Review of: "In order to control the properties of Oligophenylene vanillin nanowires, parameters"

Chris Olsen
1 General Electric (New Zealand)

Potential competing interests: No potential competing interests to declare.

It has been done in the manufacture of nanowires through regular one-dimensional arrays with the help of different physical and chemical methods. Methods such as the use of the electron beam or the lithography method, heavy ion irradiation, lasers, and chemical and electrochemical methods such as water heat and spontaneous assembly methods used to make the membranes or molds can also be used.

In making one-dimensional nanostructures such as Oligophenylene vanillin nanowires, the electro-accumulation method consists of three general steps:

First, the creation of a porous template as a suitable substrate and framework for the accumulation of nanowires; second, the growth of nanowires along the cavities of the template; and third, the removal of the template and the separation of the nanowires from it. The nanowires are directly dependent on the characteristics of the mold surface, such as the size distribution of the holes, the density of the holes, and the superiority of the surface of the nano-holes. In order to control the properties of Oligophenylene vanillin nanowires, parameters that are effective in the formation and optimization of the diameter of the holes and the thickness of the mold should be considered.

Conclusion:

From the physical properties of Oligophenylene vanillin nanowires, we can mention their electrical, photoelectric, and mechanical properties.

References

multilayer Si graphene field effect nanotransistor". Qeios. doi:10.32388/0rj8k3.


10. ^Sara Johnson. (2023). Review of: "Biosensors are very small electrodes with nanometer size and cellular dimensions that can detect chemical species through the stabilization of certain enzymes on their surface.". Qeios. doi:10.32388/59igyk.


13. ^Alex Milizovich. (2023). Review of: "(nanotransistor) and the unique properties of graphene such as electron mobility and high thermal conductivity, resistance to fracture". Qeios. doi:10.32388/laqiv3.