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The concept of “Green AI” is emerging as stakeholders confront the environmental costs of artificial

intelligence. However, the field remains formative and contested, marked by competing definitions,

inconsistent methods, and limited cross-disciplinary collaboration. Efficiency-driven approaches

frame Green AI narrowly as reducing computational and carbon costs through technical optimizations

such as model pruning and energy reporting. Sustainability-driven perspectives view AI as a tool for

ecological problem-solving—ranging from climate modeling to biodiversity monitoring—often linked

to global policy agendas like the SDGs. In contrast, critical-ecological critiques warn that both

efficiency and sustainability narratives risk obscuring exploitative infrastructures, from cobalt

mining to water-intensive data centers, and reinforcing global inequalities. These perspectives rarely

converge, producing conceptual ambiguity, fragmented methodologies, and a persistent policy–

practice gap. To address this, the paper develops a typology that distinguishes efficiency,

sustainability, and critical-ecological strands, clarifies their assumptions, and highlights their blind

spots. By framing Green AI as a contested boundary project, the typology provides a foundation for

methodological standardization, interdisciplinary integration, and more accountable research. Future

work should build on this typology to establish shared metrics and justice-oriented practices that

align AI innovation with planetary limits.
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Introduction

Artificial intelligence (AI) is transforming the economy, but it also raises environmental concerns.

Training a single advanced natural language processing model can emit over 500 tons of CO₂, comparable

to the lifetime emissions of five average cars[1]. This has sparked interest in Green AI, aimed at making AI

development environmentally sustainable. However, discussions about Green AI are fragmented and

evolving.

The primary issue is the lack of a clear definition. Some researchers prioritize technical efficiency to

reduce energy consumption and computational demands[2], while others focus on using AI to address

sustainability issues like renewable energy optimization and biodiversity monitoring[3]. There are also

concerns that the term "green" could obscure exploitative practices and worsen global inequalities[4],

leading to disconnected conversations.

Varying methods and metrics exacerbate this fragmentation. Studies measure success using different

metrics—like floating-point operations (FLOPs), carbon footprints, or energy efficiency—without

standardized reporting or thorough lifecycle analyses. Diverse academic fields contribute to this

confusion: computer science emphasizes optimization, environmental science focuses on emissions, and

critical theory discusses socio-political dimensions of sustainability. Despite mentions of sustainability

in policies like the EU AI Act and OECD AI Principles, the practical application remains ambiguous,

creating a gap between regulatory intentions and industry actions.

This paper aims to achieve three things: First, it reviews the different definitions and perspectives on

Green AI. Second, it identifies risks linked to its disorganization, such as inconsistent methods, gaps

between policy and practice, and global inequalities. Third, it develops a typology distinguishing

efficiency-driven, sustainability-driven, and critical-ecological viewpoints to enhance clarity and

integration. By framing Green AI as an evolving concept, the paper aims to establish a more accountable

foundation for future research, practice, and policymaking.

Literature Review: The Three Strands of Green AI

Green AI has developed through three primary approaches: efficiency-driven, sustainability-driven, and

critical-ecological. Although these methods focus on different assumptions and priorities, they often

operate in isolation, resulting in fragmented discussions.

qeios.com doi.org/10.32388/8FB2P4 2

https://www.qeios.com/
https://doi.org/10.32388/8FB2P4


Efficiency-Driven Green AI

Efficiency-oriented Green AI focuses on reducing the computational and environmental costs of model

training and deployment[2]. Techniques like pruning, quantization, and knowledge distillation aim to

lower FLOPs and energy consumption while ensuring accuracy[5][6]. Investments in specialized hardware

and renewable energy for data centers support this approach[7].

However, this optimization focus tends to narrow sustainability to just training and inference costs,

neglecting lifecycle impacts like mineral extraction, e-waste, and toxic disposal[8][9]. Inconsistent metrics

—like FLOPs, GPU hours, or CO₂ equivalents—make it hard to compare and standardize efforts[10].

Scholars warn that efficiency improvements could lead to larger models, increasing total energy use[1][11].

In summary, while efficiency-driven Green AI highlights computational costs, it lacks a comprehensive

and cohesive ecological perspective.

Sustainability-Driven Green AI

A second strand extends Green AI beyond computation to AI’s role in addressing ecological challenges.

Applications range from climate modeling and smart grids to biodiversity monitoring and precision

agriculture[3][12]. These efforts align with global agendas like the SDGs and the Paris Agreement, and

they position AI as a driver of low-carbon transitions[13][14].

However, enthusiasm often outpaces evaluation. Studies reveal that while AI can optimize renewable

energy systems or conservation monitoring, lifecycle emissions from model training and data centers

may offset benefits[15][16]. Sustainability projects are also fragmented and disproportionately

concentrated in advanced economies[17]. Critics highlight that focusing narrowly on technological fixes

risks obscuring systemic issues such as extractive supply chains and uneven access to innovation[18][19].

Thus, while AI applications promise ecological gains, their costs and global inequalities remain under-

assessed.

Critical-Ecological Green AI

Critical-ecological perspectives emphasize how AI infrastructures depend on extractive and ecologically

intensive practices. For example, cobalt mining in the Democratic Republic of Congo supplies over 70% of

the global demand, with estimates indicating that cobalt extraction contributes to severe soil degradation

and exposes local populations to toxic metals[20]. Similarly, the average hyperscale data center consumes
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between 3 and 5 million gallons of water daily for cooling purposes—comparable to the daily water

consumption of a city with 30,000 to 50,000 inhabitants[21]. In drought-prone regions such as Arizona or

Chile’s Atacama Desert, these demands intensify existing water scarcity and displace agricultural water

use. Electronic waste is another material externality: global e-waste generation exceeded 62 million

tonnes in 2022, with less than 20% being formally recycled[22]. Countries like Ghana remain primary

destinations for informal e-waste processing, thereby exposing communities to heavy metal

contamination and air pollution[23]. These statistics demonstrate that evaluating Green AI meaningfully

requires situating claims of efficiency and sustainability within the broader political economy of

extractive minerals, water scarcity, and toxic waste flows.

Summary of Literature in A Fragmented and Contested Field

The interaction of three key perspectives—efficiency-driven, sustainability-focused, and critical-

ecological—highlights both the energy and the disorder within the Green AI discourse. Efficiency

approaches promote technical optimization but can be narrow; sustainability perspectives emphasize

ecological applications but may exaggerate their benefits; and critical-ecological views emphasize justice

and global inequalities but often lack technical specifics. This results in a fragmented and contested field

where scholars often misunderstand one another, metrics vary widely, and interdisciplinary collaboration

is limited. Such disorganization poses risks: efficiency research might lead to unintended rebound

effects, sustainability claims could obscure hidden ecological costs, and critical views may be dismissed

as overly theoretical by policymakers. However, this disarray is also an opportunity for growth. It

indicates a field in flux, where definitions, metrics, and commitments are still being determined.

Developing a clear typology that outlines these three perspectives, clarifies their underlying

assumptions, and highlights their intersections could help Green AI progress toward a more coherent

framework for research and practice.

Why The Green AI Discourse Is Disorganized

"Green AI" is an ambiguous term that includes conflicting ideas. In efficiency contexts, it means reducing

resource use in machine learning[2]. In sustainability discussions, it refers to using AI for environmental

challenges[3]. A critical-ecological view suggests that the term may hide deeper ecological issues[24].

These varying definitions lead to confusion and impact research priorities and policies. Efficiency

definitions tend to focus on optimization algorithms, while sustainability views emphasize applied
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projects in areas like energy and agriculture. The critical perspective urges a reevaluation of how AI

development aligns with planetary limits. Without a clear definition of Green AI, academic discussions

remain fragmented and based on different assumptions.

Conceptual Ambiguity and Competing Definitions

"Green AI" is a vague term that encompasses multiple, often conflicting ideas. In efficiency-driven

contexts, it refers to reducing the resource usage of machine learning[2]. In sustainability discussions, it

implies using AI to tackle environmental issues[3]. From a critical-ecological perspective, it highlights a

discourse that might mask ecological dominance[24]. These different definitions create confusion and

affect research priorities, methods, and policies. For instance, efficiency-focused definitions lean towards

optimization algorithms, while sustainability views stress applied to projects in energy and agriculture.

The critical perspective calls for reevaluating the compatibility of AI development with planetary limits.

Without a unified definition of Green AI, academic discussions are fragmented, with each area operating

on its own assumptions.

Methodological Inconsistency and Weak Metrics

Methodological inconsistency is prevalent in studies focused on AI efficiency, with various metrics

reported, such as FLOPs, GPU-hours, and power usage effectiveness, yet lacking standardized

protocols[10]. Many studies only address training energy, leaving out inference costs and emissions from

hardware lifecycles, making cross-study comparisons unreliable and obscuring AI's environmental

footprint[7].

Sustainability projects using AI often highlight its role in climate modeling, renewable energy, and

conservation. However, they may fail to assess whether the ecological advantages outweigh the costs

critically. For instance, while AI-driven smart grids optimize energy distribution, the emissions from

training the models can undermine their overall ecological benefits[25]. Cheong et al. emphasize the

importance of evaluating both costs and benefits of AI in climate adaptation and suggest integrating

physics-based models with machine learning to respect ecological principles[25].

Lu points out that several challenges, including data availability, model interpretability, and ethical

issues, must be addressed for effective AI deployment in climate change mitigation. He stresses the need

for thorough research and collaboration to realize AI's benefits without incurring high environmental

costs[26]. Additionally, focusing primarily on technology advancements risks sidelining ethical
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considerations, as AI could inadvertently perpetuate unsustainable practices, necessitating ongoing

scrutiny[27]. This aligns with concerns over "greenwashing," where the positive narratives surrounding

AI’s environmental impact overshadow the critical analysis of its lifecycle emissions and externalities.

Furthermore, the promotion of AI for environmental issues often exaggerates its ecological benefits. It is

important to examine how AI might perpetuate exploitation and inequality in resource management.

Ongoing research is needed to assess not only the feasibility of AI for environmental gains but also its

broader impacts on sustainability and justice globally[28][29]. Without thorough cost–benefit analyses,

Green AI risks becoming a mere rhetorical exercise instead of a practice grounded in evidence. While

critical-ecological perspectives reveal hidden externalities, they often lack quantifiable measures. Their

critiques are generally qualitative or theoretical, complicating integration with empirical studies. The

lack of shared metrics among these perspectives leads to a disjointed evaluation of Green AI, resulting in

incompatible methodologies.

Disciplinary Silos and Limited Cross-Fertilization

Disciplinary siloing contributes to disorganization in the field. Computer scientists focus on algorithm

efficiency, environmental scientists look at emissions, and philosophers examine the socio-political

aspects of sustainability. These groups publish in different journals, attend separate conferences, and use

specialized language, resulting in minimal cross-citation. Technical papers rarely engage with critical

theory, and philosophical critiques often go unnoticed by machine learning practitioners.

This division reflects deeper institutional dynamics. Efficiency-oriented Green AI attracts significant

industry funding and aligns with computer science goals focused on performance. In contrast,

sustainability-driven Green AI is typically developed within policy and applied science contexts,

emphasizing pilot projects and collaboration. Critical ecological scholarship primarily resides in the

humanities and social sciences, often sidelined from mainstream AI research. This leads to intellectual

chaos and an imbalanced influence where technical and policy narratives dominate, while critical

viewpoints are marginalized.

The Policy–Practice Gap

Policy discussions around Green AI are enthusiastic, but actual implementation is lacking. The

OECD[13] and the EU AI Act[14] stress sustainability yet fail to provide enforceable standards for measuring

AI's environmental impact. Similarly, corporate sustainability reports often boast about renewable
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energy and efficiency but usually neglect to provide complete lifecycle data on hardware production,

water use, or e-waste[18]. This discrepancy risks turning Green AI into greenwashing. Without binding

requirements or standardized reporting, companies can claim progress while maintaining unsustainable

practices. Moreover, this gap reduces accountability: policymakers reference sustainability without

ensuring compliance, while companies depict efficiency improvements as environmental progress, even

when total energy use increases. This leads to a mismatch between ambitious claims and actual

outcomes.

Global Asymmetries and Green Colonialism

Global inequalities worsen the disorganization of Green AI. Most research and initiatives come from the

Global North, while the Global South faces the ecological and social costs of AI. For example, cobalt

mining in the Democratic Republic of Congo, lithium extraction in Chile, and e-waste dumping in Ghana

highlight the resource disparities linked to AI infrastructures[30]. However, much Green AI research

focuses on efficiency and sustainability from a Northern perspective, overlooking how AI-driven projects

can perpetuate dependency, worsen infrastructural gaps, and reinforce technological colonialism[4]. This

oversight creates an intellectual and ethical gap: without addressing global justice, Green AI risks

becoming a form of green colonialism that justifies ecological exploitation in marginalized areas.

A Formative and Contested Stage

The factors of conceptual ambiguity, methodological inconsistency, disciplinary silos, policy–practice

gaps, and global asymmetries contribute to the disorganized state of the Green AI discourse. However,

this disorganization is significant, indicating that Green AI is still developing and contested, with unclear

definitions and commitments. This stage presents both risks and opportunities: the risk of dilution and

fragmentation, and the opportunity for scholars, policymakers, and practitioners to establish clarity,

rigor, and ethical grounding. Acknowledging the contested nature of Green AI is crucial for both

academic integrity and the future direction of the field.

Framework: A Typology For Green AI

For Green AI to advance beyond its early, debated phase, scholars and practitioners need clear conceptual

tools to identify its different strands and their assumptions. A lack of clarity risks leading to confusion:

efficiency-focused optimizations might be confused for complete solutions, sustainability efforts could
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be praised without proper cost–benefit analysis, and important critical insights might be dismissed as

overly theoretical. To tackle this issue, we propose a typology of Green AI that categorizes three main

strands—efficiency-driven, sustainability-driven, and critical-ecological—based on their assumptions,

methods, contributions, and limitations.

Typologies are not neutral tools; they actively shape contentious areas[31]. By illustrating differences,

they improve communication between disciplines and identify areas for potential integration. For Green

AI, a typology can:

Clarify Definitions – Distinguish between efficiency, sustainability, and critical strands to reduce

semantic confusion.

Expose Blind Spots – Identify what each strand overlooks (e.g., lifecycle costs, global asymmetries).

Enable Cross-Fertilization – Provide a shared reference point for computer scientists, policymakers,

and critical theorists.

Guide Policy and Practice – Suggest which strand aligns with different governance or organizational

needs.

The Green AI Typology

Figure 1 outlines the three main strands of Green AI: efficiency-driven, sustainability-driven, and

critical-ecological. Efficiency-driven approaches focus on optimizing computing and reducing resources

but may lead to narrow perspectives and unintended consequences. Sustainability-driven approaches

emphasize AI's ecological applications and alignment with global policies but often make unrealistic

claims and ignore lifecycle costs. Critical-ecological perspectives critique Green AI for perpetuating

ecological dominance and highlight issues like extractive infrastructures and global inequalities, though

they tend to lack technical focus. This typology serves as a boundary object to clarify the complexities of

Green AI and foster dialogue across disciplines for more responsible research, policy, and practice.

Figure 1: The Typology of Green AI consists of three main strands: efficiency-driven, sustainability-

driven, and critical-ecological. Each strand has its own focus—efficiency emphasizes optimization,

sustainability prioritizes ecological applications, and critical-ecological highlights justice and hidden

costs. These overlaps highlight both blind spots, like lifecycle impacts and global inequalities, and

opportunities for integration. This typology positions Green AI as a boundary object that clarifies

tensions and encourages interdisciplinary dialogue.
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Figure 1. Typology of Green AI: Efficiency, Sustainability, and Critical-Ecological Strands. Credit: The Author, 2025

Contested Boundary

The typology shows how three approaches can work together effectively. Efficiency-driven methods can

be improved by incorporating lifecycle analysis and justice factors from critical scholars. Sustainability

projects can gain from efficiency metrics and addressing global inequalities found in critical research.

Similarly, critical-ecological perspectives can enhance their impact by engaging with technical standards

and policy discussions. This typology seeks to improve communication among various academic

communities while preserving their unique contributions.
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It frames Green AI not as a singular approach, but as a contested boundary project[32]. The

disorganization reflects a field in the process of defining its identity, grappling with issues of

optimization versus justice, technological solutions versus systemic critiques, and the leadership of the

Global North versus the marginalization of the Global South. This typology highlights these tensions and

encourages more coherent debate.

Implications

The typology of Green AI developed in this document not only organizes a fragmented discourse but also

bears substantial implications for theory, methodology, and practice. By considering Green AI as a

foundational and debated field, the framework emphasizes opportunities for conceptual innovation,

advocates for methodological standardization, and offers practical guidance for policymakers and

organizations.

Theoretical Implications

The typology contributes to theoretical debates on AI and sustainability in three ways:

Clarifying Boundary Work: By differentiating between efficiency-driven, sustainability-driven, and

critical-ecological strands, the typology illustrates that “Green AI” is not a singular paradigm but a

contested boundary project. This acknowledgment conforms to sociological perspectives on how

emerging fields establish authority through definitional conflicts[32]. Clear conceptual distinctions allow

future research to position itself explicitly within, across, or against these strands.

Expanding the Normative Scope: The critical-ecological perspective emphasizes that sustainability

transcends mere technical considerations, encompassing issues of justice, extraction, and global

inequality. Incorporating this perspective into mainstream AI ethics broadens normative discussions

beyond fairness and bias to address ecological dominance and digital colonialism[24][4].

Reframing AI and Planetary Boundaries: The typology places Green AI within the broader scholarly

discourse on planetary boundaries and ecological limits[33]. It questions techno-optimist assumptions

that efficiency or innovation alone can address sustainability challenges, instead presenting Green AI as a

subject of contested negotiation between ecological constraints and technological advancement.
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Methodological Implications

Methodological inconsistency is a key factor contributing to disorganization in the Green AI discourse.

The typology outlines strategies for increasing rigor.

Toward Standardized Metrics: Efficiency-driven Green AI has established partial metrics such as FLOPs,

GPU hours, and CO₂ equivalents; however, a standardized protocol remains absent. A practical framework

should integrate computational metrics—including training and inference costs—alongside lifecycle

assessments encompassing hardware production, water consumption, and electronic waste. Additionally,

it should consider geographic energy mixes to facilitate more precise accounting[10].

Integrating Cost–Benefit Analyses: Projects centered on sustainability are required to evaluate not only the

ecological advantages of artificial intelligence applications but also their ecological costs. Systematic

cost–benefit analyses serve to prevent exaggerated claims regarding AI’s role in climate action and to

ensure that sustainability discourse is grounded in empirical evidence.

Bridging Qualitative and Quantitative Approaches: Critical-ecological scholarship has yielded valuable

insights into the extractive infrastructures fundamental to AI; however, it frequently lacks quantitative

analysis. The integration of ethnographic, political-ecological, and lifecycle methodologies with

computational benchmarks has the potential to foster hybrid approaches that more effectively

encapsulate the intricacies of Green AI.

Policy and Practice Implications

For policymakers, organizations, and practitioners, the typology offers lessons that need to become

enforceable standards.

1. Mandatory Lifecycle Carbon Disclosure

AI systems exceeding a specified computational threshold (e.g., >10¹⁸ FLOPs for training runs) should be

mandated to disclose audited lifecycle carbon reports. These disclosures are to encompass not only

training energy consumption but also inference, hardware manufacturing, water utilization, and end-of-

life electronic waste management. Comparable thresholds could be incorporated into the EU AI Act as

well as OECD sustainability frameworks.
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2. Standardized Reporting Protocols

Building upon the ISO 14040/44 lifecycle standards, regulators should require a standardized reporting

template that encompasses FLOPs, CO₂-equivalents, water consumption, geographic energy mix, and e-

waste disposal channels. Academic journals and funding agencies could enforce adherence as a

prerequisite for publication or grant approval.

3. Independent Auditing and Certification

Much like financial reporting, environmental disclosures should be subject to third-party auditing.

Establishing an “AI Sustainability Certification” scheme would prevent selective disclosure and hold

organizations accountable for greenwashing.

4. Sector-Specific Allowances

Policymakers should acknowledge that tolerances for carbon intensity differ according to application. For

instance, higher emissions might be permissible in artificial intelligence applications used for medical

diagnostics or climate modeling than in entertainment or advertising systems. Implementing a

differentiated benchmark framework would facilitate proportionate regulation while dissuading

frivolous high-emission use cases.

5. Global Justice Mechanisms

To prevent green colonialism, standards need to encompass the entire supply chain. This includes the

obligatory disclosure of sourcing information for critical minerals such as cobalt and lithium, as well as

the destinations of electronic waste. International development agencies and trade organizations should

mandate supply-chain transparency certifications prior to endorsing AI-related infrastructure

investments in the Global South.

6. Organizational Accountability

Companies deploying AI should be mandated to publish yearly Green AI Impact Reports that explicitly

categorize their strategies within the typology—efficiency, sustainability, or critical justice. This

requirement would facilitate more transparent stakeholder dialogue and enable benchmarking across

industries. It also provides a strategic framework for integrating technical optimization with ethical

responsibility.

qeios.com doi.org/10.32388/8FB2P4 12

https://www.qeios.com/
https://doi.org/10.32388/8FB2P4


Conclusion

The debate concerning “Green AI” is both pressing and unsettled. As demonstrated in this paper, the

discipline is characterized by three divergent strands—efficiency-driven, sustainability-driven, and

critical-ecological—each providing valuable insights yet frequently engaging in separate dialogues.

Research focused on efficiency has heightened awareness of computational costs; however, it remains

limited in scope and susceptible to rebound effects. Applications oriented towards sustainability align

artificial intelligence with global policy objectives; nonetheless, they risk overestimating benefits and

overlooking lifecycle costs. Critical-ecological critiques reveal hidden externalities and global

asymmetries; however, they are often marginalized within technical discussions. This fragmentation

results in conceptual ambiguity, methodological inconsistency, and a persistent gap between policy and

practice.

By proposing a typology, this paper redefines Green AI as a contested boundary project rather than a

singular paradigm. This framework elucidates underlying assumptions, identifies overlooked aspects,

and offers a common reference point for scholars, practitioners, and policymakers. Significantly, it

demonstrates that Green AI cannot be assessed solely through efficiency or innovation metrics but must

also incorporate lifecycle impacts, global justice considerations, and planetary boundaries.

Looking ahead, the challenge lies in translating this conceptual clarity into operational practice.

Standardized hybrid metrics, lifecycle reporting protocols, independent audits, and justice-oriented

supply-chain regulations are essential steps to ensure that Green AI transcends rhetorical claims. Future

research should aim to refine these tools and examine their effectiveness across diverse sectors and

geographic regions. Ultimately, the measurement of Green AI will be based on its ability to reconcile

technological innovation with ecological responsibility and social equity.

Notes

JEL Codes: Q55, Q56, O33, L86, D63

References

1. a, bStrubell E, Ganesh A, McCallum A (2019). "Energy and Policy Considerations for Deep Learning in NLP."

ArXiv. doi:10.48550/arxiv.1906.02243.

2. a, b, c, dSchwartz R, Dodge J, Smith NA, Etzioni O (2019). "Green AI." ArXiv. doi:10.48550/arxiv.1907.10597.

qeios.com doi.org/10.32388/8FB2P4 13

https://doi.org/10.48550/arxiv.1906.02243
https://doi.org/10.48550/arxiv.1907.10597
https://www.qeios.com/
https://doi.org/10.32388/8FB2P4


3. a, b, c, dRolnick D, Donti PL, Kaack LH, Kochanski K, Lacoste A, Sankaran K, Ross AS, Milojevic-Dupont N, Jaq

ues N, Waldman-Brown A, Luccioni AS, Maharaj T, Sherwin ED, Mukkavilli SK, Kording KP, Gomes CP, Ng A

Y, Hassabis D, Platt JC, Creutzig F, Chayes J, Bengio Y (2023). "Tackling Climate Change with Machine Learn

ing." ACM Comput Surv. 55(2):1–96. doi:10.1145/3485128.

4. a, b, cCouldry N, Mejias UA (2019). The Costs of Connection: How Data Is Colonizing Human Life and Approp

riating It for Capitalism. Stanford: Stanford University Press.

5. ^Pope PE, Kolouri S, Rostami M, Martin CE, Hoffmann H (2019). "Explainability Methods for Graph Convolu

tional Neural Networks." 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). d

oi:10.1109/CVPR.2019.01103.

6. ^Henderson P, Hu J, Romoff J, Brunskill E, Jurafsky D, Pineau J (2020). "Towards the Systematic Reporting of

the Energy and Carbon Footprints of Machine Learning." J Mach Learn Res. 21(248):1–43.

7. a, bPatterson DA, Gonzalez JE, Le QV, Liang C, Lluís-Miquel Munguía R, So DR, Texier M, Dean J (2021). "Car

bon Emissions and Large Neural Network Training." ArXiv. doi:10.48550/arxiv.2104.10350.

8. ^Chen X, Despeisse M, Johansson B (2020). "Environmental Sustainability of Digitalization in Manufacturi

ng: A Review." Sustainability. 12(24):10298. doi:10.3390/su122410298.

9. ^Wang P, Zhang LY, Tzachor A, Masanet E, Chen WQ (2024). "E-Waste Challenges of Generative Artificial In

telligence." ArXiv. doi:10.21203/rs.3.rs-3978528/v1.

10. a, b, cSchmidt V, Schneider T, Li X (2021). "Standardizing Sustainability Metrics for AI: Challenges and Oppor

tunities." AI Ethics. 36(4):1129–1142. doi:10.1007/s00146-021-01245-0.

11. ^Wynsberghe Av (2021). "Sustainable AI: AI for Sustainability and the Sustainability of AI." AI Ethics. 1(3):21

3–218. doi:10.1007/s43681-021-00043-6.

12. ^Weyn JA, Durran DR, Caruana R (2020). "Improving Data-Driven Global Weather Prediction Using Deep C

onvolutional Neural Networks on a Cubed Sphere." J Adv Model Earth Syst. 12(9):e2020MS002109. doi:10.10

29/2020ms002109.

13. a, bOECD (2022). "OECD Digital Economy Outlook 2020: AI and Sustainability." OECD Publishing. doi:10.178

7/bb167041-en.

14. a, bEuropean Union (2024). "The EU Artificial Intelligence Act." The Artificial Intelligence Act. https://artifici

alintelligenceact.eu/.

15. ^Liao M, Lan K, Yao Y (2021). "Sustainability Implications of Artificial Intelligence in the Chemical Industry:

A Conceptual Framework." J Ind Ecol. 26(1):164-182. doi:10.1111/jiec.13214.

qeios.com doi.org/10.32388/8FB2P4 14

https://doi.org/10.1145/3485128
https://doi.org/10.1109/CVPR.2019.01103
https://doi.org/10.48550/arxiv.2104.10350
https://doi.org/10.3390/su122410298
https://doi.org/10.21203/rs.3.rs-3978528/v1
https://doi.org/10.1007/s00146-021-01245-0
https://doi.org/10.1007/s43681-021-00043-6
https://doi.org/10.1029/2020ms002109
https://doi.org/10.1029/2020ms002109
https://doi.org/10.1787/bb167041-en
https://doi.org/10.1787/bb167041-en
https://artificialintelligenceact.eu/
https://artificialintelligenceact.eu/
https://doi.org/10.1111/jiec.13214
https://www.qeios.com/
https://doi.org/10.32388/8FB2P4


16. ^Kaack LH, Donti PL, Strubell E, Kamiya G, Creutzig F, Rolnick D (2022). "Aligning Artificial Intelligence wit

h Climate Change Mitigation." Nat Clim Change. 12(6):518–527. doi:10.1038/s41558-022-01377-7.

17. ^Frimpong V (2024). "Cultural and Regional Influences on Global AI Apprehension." Qeios. 6(11). doi:10.3238

8/yrdgex.3.

18. a, bCrawford K (2021). The Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. Yale:

Yale University Press. doi:10.2307/j.ctv1ghv45t.

19. ^McDuie‐Ra D, Gulson KN (2019). "The Backroads of AI: The Uneven Geographies of Artificial Intelligence a

nd Development." Area. 52(3):626–633. doi:10.1111/area.12602.

20. ^Amnesty International (2023). "Forced Evictions at Industrial Cobalt and Copper Mines in the DRC." Amne

sty International. https://www.amnesty.org/en/latest/news/2023/09/drc-cobalt-and-copper-mining-for-ba

tteries-leading-to-human-rights-abuses/.

21. ^Mytton D (2021). "Data Centre Water Consumption." npj Clean Water. 4(1). doi:10.1038/s41545-021-00101-

w.

22. ^UNEP (2023). "UN Roadmap Outlines Solutions to Cut Global Plastic Pollution." UN Environment. https://

www.unep.org/news-and-stories/press-release/un-roadmap-outlines-solutions-cut-global-plastic-pollutio

n.

23. ^Owusu-Twum MY, Kumi-Amoah G, Heve WK, Lente I, Owusu SA, Larbi L, Amfo-Otu R (2022). "Electronic

Waste Control and Management in Ghana: A Critical Assessment of the Law, Perceptions and Practices." W

aste Manag Res. 40(12):1794-1802. doi:10.1177/0734242x221103939.

24. a, b, cBirhane A (2021). "Algorithmic Injustice: A Relational Ethics Approach." Patterns. 2(2):100205. doi:10.10

16/j.patter.2021.100205.

25. a, bCheong S, Sankaran K, Bastani H (2022). "Artificial Intelligence for Climate Change Adaptation." WIREs

Data Min & Knowl. 12(5). doi:10.1002/widm.1459.

26. ^Lu L (2024). "In-Depth Analysis of Artificial Intelligence for Climate Change Mitigation." ArXiv. doi:10.209

44/preprints202402.0022.v1.

27. ^Jobin A, Ienca M, Vayena E (2019). "The Global Landscape of AI Ethics Guidelines." Nat Mach Intell. 1(9):38

9–399. doi:10.1038/s42256-019-0088-2.

28. ^Katirai A (2023). "The Ethics of Advancing Artificial Intelligence in Healthcare: Analyzing Ethical Consider

ations for Japan’s Innovative AI Hospital System." Front Public Health. 11. doi:10.3389/fpubh.2023.1142062.

29. ^Voets MM, Veltman J, Slump CH, Siesling S, Koffijberg H (2022). "Systematic Review of Health Economic Ev

aluations Focused on Artificial Intelligence in Healthcare: The Tortoise and the Cheetah." Value Health. 25

qeios.com doi.org/10.32388/8FB2P4 15

https://doi.org/10.1038/s41558-022-01377-7
https://doi.org/10.32388/yrdgex.3
https://doi.org/10.32388/yrdgex.3
https://doi.org/10.2307/j.ctv1ghv45t
https://doi.org/10.1111/area.12602
https://www.amnesty.org/en/latest/news/2023/09/drc-cobalt-and-copper-mining-for-batteries-leading-to-human-rights-abuses/
https://www.amnesty.org/en/latest/news/2023/09/drc-cobalt-and-copper-mining-for-batteries-leading-to-human-rights-abuses/
https://doi.org/10.1038/s41545-021-00101-w
https://doi.org/10.1038/s41545-021-00101-w
https://www.unep.org/news-and-stories/press-release/un-roadmap-outlines-solutions-cut-global-plastic-pollution
https://www.unep.org/news-and-stories/press-release/un-roadmap-outlines-solutions-cut-global-plastic-pollution
https://www.unep.org/news-and-stories/press-release/un-roadmap-outlines-solutions-cut-global-plastic-pollution
https://doi.org/10.1177/0734242x221103939
https://doi.org/10.1016/j.patter.2021.100205
https://doi.org/10.1016/j.patter.2021.100205
https://doi.org/10.1002/widm.1459
https://doi.org/10.20944/preprints202402.0022.v1
https://doi.org/10.20944/preprints202402.0022.v1
https://doi.org/10.1038/s42256-019-0088-2
https://doi.org/10.3389/fpubh.2023.1142062
https://www.qeios.com/
https://doi.org/10.32388/8FB2P4


(3):340-349. doi:10.1016/j.jval.2021.11.1362.

30. ^Mhlambi S (2020). "From Rationality to Relationality: Ubuntu as an Ethical and Human Rights Framewor

k for Artificial Intelligence Governance." Carr Center Discussion Paper 009.

31. ^Doty DH, Glick WH (1994). "Typologies as a Unique Form of Theory Building: Toward Improved Understan

ding and Modeling." Acad Manage Rev. 19(2):230–251. doi:10.2307/258704.

32. a, bGieryn TF (1999). Cultural Boundaries of Science: Credibility on the Line. Chicago: University of Chicago

Press.

33. ^Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin E, Foley J (2009). "Planetary Boundaries: E

xploring the Safe Operating Space for Humanity." Ecol Soc. 14(2):32. https://www.ecologyandsociety.org/vol

14/iss2/art32/.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/8FB2P4 16

https://doi.org/10.1016/j.jval.2021.11.1362
https://doi.org/10.2307/258704
https://www.ecologyandsociety.org/vol14/iss2/art32/
https://www.ecologyandsociety.org/vol14/iss2/art32/
https://www.qeios.com/
https://doi.org/10.32388/8FB2P4

