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Limits to Growth in Global Crop Yields:
Insights from Data Mining of the FAOSTAT
Database from 1961 to 2023
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1. Hochschule Fresenius University of Applied Sciences, Idstein, Germany

We conducted a comprehensive data mining analysis of the FAOSTAT database to assess historical trends
and current limits in global crop yield development. The study included 157 major crops across 202 countries
from 1961 to 2023, focusing on time series of yield (t/ha) and area harvested (ha). Weighted global average
yields and annual maximum yields were calculated for each crop and classified into four categories of
temporal evolution: never improved, still increasing, stagnating, and decreasing. Over the study period, total
crop production rose by a factor of 3.9, primarily driven by a 2.54-fold increase in average yield, with
harvested area contributing a smaller share. Analysis revealed that approximately 77% of global production
volume remains in the "still increasing” category for average yield, although this share has declined from
previous decades. In contrast, only about a quarter of production volume continues to experience increases
in maximum yield, suggesting a growing number of crops nearing biophysical yield limits. Yield-area
diagrams, categorized by a semi-quantitative "L-chart” approach, indicate that high yields are
predominantly restricted to relatively small harvested areas, with over 90% of crops showing strong spatial
limitations to yield scalability. These findings imply that opportunities for further global crop production
expansion via yield improvement are increasingly constrained, and that recent output gains have largely

depended on continued expansion of harvested area.

Correspondence: papers@team.qgeios.com — Qeios will forward to the authors

1. Introduction

The continued growth of the global population ﬂl@l, rising per-capita meat consumption [31, and the increasing
demand for energy crops such as bioethanol [21[4] 5re intensifying pressure on agricultural systems to produce

more food, feed, and energy crops [2l. Most of these products are derived from field-grown crops. Against this
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backdrop, a central question in agricultural science is whether global crop production can keep pace with future

demand 7]

Debates regarding limits to food production and their impact on population growth are longstanding 8141
01 3nd have gained renewed relevance as forecasts suggest the need to double food production by 2050, despite
resource constraints on our finite planet 210002} w7hile projections vary, some analyses already highlight that

current yield trends may be insufficient to meet future global needs 131,

Crop production (P, in tonnes) can fundamentally be increased via two pathways: boosting the yield per unit
area (Y, in t/ha) or enlarging the harvested area (4, in ha). Their relationship is described by equation 1:

p_ v A (1)
t t-ha ! ha

However, the total available land for crop cultivation is inherently limited, making further expansion of
harvested area an unsustainable long-term strategy. Yield improvement thus emerges as the primary avenue

for sustainably increasing crop production. Consequently, assessing the potential for future yield gains is of

high practical significance to global food security.

To address this issue, we performed a comprehensive analysis of the FAOSTAT crop production database,
examining temporal developments in yields (Y) and harvested areas (A) for all 162 primary crops recorded
between 1961 and 2023, across all reporting countries. We focus on both the weighted global average yield and
annual crop-specific maximum yields, providing a basis for evaluating historical patterns as well as potential

future trends.

Interpreting FAOSTAT data at a global scale presents methodological challenges: differences in data reporting
practices, timing, and national estimation approaches introduce uncertainty into yield, production volume, and
area statistics 4. Nonetheless, FAOSTAT remains the most comprehensive and widely-used source for such
cross-country, long-term analyses.

It is important to note that our study relies on the "area harvested” variable, as global data on "cultivated area”
are not available. "Area harvested” serves as the most practical and consistent metric for large-scale
comparisons, although multiple harvests per year and other reporting nuances may introduce further data
constraints.

Drawing on concepts from systems theory and ecology, we hypothesize that crop yield trajectories generally
follow limited growth patterns such as S-shaped curves — possibly with overshoot and subsequent stagnation
or decline — reflecting broader biophysical dynamics LoIR51N6INTIN8INGNI20 - Empirical studies support the
existence of this type of yield evolution for various crops 121221 and there are indications that crop yield

projections may be overly optimistic when compared to realized trends (231,
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While individual crop modeling and regional scenario analyses have been conducted @, a systematic and
quantitative overview encompassing all global crops has, to date, been lacking. The present study aims to fill
this gap by providing a high-level assessment of yield and harvested area trends, setting the stage for future

research and evidence-based decision-making in the context of looming resource constraints.

2. Materials and methods

2.1. Data Acquisition and Processing

Al underlying data were retrieved from the FAOSTAT online database

(https://[www.fao.org/faostat/en/#data/QCL) on March 12, 2025, including records for area harvested, yield, and

crop production quantity for all primary crops. Data processing was conducted in R (version 4.4.2) using

RStudio (2024.12.1) on Intel Mac OS X 10_15 7.

From the original set of 162 primary crops, four were excluded due to missing values for either yield or
harvested area, and a fifth crop was omitted due to restricted temporal coverage — only one year of data —
which precluded any analysis of yield trends. The excluded crops were: “Balata, gutta-percha, guayule, chicle
and similar natural gums in primary forms or in plates, sheets or strip”, “Brazil nuts, in shell”, “Cassava leaves”,
“Coir, raw”, and “Mushrooms and truffles”. These five crops together represented a cumulative production
volume of 99 million tonnes in 2023, accounting for approximately 1.0% of global crop production.

Consequently, the final study set comprises 157 crops with sufficient data quality and temporal coverage.

2.2. Calculation of Weighted Global Average Yields

For each crop and year within the dataset, both yield (Y, in t/ha) and harvested area (A, in ha) were compiled at

the country level. The weighted global average yield for each crop and year was computed using equation 2:

Y - A
> A

(2

weighted yield = (2)

Where Yi denotes the of country i and Ai its corresponding harvested area in the examined year. This approach
ensures that each country’s yield contributes to the global average in proportion to its share of the harvested

area.

For visualization, annual country-level yields and calculated global weighted averages were plotted over the
time period 1961-2023 for each crop. This facilitated year-by-year comparative inspection of global yield and its

variability.

The temporal evolution of both weighted average yields and annual top yields (see below) was classified

according to four categories: (1) yields never improved, (2) yields still increasing, (3) yields stagnating, and (4)
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yields decreasing (Fig. 1, bottom). Description of the classes was based on the study by Ray et al. [l The
category “Yields collapsed” was changed to “Yields decreasing”, reflecting the fact that a decrease in yield does

not always correspond to a collapse of the yield.

Classification decision logic followed a specified algorithm (Fig. 1, top), wherein a compound annual growth rate
(CAGR) of 0.3% was used to distinguish "still increasing” yields (equivalent to a minimum of 20% yield gain
over the analysis period), and a decline by >20% was designated as "decreasing.” Intermediate cases were

evaluated for stagnation.

Yield decreasing in regarded timeframe

No OR Yes

Yield 20% or more below maximum yield
ever achieved

No Yes

Yield below maximum
yield ever achieved

No Yield growing at least with Yes
CAGR of 0.30% in
regarded timeframe

Figure 1. Top: Decision tree for categorizing weighted average yield and maximum yield trends into four distinct
categories. For a detailed methodological description, see main text. Classification scheme for the temporal
evolution of weighted average yield and maximum (top 5) yield. Bottom: Categories: (1) yields never improved; (2)

yields still increasing; (3) yields stagnating; (4) yields decreasing.
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Analyses were performed for the years 1980, 2000, and 2023 to capture temporal shifts in yield development
categories. Given the underlying uncertainties and inconsistencies in reporting, analyzing further time points

would create a misleading impression of statistical precision.

2.3. Analysis of Maximum Yields ("Top 5" Approach)

To independently assess trends in maximum yield, we identified the five highest country-level yields ("top 5")
per crop and year throughout 1961-2023. These values were extracted irrespective of country and modeled with
a trend line using LOESS (Locally Estimated Scatterplot Smoothing) as implemented via the geom_smooth
function in the ggplot2 package for R (method = "loess”, span = 0.3) [24)25] 10ESS is a non-parametric
regression technique that fits low-degree polynomials to local subsets of the data, with points weighted
according to proximity to each target value. The selected span parameter (0.3) balances the need for sensitivity
to local changes versus suppressing noise, capturing fine-scale temporal patterns in maximum yield

development.

Maximum yields for each crop were subsequently assigned to one of the four temporal categories, using the

same decision tree classification as for global averages (Fig. 1).

2.4. Assessment of Yield Scalability via Yield-Area Diagrams ("L-Chart" Classification)

To investigate the relationship between yield and the scale of crop cultivation, we created scatterplots for each
crop species, mapping individual country-year data points (yield vs. area harvested) over the entire study

period (1961-2023). These visualizations were generated in RStudio and Microsoft Excel.

For systematic analysis, each plot was divided into a 5 x 5 grid of equally sized rectangles. The distribution of
data points was evaluated to identify which grid sectors contained the datapoints nearest to the upper right
corner (large area harvested and high yield). Diagrams with data largely confined to the left column and lower
row were classified as "type 1 L-charts”, indicating high yields restricted to small areas. Diagrams with more
extensive spread into adjacent rows/columns were assigned to higher types (e.g., "type 2 L-chart”, etc),

reflecting increasing scalability.

For visual support, a color gradient from red (low yield/small area) to green (high yield/large area) was used (see
Fig. 12). Full details of this procedure and representative examples are provided in Fig. 12. The subjective nature
of this approach is acknowledged; nonetheless, it enables a semi-quantitative assessment of yield scalability

across a diverse set of crops.

Aggregated results from the L-chart classification (across all 157 crops) are presented as both the share of crop

count and production volume per type.
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3. Results

3.1. Contribution of Yield and Harvested Area to Crop Production, 1961-2023

Analysis of global crop production across 157 major crops reveals a marked increase in output since 1961. Total
production rose from 2.54 Gt in 1961 to 9.88 Gt in 2023 (Fig. 2), representing a 3.90-fold increase and a
compound annual growth rate (CAGR) of 2.2%. During this period, yield improved from 2.61 t/ha to 6.64 t/ha, a

2.54-fold increase (CAGR 1.5%), while harvested area expanded by a factor of 1.53 (CAGR 0.7%).

These values indicate that yield improvements contributed approximately two-thirds of the growth in
production quantity over the study period, whereas expansion of harvested area accounted for the remaining
third. Given the natural constraints on land availability, further gains in harvested area are inherently

unsustainable, reinforcing the need to focus on yield development for future crop production increases.
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2000 6,14 5,19 1,18
2023 9,88 6,64 1,49

Figure 2. Trends in production quantity, yield, and harvested area for all 162 crops in the FAOSTAT database at the

global scale from 1961 to 2023.

Examination of temporal trends (Fig. 2) shows that average yield followed an almost linear increase from 1961
onward. In contrast, harvested area displayed a more pronounced rise in recent decades. This suggests that,
although vyield remained the primary driver of production growth over the long term, increases in harvested

area have become more significant to overall output, particularly in the last 20 years.

Further investigation into the underlying drivers of these trends is beyond the scope of this data-focused

analysis and will be considered in subsequent chapters.
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3.2. Evolution of Weighted Global Average Crop Yield

The temporal evolution of weighted global average yield was evaluated for all 157 crops included in the analysis,
covering the period from 1961 to 2023. For each crop, annual yield and harvested area were aggregated at the
country level, and the weighted global average yield was calculated as outlined in the Methods section (equation

2).

Figure 3 displays an example of the time series for wheat, showing both country-level yields and the calculated
weighted global average yield per year. This visualization allows for a direct comparison between global trend
and national variability across the entire time span. The results for wheat demonstrate that the weighted
average vield has increased in an almost linear manner throughout the period 1961-2023. In contrast, the
maximum observed yield has remained relatively stable at around 10 t/ha and has not shown further increase

over the past two decades.
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Figure 3. Temporal evolution of wheat yield (t/ha) from 1961 to 2023. Individual country-year yields are shown in blue

shades for visual clarity; the orange line indicates the weighted global average yield for each year.

To summarize yield development, each crop’s trajectory was assigned to one of four categories: never improved,
still increasing, stagnating, or decreasing, as defined and classified by the decision tree in Fig. 1. Selected

examples of these classification outcomes are presented in Fig. 4, with the full results documented in Table 1.
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Figure 4. Selected examples illustrating the classification of crops based on the temporal evolution of weighted
average yield: (1) cherries: yields never improved; (2) wheat: yields still increasing; (3) oil palm fruit: yields

stagnating; (4) agave fibres: yields decreasing.
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Table 1. Classification results for the temporal evolution of weighted

average yield of 157 crops in 2023.

A detailed visualization of the evolution of weighted average crop yield for all 157 crops analyzed can be found

in the supplementary material.

Out of the 157 crops analyzed, approximately 60% currently exhibit increasing average yields. These crops
represent roughly 77% of global crop production volume, indicating that the weighted global average yield for

the majority of production is still on an upward trajectory.

The temporal dynamics of these categories were further assessed for the years 1980, 2000, and 2023 (Fig. 5).
The analysis demonstrates a decrease in the proportion of crop production volume assigned to "yields still
increasing," falling from 96% in 1980 to 77% in 2023. This shift suggests a gradual change in the distribution of

yield development patterns among the major crops over recent decades.
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1980 2% 96% 2%
2000 1% 95% ¥y
2023 1% 77% 21% 1%

Figure 5. Percentage share of global production volume by category of weighted

average yield evolution for the years 1980, 2000, and 2023.

Despite this decrease, the single largest share of global production volume still remains within the "yields still
increasing” category as of 2023. On the basis of aggregated data alone, there is no immediate indication that the
global weighted average yield is approaching a firm upper limit, although a declining trend in the share of crops

with sustained yield growth can be observed.

3.3. Evolution of Maximum Crop Yield

The evolution of annual maximum crop yields was assessed for all 157 crops over the period 1961-2023. For each
year and crop, the five highest country-level yields were identified and used to characterize the maximum yield
trends. These values were fitted with a LOESS curve, as described in the Methods section, to visualize the

underlying temporal trajectory.
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Fig. 6 illustrates the case of wheat. While the maximum vyield increased steadily from 1961 until approximately
1990, reaching around 10 t/ha, this value has remained largely unchanged since then, with the curve flattening
over the last two decades. In recent years, the maximum yield has shown little to no further increase, and a

slight decrease is observed.

Yield in t/ha

1960 1980 2000 2020
Year

Figure 6. Temporal evolution of wheat yield (t/ha) from 1961 to 2023. Individual country-year yields are
shown in shades of gray for visual clarity. Orange dots indicate the top five yields per year, and the blue

line represents the LOESS-smoothed trend of the arithmetic mean of these top five yields.

The temporal development of wheat corresponds to the “Yields stagnating” category, as illustrated in Fig. 1.

A detailed visualization of the evolution of maximum crop yield for all 157 crops analyzed can be found in the

supplementary material.

To provide an overview, the maximum yield trend for each crop was classified into one of four categories: never
improved, still increasing, stagnating, or decreasing (see Fig. 7 for selected examples and Tab. 2 for the full

classification).

geios.com doi.org/10.32388/89BOX8 12


https://www.qeios.com/
https://doi.org/10.32388/89BOX8

Yield in tha

Yield in t/ha

Yield in Vha

Yield in tha

. L LETI ™
100 sapefiii . T M
I 'l”u'li'lillllllll |
RTTTTTTTCTTTECRAEERL
1960 1880 2000 2020
Year Year

Figure 7. Selected examples illustrating the classification of crops based on the temporal evolution of maximum
yield: (1) apricots: yields never improved; (2) rice: yields still increasing; (3) tomatoes: yields stagnating; (4) green

corn (maize): yields decreasing.
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Table 2. Classification results for the temporal evolution of maximum

yield of 157 crops in 2023.

Out of the 157 crops analyzed, 64 (41%) were categorized as "still increasing” with respect to their maximum

yield, while the remaining crops showed stagnating or decreasing patterns.

Out of the 157 crops analyzed, 64 (41%) were categorized as "still increasing” with respect to their maximum

yield, while the remaining crops showed stagnating or decreasing patterns.

However, crops within the “still increasing” category represent only about a quarter of total global crop
production volume. The majority — approximately three quarters of global production volume — now falls into

categories where maximum yields have plateaued or declined.

The temporal progression of these categories was further examined for the years 1980, 2000, and 2023 (Fig. 8).
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-—_/
1980 1% 69% 22% 8%
2000 62% 15% 23%
2023 27% 51% 22%

Figure 8. Percentage share of global production volume by category of maximum yield

evolution for the years 1980, 2000, and 2023.

Here, the share of crop production volume with still increasing maximum yields has dropped markedly over the
last four decades, from 69% in 1980 to just 27% in 2023. This trend indicates that an increasing proportion of

crop production is now characterized by limited or declining maximum yield potential.

These results suggest that many crops are approaching their biophysical yield limits at the global scale M,

with implications for the potential to further increase maximum yields in coming years.

34. Comparison of evolution of weighted global average crop yield and maximum crop yield

The comparison between the temporal dynamics of weighted global average crop yields and maximum crop

yields provides additional insight into patterns of yield development among the 157 crops included in this
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analysis. While both metrics have generally increased over the study period, their trajectories and rates of

change differ significantly.

As shown in 3.3, the weighted global average yield for most crops continues to increase, with approximately
77% of global crop production volume in 2023 falling into the "still increasing” category (see Tab. 1 and Fig. 5).
In contrast, only about 27% of global production volume exhibits a pattern of increasing maximum yields, with
the majority of crops now categorized as stagnating or declining in terms of their highest observed yields (Tab.
2, Figure 8). For wheat, a representative example (Fig. 3 and Fig. 6), the weighted average yield shows a steady,
nearly linear rise, whereas the maximum vyield has plateaued over the last two decades. This divergence

between the trends at the "average” and "maximum” yield levels is evident for many crops.

The categorical analysis (Fig. 9) further highlights this contrast: among the four development categories (never
improved, still increasing, stagnating, decreasing), most crops remain in the "“still increasing” group when
considering the weighted global average yield, but shift towards "stagnating” or "decreasing” when maximum

yield is examined.
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Figure 9. Share of global crop production volume (blue circles) by category
according to maximum yield evolution (ordinate) and weighted average
yield evolution (abscissa) for the years 1980 (top), 2000 (middle), and 2023
(bottom). Dark green highlights the share of production volume where
both weighted average yield and maximum yield are still increasing, or

where weighted average yield is still increasing despite stagnating
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maximum yield. Light green indicates the share where weighted average

yield is stagnating but maximum yield is still increasing.

These findings indicate that while improvements in agronomic practices and technologies have continued to
raise average yields across broader cultivation areas, the upper boundary of yield achievement for many crops
has remained relatively constant or has even declined in recent years. The disparity between these two metrics
suggests limitations in transferring the highest yields observed in specific locations to large-scale, global

production.

This comparison supports the interpretation that a growing number of crops are approaching biophysical or
system-level yield constraints, with implications for future strategies aimed at increasing overall crop

production.

3.5. Relationship Between Crop Yield and Harvesting Area

To assess the relationship between crop yield and harvesting area, we evaluated the distribution of yield and
area for each of the 157 crops using the L-chart approach described in the Methods section. For each crop,
country-level data for yield and harvested area from 1961 to 2023 were plotted and assigned to a categorical

framework designed to characterize the scalability of yield across different cultivation scales.

For illustration, wheat (see Fig. 10) serves as a representative example throughout the study due to its relevance
for global food security and diversity of cultivation practices. Wheat demonstrates the ability to achieve
relatively high yields across large harvested areas. This pattern is reflected by its assignment to a higher chart
type (“L chart type 2”), indicating that, for wheat, the gap between maximum yield and average yield over

extensive areas is smaller compared to most other crops.
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Figure 10. Hectare yield plotted against area harvested for wheat from 1961 to 2023. Each data point represents a

country-year observation for this period.

Tomatoes (see Fig. 11) exemplify a typical "L chart type 1" crop. In this case, the highest yields are consistently
found in countries or regions with comparatively small harvested areas, often under specialized or intensive
management conditions. When tomato production is expanded to larger areas, the average yields tend to

decrease noticeably, illustrating the limited scalability of the highest yield levels for this crop.
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Figure 11. Hectare yield plotted against area harvested for tomatoes from 1961 to 2023. Each data point represents a

country-year observation for this period.

It is important to note that crops assigned to "L chart type 2" also do not allow for simple scaling up of
maximum yields to large harvested areas. While they may display high yields in a somewhat broader range of
conditions than type 1 crops, the pattern generally remains: maximum yields tend to be confined to more
restricted production contexts, and the transfer of these yields to the full cultivation area is not possible without

significant reductions.
A detailed visualization of the “L chart” of all 157 crops analyzed can be found in the supplementary material.

In this classification scheme, crop diagrams were grouped into five types based on the distribution of data
points in the yield-area plane. “L chart type 1” crops are characterized by high yields concentrated in small
harvested areas, while higher types indicate greater scalability of high yields to larger areas (see Fig. 12 for

examples).
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Figure 12. Example classification of yield evolution diagrams (see text for detailed description). From top to bottom:

tomatoes, wheat, soybeans, onions and shallots (green), chicory roots.

The aggregated results of this analysis are presented in Fig. 13 and Tab. 3. Of the 157 crops examined,
approximately 86% exhibit a type 1 and type 2 distribution, where maximum yields are limited to small-scale
cultivation and are not realized at larger scales. These crops account for more than 90% of global production
volume. Only a small fraction of crops (type 5) demonstrates the ability to combine both large harvested area
and high yield; these account for less than 1% of crop count contribute a very low share (0.0003%) to global

production volume.
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Figure 13. Classification of “yield vs. area harvested” diagrams for all 157 crops in the FAO database according to the
approach described in the text. Top: share of crops (number of crops in each category divided by total number of

crops). Bottom: share of production (production volume per category divided by total production volume).
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Table 3. Results of L chart type classification for 157 crops in 2023.

This distribution indicates that, for most crops, high yields are attainable only under restricted conditions or in
limited regions, and have not been widely replicated at scale. Conversely, a select subset of crops — typically

major staple grains — are able to sustain high yields over extensive cultivation areas.

The data thus suggest a general limitation in translating maximum achievable yields to broader production
systems at the global level. This finding is consistent with the observed divergence between maximum yield

trends and weighted global average yield trends described in previous chapters.

4. Discussion

Our analysis of FAOSTAT data shows that yield per hectare for most global crops is expected to continue to rise
for the time being. However, we speculate that future increases will not necessarily be of the same magnitude
as those observed in previous decades, and it would not be surprising to see yields declining on a larger scale in
the coming years. This hypothesis is supported by the declining annual growth rate of yield improvement as
well as the observation that an increasing number of crops have reached yield stagnation or are experiencing
collapsing yields at the global level — both in terms of average and maximum yield. Notably, 21.7% of global

crop production volume was categorized as “yields decreasing” when considering the maximum yield.
Further increases in crop production are thus increasingly unlikely to originate from yield improvements alone,

as transferring high yields to large cultivation areas cannot be observed at scale. Consequently, growth in crop
production volume will more likely be derived from expansion in the total area harvested, consistent with
trends observed over the past two decades (Fig. 2) and previously anticipated by Cassman et al. (281 While “area
harvested” does not precisely correspond to “cultivated area” due to multiple harvest cycles on the same land,
these findings are supported by other work projecting further increases in the area under cultivation [14]129)
The latter study also highlights that much of the recent expansion has occurred for high-profit crops (e.g.,
soybean, oil palm, sugar cane) at the expense of natural ecosystems, including primary rainforest.

The increase in hectare yield observed over the last few decades has been predominantly enabled by
intensification measures such as irrigation BUB3U32l mechanization (23341351 increased fertilization (311361
371 and the application of agrochemicals, including pesticides and herbicides 321381391 a5 well as the adoption
of genetically modified crops [£04142] Central to these developments is rising energy consumption within the
global crop production system — a phenomenon widely discussed and quantified in the literature [421[441[451[46]

[471[48][49)[50] The greatest components of agricultural energy demand are usually attributable to fuel and
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fertilizer use I@@], or to the provision of heating, cooling, and electricity in greenhouse cultivation 521 1 this
context, declining EROEI (energy return on energy invested) for fossil fuels — which remain critical to crop

production infrastructure — may pose a risk of systemic collapse [41[231[541(551(56]

In addition to these existing challenges, crop yields face increasing stress arising from accelerating climate
change — manifested by more frequent droughts, heavy rainfall events, heat waves, or late frost episodes 71,
These factors can reduce yields despite ongoing intensification, as reported by several studies [£1[281591(601(61][62]
[63] Indeed, several crops in our dataset exhibit such developments — cocoa beans, for instance, have
experienced a decline in maximum yield in recent years due to crop failures in major producing countries 041
To secure future food supply for a growing world population, there is thus a need for strategies which can
increase yields at scale. While a comprehensive literature review on this topic was not performed here, potential
avenues include the optimization of crop growing periods [65] and improvements in the efficiency of
photosynthesis and respiration [0l However, it remains unclear whether these approaches will be sufficient,
given that decades of research have not produced the yield gains once hoped for.

It is important to emphasize that our high-level analysis of aggregated data on a global level does not allow for
precise prediction of specific trends for individual crops or countries. Nonetheless, we hope that this work
provides a broader overview to inform policy-makers, researchers, farmers, and stakeholders in agribusiness in
their decisions going forward.

Given the limitations and risks outlined above, the focus should shift increasingly towards systemic approaches
that do not rely solely on expanding yields or cultivated area. As highlighted by Winkler et al. 22l and others,
halting the conversion of natural ecosystems and rainforests for agricultural expansion will be essential.
Equally important is the reduction of food loss and waste along the entire supply chain, as substantial portions
of global harvest are not utilized for human nutrition 7l Dietary transitions toward greater consumption of
vegetables and plant-based foods, and correspondingly lower intake of animal products, have repeatedly been
shown to reduce overall resource use and environmental pressure [681[69]  These measures, alongside
improvements in food system efficiency and equity, offer opportunities to address food security challenges

without exacerbating land and energy constraints.

5. Conclusions

This study provides a comprehensive assessment of trends in global crop yield and harvested area for 157 major
crops using FAOSTAT data. Current patterns show that, while acute limits to overall growth are not yet
observable for global crop production, the rate of yield improvement is slowing, and the majority of crops are

exhibiting signs of stagnation or even decrease with respect to their maximum yields. Increases in total output
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have recently been achieved more by expanding harvested area than by transferring high yields to larger
cultivation scales. However, such expansion often comes at significant ecological costs, including deforestation

and loss of natural ecosystems, and may not be sustainable in the long term.

Climate change is expected to exert further pressure on yields, introducing greater variability and the risk of
systematic declines or even collapses for some crops. The increasing reliance on energy-intensive inputs,

alongside potential limits to available fossil energy, adds another layer of vulnerability to agricultural systems.

Given these intersecting constraints, future strategies for global food security should move beyond a narrow
focus on yield intensification or land expansion. Reducing food loss and waste offers considerable potential:
currently, up to one-third of all globally produced food is estimated to be lost or wasted [22][67[701171].

representing a significant opportunity for efficiency gains across the entire supply chain.

In addition, dietary shifts towards more plant-based foods and reduced reliance on animal-based products —
particularly ruminant meat — can lower the resource intensity of food production, decrease land and energy
requirements, and support both environmental sustainability and resilience [691[721[73] Promoting plant-rich
diets not only mitigates the need for continual crop yield increases but also provides co-benefits for public

health and climate protection.

In summary, the path towards sustainable global food systems will require an integrated approach: moderating
production demands through systemic changes in consumption patterns, significant reductions in food waste,
and careful stewardship of remaining agricultural land. Only through a combination of these measures will it be

possible to ensure food security in a world of constrained yields and changing climate.

For policymakers, researchers, farmers, and actors across the food system, this means a shift in perspective: the
focus must broaden from maximizing agricultural output to enhancing resource efficiency, equity, and
resilience. Achieving this transformation will require coordinated efforts at local, national, and international
levels, embracing innovation, behavioral change, and the protection of planetary boundaries. The challenge is
substantial, but by rethinking priorities and harnessing collective action, the foundation for sustainable

nourishment and ecosystem health can be secured for generations to come.
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