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Abstract In this paper, we prove the solvability of polynomials based on par-
tition function in number theory. Let p(n) be the partition function, where n is
the degree of a polynomial. We prove that a polynomial is solvable by radicals
if p(n) ≤ n+ 1.
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1 Introduction
Polynomial equations has a long history. In 2,000 BC, the Babylonians were
able to solve the quadratic equation [1]. Though symbols were not available to
them and neither they believed in negative numbers. Their methods were based
on words (word-problems). Their method was limited to specific problems. A
general method that involved words was given by the Indian mathematician
Brahmagupta in seventh century [1]. Later in twelfth century, Omar Khayyam
(1048–1131), a Persian polymath, solved the cubic equation using geometric
methods. Regarding the general solution, an Italian mathematician, Luca Pa-
cioli (1445–1509) noted in sixteenth century that the cubic equation had no
general solution [2]. Scipione del Ferro (1465–1526) and later Niccolo Fontana
(1499–1557), aka Tartaglia, solved the depressed cubic equation–a cubic equa-
tion that misses the square term. The general cubic equation was solved by
Gerolamo Cardano (1501–1576). Ludovico Ferrari (1522–1565) solved the gen-
eral quartic equation. The challenge was the quintic equation. In 1798, P.
Ruffini (1765–1822) and later in 1826, Niels Henrik Abel (1802–1829) proved
that the quintic equation has no general solution by radicals. Finally, Évariste
Galois (1811–1832) found a connection between group theory and solvability of
polynomials and so emerged the Galois theory.

In this paper, we find a connection between partition function in number
theory and the solvability of polynomials. A partition is a representation of
a non-negative number n to express it as the sum of any number of positive
integral parts [3, 4]. Let n be a positive integer, then:

n = p1 + p2 + . . .+ pk , (1)

where pi is a part of the partition. For example, one can write 5 as 5, 4+ 1, 2+
3, 2+2+1, 3+1+1, 2+1+1+1, 1+1+1+1+1. One can see that p(5) = 7. The
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partition function grows quickly. For instance, p(200) = 3, 972, 999, 029, 388 [5].
Our main result is given in the following theorem.

Theorem 1. Let p(n) be the partition of n, where n is the degree of a polyno-
mial, then the polynomial is solvable by radicals if p(n) ≤ n+ 1.

Proof. It can be checked by direct computation. One can observe that p(1) =
1 ≤ 2, p(2) = 2 ≤ 3, p(3) = 3 ≤ 4, p(4) = 5 ≤ 5. But p(5) = 7 ̸≤ 6. And for
n > 5, p(n) is larger than n+ 1, as the partition function grows quickly.

Remark 1. One may ask whether theorem 1 is just a coincident or there is a
deep connection between polynomials and partition function. We explore this
in what follows.

2 Main results
Let F be a field. Let F [x] be the ring of polynomials with coefficients in F .
We also consider monic polynomials where the coefficient of the leading term is
unity. We have:

fn(x) = xn + an−1x
n−1 + . . .+ a1x+ a0 . (2)

When dealing with polynomials, it is important to keep track of various rings
such as the ring of polynomials, the ring of the coefficients, the ring of zeros of
the polynomials. Since we are investigating polynomials in regards to partition,
it suffices to keep track of polynomials ring by introducing a convenient notation:

fn := (n, n− 1, . . . , 2, 1, 0) , (3)

where the entries in the array on the right are the exponents of x. The first
entry gives us the degree of polynomial which is n. The length of the polynomial,
denoted by |fn|, is defined to be the the number of entries in the array. One can
observe that |fn| = n+1. The actual length of fn may be smaller than n+1 if
there are zero terms where ai = 0. But it is convenient to keep all terms from
n to 0. Let there is another polynomial gn of the same length. We say that the
two polynomials fn and gn are equal upto their coefficients. Without loss of
generality, we may denote all polynomials by symbol f such as fm and fn etc.

Upto coefficients, all polynomials live in one unified ring R. The ring R has
interesting properties given below.

Theorem 2. Let fm and fn be two polynomials, then

fmfn = fm+n . (4)

Proof. We have
fm = (m,m− 1, . . . , 1, 0) . (5)

fn = (n, n− 1, . . . , 1, 0) . (6)
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Then

fmfn = (m,m− 1, . . . , 1, 0)(n, n− 1, . . . , 1, 0)

= (m+ n,m+ n− 1, . . . , 1, 0)

= fm+n , (7)

where the second equality follows from the fact that xmxn = xm+n. Similarly
the other entries can be obtained.

Theorem 3. Let fm and fn be two polynomials, then

fm + fn = fmax(m,n) . (8)

Proof.

fm + fn = (m,m− 1, . . . , 1, 0) + (n, n− 1, . . . , 1, 0)

= (max(m,n),max(m,n)− 1, . . . , 1, 0)

= fmax(m,n) , (9)

where the second equality follows from the fact when two polynomials are added,
then the polynomial with smaller number of terms will be absorbed in the longer
polynomial.

Note that theorem 3 gives a paradoxical result when m = n. Which gives
2fn = fn. Since fn ̸= 0, this implies that 2 = 0. In fact, the paradox appears
due to the fact the polynomials are unique up to coefficients. The paradox can
be resolved by multiplying 2 through out and then redefine the coefficients.

Theorem 4. Let n ≤ m. Then fn divides fm. Further, fm
fn

= fm−n.

Proof. By division algorithm we have:

fm = fnfk + fl , (10)

where fk and fl are two polynomials with l < k. By using theorems 2 and 3 we
have

fm = (max(n+ k, l),max(n+ k, l)− 1, . . . , 1, 0) . (11)

Since n+ k > l, therefore max(n+ k, l) = n+ k. Hence

fm = fn+k . (12)

This means that m = n+ k. Also by theorem 2 we have:

fm = fnfk ⇒ fm
fn

= fk . (13)

From it follows that fn|fm. The second part of the theorem also follows as
k = m− n. So then fm

fn
= fm−n.

3



Since our main concern is to prove the solvability of polynomials. We set
the criterion in the following definition.

Definition 1. Let L be a partition. Let pi be a part that appears m times in
L. Then, in the chain of equalities, the polynomial is said to be solvable if pi
does not appear m times in another partition.

For example, let n = 100. Consider the following chain of equalities of 100:

f100 = f96+2+2 = f94+2+2+1+1 = . . . .

Here L1 = 96 + 2 + 2 and L2 = 94 + 2 + 2 + 1 + 1. One can see that in L1 and
L2 the part 2 appears twice. Thus a polynomial for n = 100 is not solvable.

Now we give a second proof of theorem 1 based on definition 1.

Proof. We prove it by direct computation. We start with n = 1 which is trivially
true as the chain of equalities contains f1 only. For n = 2 we have:

f2 = f1+1 . (14)

Since it satisfies the criterion set in definition 1 as no part is repeating on both
side of the equalities. Next is n = 3. The chain of equalities is given by:

f3 = f2+1 = f1+1+1 . (15)

It also satisfies the criterion of definition 1. Now n = 4, we have:

f4 = f3+1 = f2+2 = f2+1+1 = f1+1+1+1 , (16)

which also meets the condition of definition 1. For n = 5. We have:

f5 = f4+1 = f2+2+1 = f3+2 = f3+1+1 = f2+1+1+1 = f1+1+1+1+1 . (17)

One can see that it violates definition 1 as in f4+1 = f2+2+1 the part 1 appears
one times. Hence n = 5 is not solvable. The generalization is straightforward.
Let n > 5. We would have partitions like

fn−1+1 = fn−3+2+1 = . . . . (18)

One can see that part 1 repeats one time in both partitions. Hence a polynomial
is insolvable for n ≥ 5.

We have partly proved the theorem. The next part is to prove solvabiity by
radicals. Consider gn given by:

gn = (n, 0) (19)

One can see it has only two terms. Writing it explicitly in terms of the coeffi-
cients, we have:

gn(x) = xn + a0 . (20)
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Let α be a root, then:
α = (−a0)

1/ne2πi/n . (21)

Since gn and fn are equivalent upto coefficients, we have:

fn = gn((−a0)
1/n) . (22)

In summary, a polynomial is solvable by radicals if p(n) ≤ n+1, where p(n)
is the partition function.
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