eq. (8) with x-vt will give us Eq. (1). 

Eq. (8) can be obtained directly by applying contracted measuring rods to a spatial distance that 
does not change in the Lorentz ether theory. We might reconstruct how Lorentz obtained Eq. (9) 
by dividing the overall time used in frame K into the time for traveling the distance x-vt 
(corresponding to x’ in the moving frame) and the time for traveling the distance vt. The first 
term on the right-hand side of Eq. (9) represents the total time for a beam of light to travel x, 
including vt, the second term is the time for the light beam to travel the distance vt (which 
is 𝑣𝑡" = %&

'()!
"

#"

= %(+)%&)/.

'()!
"

#"

 to observers in frame K’), both of which are measured by clocks 

moving relative to the ether frame at velocity v. On the left-hand side, t’ is the time used for 
traveling x’ in frame K’ (corresponding to the distance x-vt in frame K). Notice that x-vt in this 
paragraph is the x in Eqs (8) and (9). 

From the above analysis, we can see that in Lorentz ether theory, x and t in Eq. (1) are the same x 
and t in Eq. (2), and x’ and t’ in Eq. (1) are the same x’ and t’ in Eq. (2). Whether this is still the 
case in Einsteinian special relativity is debatable[3][4]. Most relativity researchers hold that this is 
still true in Einsteinian special relativity. However, the answers to the thought experiment 
questions in Section 2 suggest a contradiction caused by assuming that x and t in Eq. (1) are the 
same x and t in Eq. (2), or x’ and t’ in Eq. (1) are the same x’ and t’ in Eq. (2). A detailed analysis 
of how Einsteinian special relativity deals with time dilation and length contraction seems 
necessary. 

4. Einsteinian time dilation and length contraction 

While Lorentzian time dilation and length contraction involve physical changes in the clocks and 
the measuring rods that move relative to the ether frame, Einsteinian ones have no such physical 
changes. Einsteinian time dilation and length contraction arise purely due to the relativity of 
simultaneity following clock synchronization by light signals. Hardly any studies have 
investigated how the fundamentally different mechanisms in generating time dilation and length 



contraction fail to produce detectable differences in their predictions. To address this issue, we 
look into how time dilation and length contraction emerge from the relativity of simultaneity in 
Einsteinian special relativity. 

4.1. Einsteinian time dilation 

Let us first look into time dilation in two reference systems K and K’ with a relative velocity of 
0.995c (Fig.2). Since Einsteinian time dilation arises due to another frame moving relative to the 
observing frame, time dilation occurs in the observed frame. Here we avoid using the terms “rest 
frame” and “moving frame” because no privileged frame helps identify a rest frame in special 
relativity. It is meaningful in the Lorentz ether theory to talk about moving frames and rest 
frames because the ether frame is the rest frame and the one that moves relative to the ether 
frame is the moving frame. Einstein confusingly continued to use the terms moving frame and 
rest frame when special relativity effects depend on the relative velocity between two arbitrary 
inertial frames. He had denied the existence of ether or any privileged frame. The appropriate 
terms for describing special relativity effects should be the observing frame and the observed 
frame[3][4]. 

 

Figure 2. Two reference frames with a relative velocity of 0.995c. A and A’, B and B’, and C and 
C’ are coinciding spots at certain times, respectively. The two frames use identical clocks and 
measuring rods to measure time and distance. 

Unlike in the Lorentz ether theory, where length contraction and time dilation are the foundation 
of the Lorentz transformation, in special relativity, time dilation is derived from the Lorentz 
transformation by comparing time differences between two reference frames, 

𝑡′! − 𝑡"( =
&")

!$"
#"

'()!
"

#"

−
&%)

!$%
#"

'()!
"

#"

=
&")&%)

!($"'$%)
#"

'()!
"

#"

. 

Two issues arise from the above equation: 1) Which frame should be on the left-hand side of the 
first equality and which frame should be on the right-hand side of the first equality? 2) Who 



reads the measurements of the variables on the left-hand side of the first equality and who reads 
the measurements of the variables on the right-hand side of the first equality? The following 
analysis may help us address these issues. 

Since the time difference can be measured more reliably by clocks at the same location, i.e.	𝑥! =
𝑥(, to reduce errors produced during synchronizing clocks and communicating measured values 
between two sites, the above equation becomes 

𝑡′! − 𝑡"( =
𝑡! − 𝑡(

'1 − 𝑣
!

𝑐!

.  (10) 

Eq. (10) implies the right-hand side time variables are measured or read by observers with local 
stationary clocks at one site (such as A in Fig. 2) in frame K. So, the time interval on the right-
hand side is the proper time of frame K. The time variables on the left-hand side need to be 
measured by clocks at two sites (such as A’ and B’ in Fig. 2) in frame K’, so the time difference 
is a coordinate time. This coordinate time cannot be read by observers in frame K’ because doing 
so cannot logically assign the observing (rest) or observed (moving) status to the two frames. If 
clocks at one site measure 𝑡′! − 𝑡"( on the left-hand side, it requires observers at the same site in 
frame K’ or two sites in frame K. Observers at the same site measure the proper time of frame 
K’, which will lead to a contradiction like the one in the thought experiment in Section 2. 
Moreover, neither can it logically assign the observing (rest) or observed (moving) status to the 
two frames. Readings by two sites (such as A and B in Fig. 2) in frame K produce complications 
in communicating the values measured. Therefore, those time variables on the left-hand side 
shown by clocks in frame K’ are read by the same observers at one site in frame K, who have 
measured the time variables on the right-hand side. 

From the above analysis, the observers in frame K read their clocks to obtain their proper time 
and read clocks in frame K’ to measure the coordinate time of frame K’, so frame K is the 
observing frame (rest frame). In Eq. (10), values of frame K’ are read by observers in frame K, so 
frame K’ is the observed frame (moving frame). According to our present interpretation, the 
logical result of Eq. (10) should be time contraction in the observed frame (moving frame). The 
usual interpretation of Eq. (10) from relativity researchers is that Δ𝑡 = 𝑡! − 𝑡( is the proper time, 
which is the same as ours. However, mainstream special relativity researchers maintain that the 
moving frame measures the proper time and the rest frame measures the coordinate time Δ𝑡′ =
𝑡′! − 𝑡′( in Eq. (10). Thus, moving clocks are slower than clocks at rest according to Eq. (10), 
which implies time dilation of the moving frame. 

Let us use Fig. 2 to examine the relativistic interpretation of Eq. (10) and assume A is the frame 
K observer on the right-hand side. So, we have 



𝑡′/),1 − 𝑡"1),1 =
𝑡1,!*) − 𝑡1,(+)

'1 − 𝑣
!

𝑐!

=
𝑡1,!*) − 𝑡1,(+)
√1 − 0.995!

≈ 10 • B𝑡1,!*) − 𝑡1,(+)C. 

In Eq. (10A), 𝑡′/),1 denotes the time that observer A reads off the frame K’ clocks stationary at 
B’ and 𝑡′1),1 denotes the time that observer A reads off the frame K’ clocks stationary at A’. On 
the right-hand side, 𝑡1,!*) denotes the time that observer A reads off her clocks on occasion 2 
when A and B’ coincide; and 𝑡1,(+) denotes the time that observer A reads off her clocks on 
occasion 1 when A and A’ coincide. The clock of observer A shows a time interval 𝑡1,!*) −
𝑡1,(+) which observer B’ takes to arrive at A, but the two clocks at A’ and B’ in frame K’ will 
show a time interval 𝑡′/),1 − 𝑡"1),1 ≈ 10 • B𝑡1,!*) − 𝑡1,(+)C to observer A. Observer A might 
conclude that time flows 10-fold faster in frame K’ than the proper time observer A measured 
with clocks at rest in frame K. Both results are observed by A in frame K; should we consider 
frame K the moving frame or the rest frame? In our view, frame K is the observing frame (rest 
frame) and time contracts in the observed frame (moving frame). As noted earlier, mainstream 
special relativity researchers denote frame K as the moving frame in this scenario, which we 
think is incorrect. 

Coming back to our Section 2 thought experiment, when the clock of observer A shows that it 
takes 6.4 μs for observer B’ to arrive, i.e., 𝑡1,!*) − 𝑡1,(+) = 6.4	𝜇𝑠, how long does the clock of 
observer B’ show for observer A to arrive, i.e., 𝑡′/),!+ − 𝑡

"
/),(* =? The Lorentz transformation in 

special relativity does not answer such questions. It deals with questions represented by Eq. 
(10A). Since there is no privileged frame in special relativity and the two frames use identical 
clocks and measuring rods, the most reasonable answer should be 𝑡1,!*) − 𝑡1,(+) = 𝑡′/),!+ −
𝑡"/),(* = 6.4𝜇𝑠. Using Fig.2, we can see that there are four times registered regarding the same 
event of observer A meeting observer B’: 1) the time interval measured by observer A with 
clocks at rest at site A in frame K, 𝑡1,!*) − 𝑡1,(+); 2) the time interval calculated by observer A via 
reading clocks at rest at sites A’ and B’ in frame K’, 𝑡′/),1 − 𝑡"1),1; 3) the time interval measured 
by observer B’ with clocks at rest at site B’ in frame K’, 𝑡′/),!+ − 𝑡

"
/),(*; 4) the time interval 

calculated by observer B’ via reading clocks at rest at sites A and B in frame K, 𝑡1,/) − 𝑡/,/). We 
may add two more time intervals relevant to the event: 5) the time interval calculated by 
observers A and B reading their clocks stationary in frame K respectively when they coincide 
with B’, 𝑡1,!*) − 𝑡/,(*); 6) the time interval calculated by observers A’ and B’ reading their clocks 
stationary in frame K’ respectively when they coincide with A, 𝑡′/",!+ − 𝑡′1",(+. 

In the above analysis, time 1 is the proper time of frame K, which corresponds to dt in the right-
hand side of Eq. (1A). Time 2 is the coordinate time of frame K’ obtained by frame K observers 
at one site reading clocks of frame K’, which corresponds to dt’ in the left-hand side of Eq. (1A). 
Time 3 is the proper time of frame K’, which corresponds to dt’ in the right-hand side of Eq. 
(2A). Time 4 is the coordinate time of frame K obtained by frame K’ observers at one site 



reading clocks of frame K, which corresponds to dt in the left-hand side of Eq. (2A). Time 5 is 
the coordinate time of frame K obtained by frame K observers at two sites reading clocks 
stationary in frame K and communicating their measurements, which should equal time 1 
according to Einstein’s clock synchronization method. Time 6 is the coordinate time of frame K’ 
obtained by frame K’ observers at two sites reading clocks stationary in frame K’ and 
communicating their measurements, which should equal time 3 according to Einstein’s clock 
synchronization method. 

It is obvious from the above analysis that time 2 is different from time 3 so that t’ on the left-
hand side of Eqs. (1) and (1A) is not t’ on the right-hand side of Eqs. (2) and (2A) in special 
relativity. Time 4 is different from time 3 so that t on the left-hand side of Eqs. (2) and (2A) is 
not t on the right-hand side of Eqs. (1) and (1A) in special relativity. However, most special 
relativity researchers are not aware of these differences, and they unwittingly identify t in Eqs. 
(1) and (2) as the same and t’ in Eqs. (1) and (2) as the same. We will show later that the mix-up 
of a frame’s proper time and its coordinate time observed by another frame is the cause of the 
relativistic paradox. 

With the above analysis, we are now prepared to find the nature of the Einsteinian time dilation 
derivation. By designating frame K as the moving frame, time 1 (the proper time of frame K) as 
the moving frame time, and frame K’ as the rest frame in Eq. (10), special relativity has to use 
time 6 on the left-hand side of Eq. (10) and assert Eq. (10B), because none of the variables in Eq. 
(10A) are observed by frame K’. 

𝑡′/",!+ − 𝑡′1",(+ =
𝑡1,!*) − 𝑡1,(+)

'1 − 𝑣
!

𝑐!

. 

In Eq. (10B), 𝑡"/),!+ − 𝑡
"
1),(+ is the time difference between A coinciding with A’ and with B’ as 

registered by A’ and B’ reading their clocks stationary in frame K’. However, Eq. (10B) is 
incorrect. As pointed out earlier, 𝑡"/),! − 𝑡"1),( = 𝑡"/),! − 𝑡"/),(because the Einsteinian clock 
synchronization method defines this relation. We know from our Section 2 thought 
experiment	𝑡"/),!* − 𝑡

"
/),(+ = 𝑡1,!*) − 𝑡1,(+) , so Eq. (10B) implies 

𝑡"/),!* − 𝑡
"
/),(+ =

𝑡1,!*) − 𝑡1,(+)

'1 − 𝑣
!

𝑐!

. 

It is easy to see that Eq. (10C) is incorrect. Moreover, there is no clear mechanism to relate the 
proper time of frame K with the proper time of frame K’ except assuming they are equal. 

Because Eq. (10B) is incorrect, special relativity uses 𝑡′/),1 − 𝑡"1),1 to replace 𝑡"/),!* −
𝑡"/),(+ and pretend the former is the latter, i.e., the observation of frame K by frame K’ in Eq. 
(10). This replacement by special relativity is logically invalid. Firstly, moving (observed) or at 



rest (observing) is determined by an object’s relation with an observer, so it is more appropriate 
to consider frame K with observer A as the rest frame (observing frame) because 𝑡′/),1 − 𝑡"1),1 is 
observed by observer A in frame K. Secondly, the two frame K’ clocks move relative to and are 
read by observer A in frame K, hence frame K’ should be the moving frame, even though their 
time interval increases faster than the proper time interval in frame K as calculated by the time 
dilation formula. If we correctly assign the observing (rest) status, special relativity should 
predict time contraction in the observed frame (moving frame). Clocks in the observed frame 
(moving frame) run faster than clocks in the observing frame (rest frame). This result conflicts 
directly with the time dilation of the Lorentz ether theory. 

Even if we accept special relativity’s mishandling of rest (observing) or moving (observed) 
status, special relativity's derivation of time dilation still produces results that conflict with the 
Lorentz ether theory. In the Lorentz ether theory, clocks stationary in the ether frame (rest frame) 
are the fastest, and moving clocks are the slowest. In the special relativity interpretation of time 
dilation, local stationary clocks with proper time (corresponding to the rest clocks in the ether 
frame), which should not dilate or contract according to special relativity, are the slowest. This 
special relativity interpretation indicates that a “moving frame” will cause time contraction in its 
observing frame (“rest frame”) whose clocks run faster than the proper time with a factor of 
1/11 − 𝑣!/𝑐!. Since there can be an infinite number of “moving frames” with an infinite 
number of velocities for one Einsteinian “rest frame,” the special relativity interpretation seems 
absurd because the “rest frame” would have difficulty deciding to contract according to whose 
velocity. Therefore, Einsteinian special relativity should logically predict time contraction but 
deliberately assigns the observing frame (the rest frame) the role of the moving frame (the 
observed frame) to obtain time dilation. However, assigning the observing frame the role of the 
moving frame makes the proper time the slowest in special relativity. In contrast, the proper time 
(measured by clocks at rest in the ether frame) is the fastest in Lorentz's ether theory. 

The Lorentz ether theory does not have the above dual-time or triple-time issue because 
Lorentzian effects depend on the “absolute” velocity relative to the ether frame rather than 
velocity relative to each other. The clocks in the ether frame are the fastest-running ones in the 
Lorentz ether theory, so all clocks moving relative to the ether frame run slower than those at rest 
in the ether frame. For the same scenario in Fig.2, when frame K is the ether frame and 𝑥! = 𝑥(, 
Eq. (9) will give the Lorentzian time dilation result: 

𝑡"/),1 − 𝑡"1),1 = 𝑡1,!*)31 −
𝑣!

𝑐! −
𝑣𝑥!
𝑐!

'1 − 𝑣
!

𝑐!

− 𝑡1,(+)31 −
𝑣!

𝑐! +
𝑣𝑥(
𝑐!

'1 − 𝑣
!

𝑐!

= H𝑡1,!*) − 𝑡1,(+)I31 −
𝑣!

𝑐! .

  (11) 



When v=0.995c, the time interval in frame K’, 𝑡"/),1 − 𝑡"1),1, is only 1/10 of 𝑡1,!*) − 𝑡1,(+) , the 
time interval for B’ to arrive at A measured by observer A with clocks stationary in frame K. 
When v approaches c, 𝑡"/),1 − 𝑡"1),1 approaches 0, i.e., clocks run infinitely slow. The special 
relativity’s interpretation is the opposite of Lorentzian time dilation. The proper time becomes 
the time interval measured by the “moving frame”, which would not change with the relative 
velocity between the two frames. Then, the larger the relative velocity, the larger the time 
interval measured by the “rest clocks” compared with that measured by the “moving clocks”. 
When v approaches c, the “rest clocks” run infinitely fast. This is better called time contraction 
than time dilation. Therefore, special relativity predicts time contraction rather than time dilation, 
in contrast with the Lorentz ether theory[3][4]. 

From the perspective of the (Lorentzian) moving frame, we obtain from Eq. (9) the 
transformation from frame K’ to frame K, 

𝑡 =
𝑡" + 𝑣𝑥′/𝑐!

11 − 𝑣!/𝑐!
  (12) 

The time interval measured by observer B’ with her clocks for A to arrive at B’ is 𝑡′/",!+ −
𝑡′/",(* in the moving frame K’. Observer B’ will also find that the time interval shown by clocks 
at B and A in frame K, 𝑡/,/" − 𝑡1,/" is 

𝑡/,/" − 𝑡1,/" =
&"*),"+)&"*),%*

'()!
"

#"

=
&"*),"+)&"*),%*
√()#.445"

≈ 10 • B𝑡′/",!+ − 𝑡′/",(*C. 

It is about 10-fold as large as the time interval measured by observer B’ with her clocks. Eqs. 
(11) and (12) show that Lorentzian time dilation is not reciprocal. One frame is time dilation, 
another will be relative time contraction. 

The above derivation of time dilation from the Lorentz transformation is not necessary in 
Lorentz ether theory because time dilation and length contraction are primary (physical) changes 
that lead to the Lorentz transformation, rather than the Lorentz transformation producing time 
dilation and length contraction. In modern physics, physicists use the Lorentzian time dilation 
formula Eq. (11), rather than the Einsteinian “time dilation” formula Eq. (10) or (10A), which 
results in faster-running clocks in the observed frame. 

4.2. Einsteinian length contraction 

We add a rod to Fig.2 to illustrate the Einsteinian “length contraction” by assuming a rod with its 
two ends stationary at locations A and B in frame K (Fig.3). In fact, for special relativity, it seems 
better not to use a rod and simply to consider a distance between two locations A and B in frame 
K to avoid the interference of thinking about a solid object (in the Lorentz ether theory, velocity 
relative to ether affects the length of a solid rod and the length between two points in space 



differently). Obviously, its length is lAB in frame K, but how long is it in frame K’? Applying the 
Lorentz space transformation as 𝑡/ = 𝑡1, we obtain 

𝑙′1/ = 𝑥"/" − 𝑥"1" =
𝑥/ − 𝑣𝑡/

'1 − 𝑣
!

𝑐!

−
𝑥1 − 𝑣𝑡1

'1 − 𝑣
!

𝑐!

=
𝑥/ − 𝑥1

'1 − 𝑣
!

𝑐!

=
𝑙1/

'1 − 𝑣
!

𝑐!

.  (13) 

In Eq. (13), the subscripts of x’ and l’ use A and B instead of A’ and B’ because it is not certain 
that they coincide during length measurements. The length measured in frame K’ l’AB is obtained 
by observers at B and A in frame K reading the coincident coordinates 𝑥"/ and 𝑥"1 in frame K’. 
This result is consistent with that of Lorentz ether theory, i.e., the rest rods in the ether frame 
appear longer to the observers in the moving frame because their rods have contracted. The 
above length expansion result is not accepted in special relativity because simultaneity in frame 
K is not simultaneity in frame K’. Instead, special relativity assumes that 
coordinates 𝑥/ and 𝑥1 are what observers in frame K’ find in frame K, hence 

𝑥/ − 𝑥1 =
𝑥′/" + 𝑣𝑡′/"

'1 − 𝑣
!

𝑐!

−
𝑥′1" + 𝑣𝑡′1"

'1 − 𝑣
!

𝑐!

=
𝑥′/" − 𝑥′1"

'1 − 𝑣
!

𝑐!

=
𝑙′1"/′

'1 − 𝑣
!

𝑐!

. 𝑙′1"/" = 𝑥"/" − 𝑥"1"

= (𝑥/ − 𝑥1)31 −
𝑣!

𝑐! = 𝑙1/31 −
𝑣!

𝑐! .  (14) 

Eq. (14) indicates that the length of a moving rod shortens in the direction of its velocity. 

 

Figure 3. One rod is stationary in frame K with two ends at A and B respectively. Two reference 
frames with a relative velocity of 0.995c. A and A’, B and B’, and C and C’ are coinciding spots 
at certain times, respectively. 



As pointed out earlier, the coordinates of events should be more detailed with information on 
location, time, and frame; otherwise, incorrect results may arise from ambiguously assigned 
roles. Thus, Eq. (13) should be 

𝑙′1/ = 𝑥"/,&* − 𝑥
"
1,&+ =

𝑥/,&* − 𝑣𝑡/

'1 − 𝑣
!

𝑐!

−
𝑥1,&+ − 𝑣𝑡1

'1 − 𝑣
!

𝑐!

=
𝑥/,&+ − 𝑥1,&+

'1 − 𝑣
!

𝑐!

=
𝑙1/

'1 − 𝑣
!

𝑐!

. 

In Eq. (13B), 𝑥"1,&+ denotes the x’ ordinate in frame K’ corresponding to location A at time tA in 
frame K (observed in frame K);𝑥"/,&* denotes the x’ ordinate in frame K’ corresponding to 
location B at time tB in frame K (observed in frame K); 𝑥1,&+ denotes the x ordinate of location A 
at time tA in frame K (observed in frame K);	𝑥/,&* denotes the x ordinate of location B at time tB 
in frame K (observed in frame K). The third equality has used the condition 𝑡/ = 𝑡1. Eq. (13A) 
should be 

𝑥/),&"*) − 𝑥1",&"+) =
𝑥′/),&"*) + 𝑣𝑡′/

'1 − 𝑣
!

𝑐!

−
𝑥′1),&"+) + 𝑣𝑡′1

'1 − 𝑣
!

𝑐!

=
𝑥′/),&"+) − 𝑥′1),&"+)

'1 − 𝑣
!

𝑐!

=
𝑙′1"/"

'1 − 𝑣
!

𝑐!

. 

In Eq. (13C), 𝑥1",&"+) denotes the x ordinate in frame K corresponding to location A’ at time t’A’ in 
frame K’ (observed in frame K’);𝑥/",&)*" denotes the x ordinate in frame K corresponding to 
location B’ at time t’B’ in frame K’ (observed in frame K’); 𝑥′1",&"+) denotes the x’ ordinate of 
location A’ (the corresponding location of A in frame K’) at time t’A’ in frame K’ (observed in 
frame K’);	𝑥′/",&"*) denotes the x’ ordinate of location B’ (the corresponding location of B in 
frame K’) at time t’B’ in frame K’ (observed in frame K’). The second equality has used the 
condition 𝑡′/" = 𝑡′1". 

From a comparison between Eq. (13A) and Eq. (13C), if we require simultaneously measuring 
coordinates 𝑥"/" and 𝑥"1" in frame K’, the moving length measured according to special 
relativity, 𝑥′/),&"+) − 𝑥′1),&"+), does not correspond to the original length in frame K, 𝑥/,&+ − 𝑥1,&+. 
It corresponds to 𝑥/),&"*) − 𝑥1",&"+) and the coordinates of the two locations are not 
simultaneously measured in frame K. Therefore, with the relativity of simultaneity in special 
relativity, it is impossible to have two coordinates of a length that are measured simultaneously 
in both frames. Using Eq. (13B), we obtain two lengths measured simultaneously in frame K 
using coordinates in frames K and K’, but the length for frame K’ is not simultaneously measured 
in frame K’. Using Eq. (13C), we obtain two lengths measured simultaneously in frame K’ using 
coordinates in frames K and K’, but the length for frame K is not simultaneously measured in 
frame K. Which one should we choose to represent the relationship between the observing and 
the observed frames? In our view, Eq. (13B) or (13) should be used, because it relates the 
original length in frame K with the coordinates of the length in frame K’ measured (observed) 
simultaneously by observers in frame K. Therefore, the logical result of the special relativity 



space effect is length expansion in the observed frame (moving frame) instead of length 
contraction. Although Eq. (13C) or (13) provides the simultaneous measurement of the 
coordinates of the length in frame K’ by observers in frame K’, the length does not correspond to 
the original length in frame K due to the relativity of simultaneity. 

The length contraction derivation of special relativity further raises the issue of where proper 
length and proper time should be placed in the Lorentz transformation. In the time dilation 
derivation, proper time is placed on the right-hand side of the equality in Eq. (10), whereas in the 
length contraction derivation, proper length is placed on the left-hand side of the equality in Eq. 
(13A). The use of the terms “moving frame” and “rest frame” in special relativity makes the 
arbitrary assignments of these labels and arbitrary inputs into the Lorentz transformation 
possible. It has been suggested that the two terms are meaningful only in Lorentz ether theory 
and they should be replaced by “observed frame” and “observing frame” in special relativity[3][4]. 
The arbitrariness of placing proper time or length on which sides of the Lorentz transformation 
casts doubts on the validity of their derivations in special relativity. In our view, the proper time 
and proper length or the coordinates of the observing frame should be on the right-hand side of 
the Lorentz transformation equations; the coordinates of the observed frame should be on the 
left-hand side. 

Another frequently mentioned derivation of length contraction in special relativity is to use the 
relative velocity and the time spent for the two ends to pass the same point. As in Fig.3, if end B 
of the rod passes 𝑥"/,&"%,*) at time 𝑡′(,/" and end A passes 𝑥"/,&"%,*) at time 𝑡′(,/" + Δ𝑡′, end B will 
be at 𝑥"/,&"",*) = 𝑥"/,&"%,*) + 𝑣Δ𝑡′ when end A passes 𝑥"/,&"%,*). Here 𝑥"/,&"%,*) denotes the 
corresponding position of B in frame K’ when the time at B’ is 𝑡′(; 𝑥"/,&"",*) denotes the 
corresponding position of B in frame K’ when the time at B’ is 𝑡′!. Then, the rod’s length in 
frame K’ will be 

𝑙′1/ = 𝑥"/,&"",*) − 𝑥
"
/,&"%,*) = 𝑣Δ𝑡′.  (15) 

The time difference in frame K between the two ends passing 𝑥"/,&"%,*) is Δ𝑡 = 𝑙1//𝑣. Since Δ𝑡 is 
a coordinate time with two events occurring at different places, its relationship with the proper 
time Δ𝑡′ is 

Δ𝑡" = Δ𝑡31 −
𝑣!

𝑐! =
𝑙1/
𝑣
31 −

𝑣!

𝑐! .  (16) 

Substituting Eq. (16) in (15), we obtain 

𝑙′1/ = 𝑙1/31 −
𝑣!

𝑐! .  (17) 



The above approach transforms length measurements into time measurements. However, we 
must determine who reads the clocks in frame K to obtain Δt. If observers at 𝑥"/,&"%,*) read them, 
Eq. (10A) is used for time transformation, and the length measured equals that of Eq. (13C), 
which is not the original length in frame K due to the relativity of simultaneity. If observers at 
locations A and B in frame K read the clocks, Eq. (10B) is used for time transformation, and we 
have shown it is incorrect. Moreover, in this special relativity derivation, we have the proper 
length in frame K but the proper time in frame K’, which seems logically inconsistent. The 
derivation can be viewed as applying Eq. (13A) or (13C) with	𝑥"/,&"%,*) = 𝑥"1,&"",*), 𝑙1/ = 𝑥/ −
𝑥1, and 𝑙′1/ = 𝑣(𝑡′!,/" − 𝑡′(,/"). We have 

𝑙1/ = 𝑥/ − 𝑥1 =
𝑥"/,&"",*) + 𝑣𝑡′!,/"

'1 − 𝑣
!

𝑐!

−
𝑥"/,&"%,*) + 𝑣𝑡′(,/"

'1 − 𝑣
!

𝑐!

=
𝑣(𝑡′!,/" − 𝑡′(,/")

'1 − 𝑣
!

𝑐!

=
𝑙′1/

'1 − 𝑣
!

𝑐!

,  (18)𝑙′1/ = 𝑙1/31 −
𝑣!

𝑐! . 

If observers in the same frame can communicate and collaborate in measuring length, which 
must be true to make any measurement of length possible, we will have six lengths measured: 1) 
length in frame K measured by collaboration of observers at A and B in frame K, 𝑙1/,1/ = 𝑥/,/ −
𝑥1,1; 2) length in frame K’ measured by collaboration of observers at A and B in frame 
K, 𝑙′1"/",1/ = 𝑥′/",/ − 𝑥′1",1; 3) length measured through time difference by observers at B’ in 
frame K’, 𝑙′1/,/" = 𝑣(𝑡′!,/" − 𝑡′(,/"); 4) length measured through time difference by observers at 
A in frame K, 𝑙1"/",1 = 𝑣B𝑡!,1 − 𝑡(,1C; 5) length in frame K’ measured by collaboration of 
observers at A’ and B’ in frame K’, 𝑙′1"/",1"/" = 𝑥′/",/" − 𝑥′1",1"; 6) length in frame K measured 
by collaboration of observers at A’ and B’ in frame K’, 𝑙1/,1"/" = 𝑥/,/" − 𝑥1,1". Here, we 
use 𝑥1,1 to denote the coordinate of A in frame K observed by observers at A;	𝑥/,/ to denote the 
coordinate of B in frame K observed by observers at B;	𝑥′1",1 to denote the coordinate of A in 
frame K’ observed by observers at A stationary in frame K; 𝑥′/",/ to denote the coordinate of B in 
frame K’ observed by observers at B stationary in frame K; 𝑥′1",1" to denote the coordinate of A’ 
(the coordinate of A) in frame K’ observed by observers at A’;	𝑥′/",/" to denote the coordinate of 
B’ (the coordinate of B) in frame K’ observed by observers at B’;	𝑥1,1" to denote the coordinate 
of A in frame K observed by observers at A’ stationary in frame K’; 𝑥/,/" to denote the coordinate 
of B in frame K observed by observers at B’ stationary in frame K’. Some people may doubt 
whether observer A can measure the time used for B’ to reach A (corresponding to A’) in frame 
K. This is possible because observers at B can inform those at A that B’ in frame K’ corresponds 
to B, so A can measure the time interval between A’ passing A and B’ passing A. 



In the above six lengths, lengths 1 and 5 are proper lengths measured by observers in the same 
frame. Lengths 2 and 6 are the ones in one frame measured by observers in another frame. 
Lengths 3 and 4 are measured by another frame using time differences. In terms of lengths 3 and 
4, Einsteinian length contraction is due to time contraction in the observed frame (the “rest 
frame” in the special relativity interpretation). The derivations using Eq. (13A) or (18) treat the 
rod stationary in frame K as the moving object. Using the same logic of deriving Eq. (17), we 
can derive the length in frame K’ as measured by observers stationary at A in frame K, i.e., length 
4 in the preceding paragraph. As in Fig.3, the coordinate of end A0 of the rod in frame K’ 
is 𝑥′1-,&%,+ at time 𝑡(,1 as observed by observers stationary at A in frame K, and the coordinate of 
end B0 of the rod in frame K’ is 𝑥′/#,&%,* at time 𝑡(,/ as observed by observers stationary at B in 
frame K. The observers at B can inform those at A of 𝑥′/-,&%,*. When 𝑥′/#,&%,* passes A in frame K 
at time 𝑡(,1 + Δ𝑡, 𝑥′1-,&%,+ will be at 𝑥1-,&! = 𝑥1-,&%,+ + 𝑣Δ𝑡. Then, the rod’s length measured 
through time differences by observers at A in frame K will be 

𝑙1-"/-",1 = 𝑥1-,&" − 𝑥1-,&%,+ = 𝑣Δ𝑡.  (19) 

The time difference in frame K’ between 𝑥′1-,&%,+ passing A and 𝑥′/-,&%,* passing A is Δ𝑡′ =
𝑙′1-"/-"/𝑣. Since Δ𝑡′ is a coordinate time with two events occurring at different places, its 
relationship with the proper time Δ𝑡 is 

Δ𝑡 = Δ𝑡′31 −
𝑣!

𝑐! =
𝑙′1-"/-"
𝑣

31 −
𝑣!

𝑐! .  (20) 

Substituting Eq. (20) in (19), we obtain 

𝑙1-"/-",1 = 𝑙′1-"/-"31 −
𝑣!

𝑐! .  (21) 

The above derivation corresponds to Eq. (13B), where the length is measured simultaneously in 
frame K but not in frame K’. Therefore, the length in the observed frame (moving frame) 
expands rather than contracts. Since we have argued that the Einsteinian rest frame should be 
called the observing frame and the Einsteinian moving frame should be called the observed 
frame, length expands in the observed frame (moving frame). Special relativity obtains length 
contraction by wrongly designating the observing frame as moving. In this section, we have used 
a detailed subscript system in our notation to indicate the location, frame, observer, and time 
measured for specific variables to avoid ambiguity in derivation, which Ma[4] has advocated. 

5. Einsteinian time dilation and the twin paradox 

The Lorentzian time dilation and length contraction are the primary changes due to “absolute” 
velocity relative to the ether frame, and they are the foundation of the Lorentz transformation. 



Thus, Lorentzian time dilation and length contraction formulae need not be derived from the 
Lorentz transformation. Applying the Lorentzian time dilation formula to the one traveling twin 
and one staying twin saga causes no paradox. The traveling twin becomes younger than the 
staying twin because the traveling twin’s clock and local time become slower. The Einsteinian 
time dilation leads to many paradoxes, among which the twin paradox is the most famous[20]. 
Many explanations have been proposed to show no contradiction in the twin paradox, and they 
can be roughly classified into two schools: the acceleration school and the frame jumping school. 
The former thinks that the acceleration experienced by the traveling twin causes the age 
difference[20][21]. The latter considers that frame jumping triggered by acceleration, rather than 
acceleration per se, causes the differential aging of the twins[22][23][24]. 

 

Figure 4. The Minkowski diagram with Alice, the twin sister on the earth, as the “stationary” 
observer. The traveler Betty departs at O (O′), turns back at P, and returns to the earth at Q. At 
P, Betty jumps from frame O′ to frame O′′. 

The acceleration explanation can generally be discredited because there is no mechanism to 
relate the effect of a certain acceleration to arbitrary lengths of time the traveling twin spends in 
uniform motion[3][4]. The frame-jumping explanation using Einsteinian time dilation also appears 
incorrect in light of our analysis of the six types of time intervals. We assume a case of twin 
sisters Alice and Betty; Alice stays on the earth for 10 years while Betty travels outwards at 
0.995c, and then another 10 years for Betty’s return journey to the earth. In a typical frame-



jumping explanation using a Minkowski diagram (Fig. 4), as Betty travels out along line OP, 
Alice is aging more slowly than her because Alice’s event A is simultaneous with event P in 
Betty’s frame. When Betty changes the direction of her spaceship to return, she jumps into a new 
frame of reference with P simultaneous with Alice’s event B. This frame jumping corresponds to 
Alice aging incredibly fast during this instant. Although Betty still finds Alice aging more slowly 
than her, it is insufficient to cancel out the age added to Alice during the turning around moment. 
Betty appears to have written off a large part of her age (the part on the t-axis between points A 
and B) and become younger than Alice. In Alice’s frame, Betty, traveling at 0.995c, ages more 
slowly according to the Lorentz time dilation formula 

𝑡′/6&&7 = 𝑡189.611 − 𝑣!/𝑐!.  (22) 

In Eq. (22), 𝑡′/6&&7 is Betty’s time interval observed by Alice, and 𝑡189.6 is Alice’s time interval 
measured by Alice herself. The frame jumping by Betty is the mechanism that makes the 
outcomes observed by Alice and Betty compatible[22][23][24]. 

Several points may be raised against the above frame-jumping explanation using the Minkowski 
diagram in special relativity: 

First, which time among the six types in our early analysis of special relativity does this 
explanation use? If we use the Einsteinian interpretation of Eq. (10), Alice with her proper time 
is the moving frame, Betty’s frame is the rest frame, and the clocks in her frame are much faster 
than Alice’s. Thus, Betty should be much older than Alice when she returns. 

Second, Alice and Betty should compare their local stationary clocks, which indicate times 1 and 
3 respectively. Since there is no physical change in clocks in special relativity, if acceleration has 
no direct effects on clocks, Alice’s and Betty’s clocks should indicate the same time and they 
have the same age, as illustrated by the Section 2 thought experiment. If acceleration affects 
clocks directly, Betty’s age should be Alice’s plus the effect of acceleration. So far, there is no 
theory or experimental evidence on whether or how acceleration affects clocks in terms of their 
running rate. For example, if it does affect clocks’ running, does the effect depend on the overall 
change in velocity or acceleration? If the effect depends on an overall change in velocity, a low 
acceleration over a long time will achieve the same effect as a high acceleration over a short 
time. If the effect depends on acceleration, a low acceleration will not achieve the same effect as 
a high acceleration regardless of the overall change in velocity. 

Third, Eq. (22) is the Lorentzian time dilation formula where proper time (ether frame time) is 
the fastest and moving clocks are slower. In Einsteinian time dilation, the proper time measured 
with stationary clocks in the same frame is the slowest and the clocks in the observing (or rest) 
frame are faster. However, the observing (or rest) frame in special relativity is assigned to the 
left-hand side of the Lorentz transformation equations. In our view, the observing frame should 
be on the right-hand side and have the proper time indicated by its stationary clocks. Either way, 



special relativity or the Einsteinian time dilation should predict Betty becoming older than Alice 
(according to the Einsteinian interpretation of Eq. (10)). 

Fourth, what is the use of coordinates in a Minkowski diagram? If they are coordinates, 
shouldn’t they indicate time and space? If Alice has spent OQ time by staying on the earth, 
shouldn’t Betty have spent OQ time as well after she started from O and arrived at Q at the same 
spot as Alice? In a coordinate system, the distance between two points can be calculated by their 
coordinates. Why can’t the coordinates of O and Q provide information on Betty’s time interval 
between O and Q? In our view, the time intervals spent by Alice and Betty should all be OQ. 

Fifth, special relativity researchers often overlook what happens at the turning point when the 
spacecraft slows to zero velocity and Betty jumps back to Alice’s frame. As shown in Fig.5A, 
the line of simultaneity at P in Betty’s frame before her deceleration to zero velocity is DP, while 
the line of simultaneity of E (halfway between O and Q) in Betty’s frame is EF. Therefore, Alice 
finds that Betty ages more slowly and that Betty is much younger than her at P before Betty’s 
deceleration. When Betty decelerates to zero velocity at P, Betty and Alice are in the same 
reference frame in which E and P are on the same line of simultaneity; therefore, they have the 
same age at the end of Betty’s outward journey. In Fig.5, PG represents Betty’s world line if she 
keeps 𝜈 = 0 after arriving at P. When the return journey starts and Betty accelerates from 𝜈 =
0 to 0.995c instantly at point P, she jumps from frame O into frame O′′ at point P. Alice moves 
along the t axis of her own frame from E to Q, and Betty travels from P to Q (Fig.5B). In Betty’s 
frame, the line of simultaneity at P is KP, which is above HE, so at the moment of Betty’s 
acceleration, Alice finds that Betty ages incredibly fast and becomes much older than her. After 
Betty’s acceleration, Alice finds that Betty ages more slowly than her, so their age difference 
decreases as they approach Q. At Q, when Betty decelerates to 𝜈 = 0, they should have the same 
age because they are both at rest at Q in the earth frame (Fig.5B). 



 

Figure 5. A. Minkowski diagrams for Betty’s outward journey. Alice’s frame is the observing 
frame. Betty travels along the t′ axis of her own frame and reaches turning back point P, which is 
on the same line of simultaneity as D. B. The Minkowski diagrams for Betty’s return journey, 
including the time of the outward journey. Alice’s frame is the observing frame. Betty travels 
along PQ, which is parallel to the t′′ axis of her own frame. Alice travels along the t axis of her 
own frame and meets Betty at Q. 

Using our understanding of notations in Einstein’s Lorentz transformation, we will not find any 
relativistic paradox. For example, the twin paradox will be purely due to the extrapolation of the 
twin sister on the earth (as well as the sister on the spacecraft) to reconcile the observed 
inconstant velocity of light in another frame and the postulated constancy of light velocity. The 
reality is that there is no change in their clocks or age differences, and they will meet at the same 
age bar acceleration-induced changes (because of asymmetric acceleration between them) or 
some effects of velocity relative to the ether frame if such a medium exists. Similarly, length 
contraction-related paradoxes will also disappear due to the extrapolation nature of the Lorentz 
transformation in Einstein’s special theory of relativity. The fat man and grate paradox and the 
ladder paradox (or barn and pole paradox)[25][26] will disappear because what matters is the 
proper length of the pole (as well as the proper width of the barn). 

6. Discussion 

In the present study, we have examined how special relativity derives the Einsteinian time 
dilation and length contraction and compared them with those in the Lorentz ether theory. 
Despite the claims by many relativity researchers that special relativity and the Lorentz ether 



theory give identical predictions, our present results show that they are very different. Special 
relativity continues to use the Lorentzian terms “rest frame” and “moving frame” when they 
should be called the observing frame and the observed frame respectively[3][4]. Special relativity 
effects depend on the relative velocity between two inertial frames, which makes resting or 
moving effectively meaningless. The continued use of these terms contributes to blurring the 
differences between the Lorentz ether theory and Einsteinian special relativity. 

6.1. Time dilation in Lorentz theory and special relativity 

Time dilation and length contraction are the primary changes in Lorentz's theory due to objects 
moving relative to the medium of light, ether, which is the privileged frame of reference. 
Therefore, there is no need to derive them from the Lorentz transformation. On the contrary, the 
Lorentz transformation results from time dilation and length contraction. Since measuring rods in 

the moving frame contract according to the formula 𝑙 = 𝑙#'1 −
%"

."
, we have the Lorentz 

transformation space equation 

𝑥′ =
𝑥 − 𝑣𝑡

'1 − 𝑣
!

𝑐!

. 

In the above equation, 𝑥 − 𝑣𝑡 is the part of x that corresponds to x’. Time dilation with the 
formula Δ𝑡′ = Δ𝑡/11 − 𝑣!/𝑐! results in the Lorentz transformation time equation 

𝑡′ = 𝑡11 − 𝑣!/𝑐! −
𝑣(𝑥 − 𝑣𝑡)/𝑐!

11 − 𝑣!/𝑐!
. 

As explained earlier, the first term on the right-hand side is the time interval measured by the 
moving clock for light to travel across 𝑥, and the second term is the time measured by the 
moving clock for light to travel across 𝑣𝑡. If we want to calculate how a moving clock slows 
compared with an ether frame clock, we use the Lorentzian time dilation formula. If we want to 
calculate how a rod contracts when moving relative to the ether, we just use the Lorentzian 
length contraction formula. 

Special relativity asserts that time dilation and length contraction depend on the relative velocity 
between two reference frames, but they are measurement effects rather than physical changes 
like those in the Lorentz ether theory. Since Einstein and special relativity researchers give the 
constancy of the speed of light and the principle of relativity primary status, they derive the 
Einsteinian Lorentz transformation first. Then, they derive time dilation and length contraction 
from the Lorentz transformation. As Ma[5], has shown, it is impossible to derive the Lorentz 
transformation from Einstein’s two postulates because they are not sufficient conditions. Using 
relative velocity, it is tricky to assign the status of the rest frame or the moving frame, and it is 
also confusing about which side of the equation the “rest frame” or the “moving frame” variables 



should be placed on. As shown in this study, if the observing frame (rest frame) should be on the 
right-hand side, we obtain time contraction in the observed frame (moving frame). However, 
special relativity assigns the rest status to the left-hand side (the observed frame in our 
terminology) such that the “rest frame” clocks become faster than the “moving frame” (the 
observing frame in our terminology) clocks that show the proper time. This operation enables 
special relativity to seemingly obtain the time dilation of the Lorentz ether theory. 

On closer examination, it is easy to find that there is no time dilation in the Einsteinian “time 
dilation” because the proper time is the slowest in special relativity while the ether or rest 
frame’s clocks are the fastest in Lorentz’s theory. The so-called time dilation in the Einsteinian 
“moving frame” (the observing frame whose variables are on the right-hand side of the Lorentz 
transformation) is time contraction in the Einsteinian “rest frame,” which creates a “relative time 
dilation” in the Einsteinian “moving frame,” in the same way that the Lorentzian moving frame 
finds relative time contraction in the ether frame because Lorentzian moving-frame clocks per se 
become slower. Since we think that the frame on the right-hand side of the Lorentz 
transformation should be the observing frame, hence the “rest frame” in special relativity, what 
special relativity should obtain logically is time contraction or clocks running faster in the 
“moving frame,” i.e., time contraction in the observed frame. The purpose of mis-assigning the 
rest or moving status by relativity researchers is to avoid a result that conflicts with the Lorentz 
ether theory and the experimental findings. 

6.2. Proper time, observed time, and coordinate time 

In the Lorentz ether theory, there is no difference between the proper time and the observed 
coordinate time indicated by clocks in the moving frame because the moving clocks slow 
physically, and the rest frame is always the ether frame. Special relativity asserts no physical 
changes in the clocks of either the observed frame or the observing frame, which is correct when 
there is no ether background. Therefore, Einsteinian relativistic effects can only be measurement 
effects or observation effects due to the constancy of the speed of light. If this is true, we have 
the following issues regarding the relationships between different measurements of time in the 
two reference frames with relative motion: 1) the relationship between Δ𝑡/,/ and Δ𝑡′/",/", the 
proper times of the two frames; 2) the relationship between Δ𝑡′/",/" (the observed frame proper 
time) and Δ𝑡′1"/",/ (the coordinate time of the observed frame measured by the observing frame); 
3) the relationship between the proper time Δ𝑡′/",/" (or Δ𝑡/,/) and the coordinate 
time Δ𝑡′1"/",1"/" (or Δ𝑡1/,1/) in a frame; 4) the relationship between Δ𝑡′1"/",1"/" (or	Δ𝑡1/,1/) (the 
observed frame’s coordinate time, i.e., the time for B in frame K to travel from A’ to B’ measured 
by A’ and B’ in frame K’) and Δ𝑡′1"/",/ (or Δ𝑡1/,/") (the coordinate time of the observed frame 
measured by the observing frame). Here we use frame K’ as the observed frame in 2), and in 
other scenarios, the roles can be swapped. 

Many special relativity researchers dodge questions about the relationship between the proper 
times of the two frames and assert that they cannot be compared directly. Some may admit that 



the proper times of the two frames are equal; otherwise, contradictions arise in special relativity, 
as revealed by the Section 2 thought experiment. Concerning the relationship between the 
observed frame's proper time and the coordinate time of the observed frame measured by the 
observing frame, special relativity researchers generally assert they are equal. If they are equal, 
the second part of the Section 2 thought experiment would be a valid question, and special 
relativity would be self-contradictory between Δ𝑡 = 6.4 and Δ𝑡 = 0.064 while Δ𝑡′ = 0.64. Thus, 
although most relativity researchers assert that the observed frame's proper time and the time of 
the observed frame measured by the observing frame are the same, it must be wrong because it 
leads to a real contradiction in special relativity. 

If the observed frame's proper time and the time of the observed frame measured by the 
observing frame are not the same, the time of the observed frame measured by the observing 
frame does not reflect what is going on in the observed frame. What matters is the proper time in 
the observed frame, which cannot be measured by the observing frame directly. In our view, the 
proper times of the two frames are equal, i.e. Δ𝑡/,/ = Δ𝑡′/",/", because they use identical clocks 
and no other factors influence their clocks. If they are equal, the Einsteinian Lorentz 
transformation results become pure observational effects, which are only meaningful to the 
observers. According to Einstein’s clock synchronization using light signals, the proper 
time Δ𝑡′/",/" (or Δ𝑡/,/) and the coordinate time Δ𝑡′1"/",1"/" (or Δ𝑡1/,1/) should be equal because 
they are measured in the same frame. Then, Δ𝑡′1"/",1"/" (the observed frame’s coordinate time) 
and Δ𝑡′1"/",/ (the time of the observed frame measured by the observing frame) should be 
different because observers are not in the same reference frame. The differences 
between Δ𝑡′/",/" (or Δ𝑡/,/)/Δ𝑡′1"/",1"/" (or Δ𝑡1/,1/) and Δ𝑡′1"/",/ (or Δ𝑡1/,/") underlie the special 
relativity effects. 

6.3. Analysis of the twin paradox and the increased lifetime of high-speed particles 

The Lorentz ether theory has an unambiguous answer to the thought experiment of the twin 
traveller or the increased lifetime of high-speed particles. Betty will be younger when she returns 
because the moving clock slows absolutely. In terms of the increased lifetime of high-speed 
particles, the Lorentz ether theory thinks that the particles’ time (or clock) becomes slower 
because of their velocity relative to the ether frame. Special relativity tries to replicate the 
Lorentzian result by comparing Alice’s proper time with the coordinate time of Betty’s frames. 
In the derivation of Einsteinian time dilation, the frame with the proper time is designated as the 
“moving frame” and the frame with the coordinate time is designated as the “rest frame” whose 
clocks run faster than the “moving frame”. When explaining the twin paradox, special relativity 
researchers assign the traveler’s frame with the coordinate time as the “moving frame” and apply 
the Lorentzian time dilation formula to obtain a result of the traveler’s clocks running slower 
than the proper time. In doing this, special relativity does not follow its time dilation logic in 
explaining the twin paradox. Following Einsteinian logic of deriving time dilation, the traveler 
(the observed frame) should age faster. 



Special relativity says little about comparing the proper times of two frames with relative 
motion. Since the twins separate and meet again, their proper times should be compared rather 
than one proper time measured by self and one coordinate time measured by another twin. When 
Betty departs, her clock should be synchronized or compared with Alice’s. When Betty returns, 
comparing their clocks on the spot will tell who is younger. If acceleration does not influence 
Betty’s clock, as special relativity asserts no physical changes in observed-frame clocks, they 
should have the same age. If acceleration influences Betty’s clock, their age difference is the 
acceleration effect. Therefore, the correct explanation of the twin paradox in special relativity is 
no age difference between Alice and Betty if acceleration does not influence Betty’s clock/time. 
If acceleration affects Betty’s clock/time, their age difference is the acceleration effect, which 
does not follow the Lorentzian time dilation formula. 

Time dilation has been key experimental evidence for special relativity. The often-cited 
examples are the increased lifetime of high-speed particles[27][28][29][30][31][32][33] and the Hafele-
Keating experiment[34]. However, as mentioned earlier, the logical consequence of Einsteinian 
“time dilation” is clocks running faster in the observed frame than the proper time in the 
observing frame. In the case of high-speed particles, it seems obvious that the particles are in the 
observed frame, so they should decay faster than the “rest” particles in the observing frame. 
Therefore, special relativity researchers have not followed the logic they used in deriving 
Einsteinian time dilation. Even if we accept this illogical assignment of the moving or rest status, 
there is still the issue of which time should be compared, proper time or coordinate time. Hafele 
and Keating made their predictions based on the different distances and velocities of the ground 
clocks and the flying clocks relative to the center of the Earth rather than the velocity between 
the ground clocks and the flying clocks[35][36], which is more Lorentzian than Einsteinian and can 
be explained by the Lorentzian time dilation[4]. The time dilation observed in the Hafele-Keating 
experiment is not an Einsteinian special relativity measurement effect without physical change. 

The Section 2 thought experiment is an illustration of high-speed particles such as muons 
generated in the high-altitude atmosphere. The observers k on the ground found that muons 
reached them, indicating that the lifetime of high-speed particles k’ had increased substantially 
compared with low-speed ones. If k and k’ use their stationary clocks respectively, what time do 
they obtain and how do their times measured differ? Combining information from Fig.1 and 
Fig.2, in our opinion, they should measure their proper times, which should be equal, i.e., they 
both obtain a value of 6.4 μs. In measuring or estimating the lifetime of high-speed particles, the 
observers in the laboratory or on Earth could not observe clocks in the particle frame to obtain 
their coordinate time. The lifetime of the particles is calculated by dividing the distance traveled 
by the particles’ velocity, which is roughly equivalent to observer k measuring the time elapsed 
before meeting observer k’ in the Section 2 thought experiment. Therefore, they are proper 
time, Δ𝑡1,1 = Δ𝑡′/",/". 

Obviously, the particles are the observed frame, and observers on the ground are the observing 
frame, but observers in the Earth frame could not read clocks in the particle frame. We may also 



view this as observer k and co-observer k1 in the Earth frame reading their clocks when they 
coincide with B’ in the particle frame respectively. However, this is simply 𝑡/",: − 𝑡/),:% =
𝑡1,!*) − 𝑡1,(+), which does not give us any readings of clocks in the particle frame. All times are 
readings from the clocks of the Earth frame. According to the Einsteinian interpretation of time 
dilation, the observers on the ground should find the clocks of the high-speed particles running 
much faster than their clocks, as suggested by the following equation 

𝑡′/),1 − 𝑡"1),1 =
𝑡1,!*) − 𝑡1,(+)

'1 − 𝑣
!

𝑐!

. 

Hence high-speed particles should decay much earlier than low-speed particles. Therefore, 
following Einsteinian logic, special relativity should have faster-decaying high-speed particles 
rather than slower-decaying ones. The slower-decaying result is consistent with the Lorentzian 
time dilation. Some special relativity researchers may argue that the times shown by the clocks 
on the ground should be on the left-hand side of the Lorentz transformation equation, and the 
high-speed particle’s clocks should be on the right-hand side. This will imply that an observer’s 
own clock’s reading will be influenced by other frames with relative velocity to the observer. 
This is absurd because there are so many objects with various velocities to the observer. The 
relativistic velocity effect should only occur to variables in the observed frame measured by the 
observing frame. 

6.4. Length contraction in Lorentz theory and special relativity 

There is no experimental evidence for length contraction, which is postulated to explain the null 
result of the Michelson-Morley experiment[13][7][8]. An object’s length contracts with the 
Lorentzian length contraction formula in the direction of its velocity relative to the ether frame. 
In special relativity, length contraction is usually illustrated by a two-way beam of light vertical 
to the observed frame’s velocity relative to the observing frame[37]. In the observed frame, the 
two-way path of the light beam is vertical and overlapping. To observers in the observing frame, 
the two ways and the distance traveled by the light source form an isosceles triangle, with each 
waist corresponding to each way of the vertical light path. Since the vertical path and the 
isosceles triangular path are the same event observed from two frames, the constancy of the 
speed of light requires the latter to contract according to the formula 𝑙 = 𝑙#11 − 𝑣!/𝑐!. The time 
difference produced during the synchronization of clocks by light signals by the observed 
frame’s velocity as measured by the observing frame is 

Δ𝑡" =
𝑙

𝑐 − 𝑣 +
𝑙

𝑐 + 𝑣 =
2𝑐𝑙

𝑐! − 𝑣! =
2𝑙#11 − 𝑣!/𝑐!

𝑐 K1 − 𝑣
!

𝑐!L
=

Δ𝑡
11 − 𝑣!/𝑐!

. 

The key issues in the Einsteinian length contraction derivation are still: 1) Which frame is the 
observing frame and which frame is the observed frame? 2) On which side of the Lorentz 



transformation equation should the observing frame be? Using “rest frame” and “moving frame” 
in special relativity when they are relative terms enables researchers to arbitrarily assign these 
labels to obtain the desired results. In our view, the frame with the proper time and the proper 
length is the observing frame, whose variables should be on the right-hand side of the Lorentz 
transformation equation; the frame observed by the one with the proper time and the proper 
length is the observed frame, whose variables should be on the left-hand side of the Lorentz 
transformation equation. Proper time is measured by the observers reading their clocks in the 
same frame. Proper length is a length in the observers’ frame measured by the observers using 
standard rods or coordinates in the same frame. The observed time is the time indicated by 
clocks in the observed frame, which are read by observers in the observing frame at the 
corresponding location and time. The observed length is the length indicated by the 
corresponding coordinates in the observed frame, which are read by observers in the observing 
frame at the corresponding locations and times. The Lorentz transformation should transform a 
frame’s own measured variable values to obtain the corresponding variable values in another 
frame rather than transform another frame’s measured variable values to obtain one’s own 
frame’s corresponding variable values. 

With the above view, we view Eq. (13A) as placing the observing frame (K’) on the right-hand 
side and the observed frame on the left-hand side. Its result implies length expansion in the 
observed frame, the same as Eq. (13), which uses frame K as the observing frame and obtains the 
length expansion in frame K’. Mainstream special relativity researchers think of frame K, with 
the proper length, as the moving frame (observed frame) because the observing frame should 
choose simultaneous readings of the coordinates in the frame concerned (here, frame K’), but 
frame K cannot. However, as special relativity argues that simultaneity in frame K’ implies no 
simultaneity in frame K, the length measured by frame K’ with its simultaneity might not 
correspond to the proper length in frame K because the two ends of the length are not measured 
simultaneously in frame K. The length measured via reading the corresponding frame K’ 
coordinates simultaneously by the frame K’ observers might not correspond to the proper length 
in frame K due to the relativity of simultaneity. In contrast, frame K, as the observing frame, can 
compare its proper length with the corresponding frame K’ coordinates read simultaneously by 
the frame K observers to obtain the corresponding length in the observed frame. This seems more 
logically consistent with the idea that a frame is at rest with itself, such that the proper length is 
the rest length. Mainstream special relativity researchers place the proper length on the left-hand 
side of the Lorentz transformation equation since they try to replicate Lorentz’s length 
contraction result and avoid a length expansion result that conflicts with the Lorentz ether theory. 

The length contraction derivation using Eqs. (15)-(18) relies on the time contraction we pointed 
out earlier. Since the proper time Δt’ should not decrease and hence the corresponding length 
vΔt’ in frame K’, the increase in the value of Δt in frame K should correspond to a length 
expansion vΔt. Following this logic, observers in frame K’ should find a proper length, which 
is 11 − 𝑣!/𝑐! of the corresponding expanded length in the “moving frame” (frame K) caused by 



its velocity relative to frame K’. In special relativity, it is impossible to derive a consistent 
corresponding length in another frame. For example, mainstream special relativity researchers 
dismiss the length expansion result of Eq. (13) on the ground that the coordinates in the observed 
frame are not simultaneously read. However, although Eq. (13A) lets the coordinates in the 
counterparty frame be simultaneously read, the original coordinates in the first frame would not 
be simultaneously read, so the corresponding coordinates and length for the length obtained from 
Eq. (13A) are no longer the original length and coordinates. For this reason, Ma[4] advocates 
detailed information on the time, locations, and observers for values measured for any particular 
variable. The result from Eq. (13) is 𝑙′1/,1/,&+;&*, which means the length in frame K’ 
corresponding to the length AB in frame K, measured by observers at locations A and B at time t1 
in frame K. The result from Eq. (13A) is 𝑙′1/,1"/",&"+);&"*), which means the length in frame K’ 
corresponding to the length AB in frame K, measured by observers at location A’ and B’ at time 
t’1 in frame K’. Since the original length is 𝑙1/,1/,&+;&*, when obtaining 𝑙′1/,1/,&+;&*, we 
have 𝑡′1" ≠ 𝑡′/", observers in frame K’ may disagree on 𝑙′1/,1/,&+;&*being the length in frame K’. 
When obtaining 𝑙′1/,1"/",&"+);&"*), we have 𝑡1 ≠ 𝑡/, i.e., its corresponding length in frame K is no 
longer the original length there. Therefore, according to special relativity, it is impossible to 
obtain length measurements in two frames with relative motion, both of which are measured 
simultaneously at two locations. 

6.5. The Minkowski space-time and the Lorentz transformation 

The Einsteinian Lorentz transformation can be represented geometrically as the Minkowski four-
dimensional space-time. However, the Minkowski coordinate system seems unusual compared 
with other coordinate systems. In a Cartesian space-time coordinate system, the time interval 
between two space-time points can be calculated directly from their time ordinates, and so can 
their spatial distance. As we have seen in Section 5, in the interpretation of the twin paradox by 
mainstream special relativity researchers, the Minkowski coordinates seem unable to supply time 
interval information. The time interval experienced by an observer seems path-dependent rather 
than coordinates-determined. If the Minkowski space-time coordinates cannot determine the time 
interval between two space-time points, can it still be called a coordinate system? Or is the 
special relativity interpretation incorrect? 

Some previous studies have emphasized the necessity of distinguishing variables under different 
circumstances, such as variables measured by observers in the same frame and variables in one 
frame measured by observers in another[3][4]. What determines observers’ temporal state is the 
proper time in special relativity. Therefore, if acceleration does not impact the traveler’s proper 
time, the twins should be the same age when the traveler returns. The correct interpretation of the 
Minkowski coordinates should be that when the twins have a constant velocity between them, 
the Minkowski coordinates are the superimposition of two coordinate systems, one for each. On 
each overlapping point, the observing frame (rest frame) indicates different time and space 
coordinates from those indicated by the observed frame (moving frame). The Einsteinian Lorentz 



transformation reflects the relationship between the observed frame’s variables measured by the 
observing frame and the observed frame per se. When their relative velocity disappears, the 
special relativity effects disappear. Then, the Minkowski coordinates can have the same role as 
other coordinate systems in providing time and space information. 

Special relativity does not draw its conclusion from its internal logic, which will lead to no age 
difference between the traveling and staying twins, time contraction, and length expansion. 
Instead, it tries to replicate the results of the Lorentz ether theory, which can only be achieved by 
twisting the relationship between the observing and observed frames. Some researchers use 
Minkowski diagrams to derive time dilation and length contraction[38], but Ma has shown that 
time contraction can be derived with the same logic used by Schutz to derive length 
contraction[3][4]. 

7. Conclusion 

From the analysis and discussion in the present paper, we can draw the following conclusions: 

First, length contraction and time dilation are primary changes that result from the Lorentz 
transformation, leading to the constancy of the speed of light in the Lorentz ether theory. 
Einstein tried to replicate Lorentz’s results by postulating the constancy of the speed of light and 
the principle of relativity, first deriving the Lorentz transformation and then deriving time 
dilation and length contraction from the Lorentz transformation. None of the two attempts are 
achieved in a logically valid manner. 

Second, there are two distinct values for a variable measured by identical clocks and standard 
rods in special relativity due to the relativity of simultaneity: the value obtained by observers in 
the same frame and the value acquired by observers in another with relative motion. In contrast, 
the differences between values measured by the rest and moving frames in the Lorentz ether 
theory arise because moving clocks become slower (time dilation) and moving rods contract 
(length contraction). 

Third, the proper time (measured with identical clocks by stationary observers in the same 
frame) and the proper length (measured with identical measuring rods by stationary observers in 
the same frame) should be the same in different reference frames in special relativity. 

Fourth, the value measured by observers in the same frame, e.g., the proper time and length in 
special relativity, governs physical processes in a reference frame. Therefore, if acceleration does 
not impact a clock’s running rate, the traveling and staying twins should be the same age in 
special relativity. So, the twin paradox is a consequence of mixing up the proper time of a frame 
and its corresponding coordinate time measured by another frame. Relativity researchers’ 
explanations of the twin paradox are their attempts to replicate the results of the Lorentz ether 
theory. 



Fifth, the terms “rest frame” and “moving frame” are meaningful and appropriate in the Lorentz 
ether theory because they are based on a frame’s velocity relative to the ether frame. The terms 
become confusing in special relativity because the relativistic effects are based on the relative 
velocity between two reference frames. The correct names for the two terms should be 
“observing frame” and “observed frame.” 

Sixth, variable values from the observing frame should be placed on the right-hand side of the 
Lorentz transformation equations. Variable values for the observed frames are those on the left-
hand side of the Lorentz transformation equations. 

Seventh, time dilation in the moving frame is the result of the Lorentz ether theory; there is 
“relative time contraction” in the ether frame as observed by the moving frame because of its 
“absolute time dilation.” The logical result of special relativity should be time contraction in the 
observed frame, which results in a “relative time dilation” in the observing frame. 

Eighth, length contraction in the moving frame is the result of the Lorentz ether theory; there is 
“relative length expansion” in the ether frame as observed by the moving frame because of its 
“absolute length contraction.” The logical result of special relativity should be length expansion 
in the observed frame, which results in a “relative length contraction” in the observing frame. 

Ninth, simultaneity in the observed frame implied no simultaneity in the observing frame in 
special relativity. The length contraction commonly derived for the moving frame (observed 
frame) in special relativity does not correspond to the original length in the observing frame; 
therefore, length expansion in the observed frame is a more logical result for special relativity. 

Tenth, (values of) variables should be designated with their frames and their observers’ 
locations, times, and frames in special relativity to avoid mistakes arising from incorrect 
assignments of frames, locations, times, and observers. 

Eleventh, modern physics uses Lorentzian time dilation and length contraction rather than 
Einsteinian “time dilation” and “length contraction,” i.e., time contraction and length expansion. 
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