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Abstract: This manuscript explores the significant gap in undergraduate physics 
curricula concerning unsolvable differential equations, despite their ubiquity in 
describing physical systems. Traditional educational frameworks often omit 
these equations due to their complexity and lack of analytic solutions, leaving 
computational methods underutilized in academic settings. By implementing 
computational calculus, this study demonstrates an accessible, straightforward 
method to handle such equations, supported by nine prototypical examples 
across classical physics domains. These include the three-body problem, rocket 
trajectories, electric circuit responses, and more. The approach is not only 
feasible for inclusion in high school and undergraduate courses but also 
enhances the conceptual understanding of physics through practical computation, 
proposing a foundational shift in physics education. 
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1. The University’s Little Secret 
Since Newton, the basic paradigm for the analysis of physical systems has been: 

1. State the laws of physics governing the system. Laws of physics governing how 
things change are written as differential equations. 

2. Derive a differential equation model of the system from the laws of physics 
governing it 

3. Analyze the differential equation model, with the goal of predicting the 
performance of the system. 

For example, the physical laws governing falling bodies and orbits are covered in high 
school physics, and the formula for the acceleration of a falling object is derived from 
these laws; an equation for acceleration is a differential equation. There is no closed-
form solution to this differential equation. Lagrange derived an infinite series solution 
in 1771[1], a modern version is given in Wikipedia[2]: 
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This equation is an analytic solution to the 1-D two-body problem, with r(t) = separation 
at time t. As you might imagine, it requires very advanced calculus to derive, and is 
beyond the scope of university undergraduate physics. The three-body problem, the 
motion of three bodies affected only by their mutual gravitational attraction, is 
analytically unsolvable. 
 
This might surprise you: the differential equation models of most physical systems are 
analytically unsolvable. This is the university’s little secret. 
 
This begs the question - how are unsolvable systems covered in undergraduate physics 
education? The answer is: they aren't, they aren’t mentioned. The limitations of analytic 
calculus have been internalized in the current curriculum, and unsolvable systems are 
invisible. Determining orbit position as a function of time, the problem Newton solved 
in 1687 that marked the beginning of modern math and physics, is invisible in the 
current classical physics curriculum. 
 
[[ Unsolvable differential equations are also invisible in physics education literature, so 
if you search for ‘unsolvable differential equation’ in all issues of the AJP, Physics 
Today, Nature Physics, and Physical Review Physics Education Research, you’ll get 
only one hit, my AJP Letter to the Editor A Revolution in Physics was Forecast in 
1989, Why Hasn’t It Happened? What Will It Take’ ]] 
 
Computers and computational calculus revolutionized physics in the mid-20th century 
because they made it possible to analyze unsolvable differential equations. For example, 
they made planning the Apollo trajectory, a solution to the analytically unsolvable three-
body problem, possible. 
 
Unlike Newton’s analytic calculus, computational calculus, i.e., the computational 
methods for calculating solutions to differential equations, is simple and intuitively 
transparent, and the powerful basic method can be taught to high school science students 
with no previous exposure to calculus in a single one-hour lecture. 
 
This paper demonstrates the simplicity, ease of use, and extraordinary power of 
computational methods, with analyses of nine prototypical systems spanning the range 
of classical physics; all but the space station orbit and the RLC circuit impulse response 
are analytically unsolvable, the RLC circuit would be unsolvable if it contained a non-
linear element. 
	
2. Central Force Motion, Orbits and Rocket Trajectories 

2.A. The physics of central force motion 

The physical laws governing central force motion are Newton’s law of gravity and 
Newton’s second law of motion. The law of gravity is: 

F = G∙mobject∙mEarth / r2 

where F is the force of gravity, mobject and mEarth are the masses of the object and Earth, r 
is the distance between the centers of the object and Earth, and G is the gravitational 
constant. The second law of motion is 
F = m∙A 

https://pubs.aip.org/aapt/ajp/article/91/4/256/2878657/A-revolution-in-physics-education-was-forecast-in
https://pubs.aip.org/aapt/ajp/article/91/4/256/2878657/A-revolution-in-physics-education-was-forecast-in


where F is the force acting on the object, m is the object’s mass, and A is the object’s 
acceleration. 
 
2.B. The differential equation model for 2-D central force motion 
A differential equation model for a physical system consists of a set of state variables 
that define the state of the system and a differential equation for the rate of change of 
each state variable. 
 
The equation for the acceleration of a falling/orbiting object in Earth’s gravitational field 
is derived in high school physics from the law of gravity and the second law of motion, 
it is: 
A = -G∙mEarth/ r2 

 
The state variables for the model for a 2-D falling object are the object’s position 
(distance from the center of the earth) r, and the object’s velocity, v (which equals r’). 
The rate, i.e. differential, equations for the model are: 
r’(t) = v(t) 
v’(t) =- G∙mEarth/ r(t)2 
 

2.C. Computing trajectories and orbits 
Euler’s method translates each rate equation into a computational equation. The 
translation is one-to-one and by rote; the two rate equations above translate to 
computational equations: 
r(ti+1) = r(ti) + r’(ti) ∙ dt = r(ti) + v(ti) ∙ dt 
v(ti+1) = v(ti) + v’(ti) ∙ dt = v(ti) + (- G ∙ mEarth/ r(ti)2 )∙ dt 
 
The computational equations translate into programming language statements on a 1-to-
1 basis that is for all practical purposes by rote. For more details on programming 
computational calculus, along with coded examples, see [3], 
 
The state variables for an object in a 2-D orbit are position p and velocity v, both 2-D 
vectors. The model is created by resolving the 2-D gravity vector into x and y 
 
components	 and	 calculating	 the	 x	 and	 y	 trajectories	 independently.	With	p(t)	 =	
(px(t),	py(t))	and	r(t)	=	sqrt(px(t)2	+	py(t)	2)	the	rate	equations	are:	
px’(t) = vx(t) 
vx’(t) = - (px(t) / r(t)) ∙ G∙mEarth / r(t)2 

py’(t) = vx(t) 
vy’(t) = - (py(t) / r(t)) ∙ G∙mEarth / r(t)2. 
 
The corresponding computational equations are: 
px(ti+1) = px(ti) + vx(ti) ∙ dt 
vx(ti+1) = vx(ti) + ax(ti) ∙ dt = vx(ti) - px(ti) / r(ti) ∙ (G ∙ mEarth / r(ti)2 ) ∙ dt 
py(ti+1) = py(ti) + vy(ti) ∙ dt 
vy(ti+1) = vy(ti) + ay(ti) ∙ dt = vy(ti) - py(ti) / r(ti) ∙ (G ∙ mEarth / r(ti)2 ) ∙ dt. 
 



All that is needed to generate the space station orbit shown in Figure 1 are the relevant 
parameters: the mass of the earth, and the initial altitude and velocity of the space station. 
MATLAB programs for the analyses in the paper can be found here.[5] 
 
 

 
 
 
 
 
 

 
A rocket launched from Earth toward the Moon is pulled by the Earth’s gravity and the 
Moon’s gravity, so the rocket acceleration is calculated using the sum of the gravitational 
forces of Earth and Moon. 
 
We would like to steer the rocket. The rocket is being modeled as a point mass, and we 
(as always) are striving for simplicity; we model a guidance boost on the rocket by adding 
the acceleration due to the guidance boost to the computational equations as shown, 
where agx and agy can be pre-programmed or calculated on the fly, 
 
vx(ti+1) = ............ + agx(ti) ∙ dt 
vy(ti+1) = ............ + agy(ti) ∙ dt. 
 
Now we can model a rocket that just misses the moon, and with a slight nudge from a 
guidance boost put it into orbit around the moon. The rocket and moon trajectories are 
shown in Figure 2. 

 
	
	
	
	
	
	
	
	

Figure	2.	The	Apollo	trajectory	
 
3. Electric Circuit Analysis 

3.A. The physics of electric circuits 
The physics of electric circuit analysis is simple and intuitively clear; it consists of three 
component models and Kirchhoff’s laws: 

Figure	1	–	Calculated	space	station	orbit,	with	an	outline	of	earth	for	reference 



• Resistor model: Ohm’s law, vR = IR ∙ R, the resistor voltage vR equals the current IR 
through the resistor times the resistor’s resistance R. 

• Capacitor model: vC’ = IC / C, the rate of change of voltage across a capacitor vC’ 
equals the current flow into the resistor IC divided by the capacitor’s capacitance C. 

• Inductor model: IL’ = vL / L, the rate of change of current in an inductor IL’ equals 
the applied voltage vL divided by the inductor’s inductance L. An intuitive model of 
an inductor is a bidirectional frictionless turbine, an applied voltage 
increases/decreases the speed of the turbine, when the applied voltage is zero the 
turbine spins at a constant speed. 

• Kirchhoff’s loop law: the voltages across the components in a loop sum to 0. 
• Kirchhoff’s node law: the currents into a node sum to 0. 
 
3.B. Differential equation models for electric circuits 
The model for an electric circuit contains a state variable for each component that is 
capable of storing energy, that is, each capacitor and each inductor, and a differential 
equation for the rate of change of each state variable. 
 
The model for the RLC oscillator shown in Figure 4 has state variables for the capacitor 
voltage, vC, and the inductor current IL. This circuit contains no non-linear elements and 
its impulse response is analytically solvable using the Laplace transform. 
 
 
 
 

 
 

 
 

Figure 3. RLC oscillator circuit diagram 
 
 
 
From the capacitor model: vC’(t) = IC(t)/ C 
From Kirchoff’s voltage law: VS(t) – vR(t) – vL(t) – vC(t) = 0. 
Solving for vL(t) gives vL(t) = VS(t) – vR(t) – vC(t) = VS(t) – IR(t) ∙R – vC(t). 
From the inductor model: IL’(t) = vL(t)/ L = (VS(t) – IR(t) ∙R – vC(t)) / L. 
 
The current in the loop is everywhere the same so IC=IL=IR=I and the equations for vC’(t) 
and IL’(t) above are rate equations for the model. The voltage source VS(t), the input 
voltage, and can programmed to any desired input voltage as a function of time. 
 
3.C. Computing electric circuit response 
The computational equations for the model are: 
vC(ti+1) = vC(ti) + I(ti) / C ∙ dt 
I(ti+1) = I(ti)) + ((VS(ti) – IR(ti) ∙R – vC(ti)) / L ∙ dt 



 
If dt = 0.01, then the input values VS(t100) = 100 and VS(ti) = 0 for i ≠ 100 correspond to 
a unit impulse at t = 1; the circuit response is shown in Figure 4. 
 
 
 
 
 
 
 
 

 
 

 
 
4. 2-D Rigid Body Dynamics 
Analysis of 2-D, as opposed to 3-D, rigid body dynamics avoids the complexities of 
quaternions, the moment of inertia tensor, and Euler’s equations of motion, these topics 
are covered in Appendices III, IV, and V. 
 
4.A. The physics of 2-D rigid body motion 
The physics for a 2-dimensional rocket is: 

• Newton’s 2nd law for translation: F = m ∙ p’’ where p’’ is the acceleration of the 
object’s center of mass, where F and p are 2-dimensional vectors. 

• Newton’s 2nd law for rotation: Г = I ∙ a’’ where Г is the applied torque, I is the 
object’s moment of inertia about its center of mass., and a’’ is the acceleration of 
its orientation angle a. 

 
4.B. Differential equation model for a 2-D rigid body rocket 
The rocket is modeled (length, mass, thrust) on the Delta IV rocket in the US inventory. 
The rocket is steered using gimballed engine mounts to control thrust direction. The 
thrust angle q can be computed in flight or pre-programmed, see Figure 5. 
 
 

 
 
 
 
 

 
Figure 5. Delta IV rocket model 

 
The forces acting on the rocket are gravity and engine thrust (atmospheric drag is 
neglected). Thrust is a constant T and is steered using the pre-programmed thrust angle 

Figure 4. RLC oscillator circuit impulse response 



q(t). Thrust is resolved into x and y components using the rocket orientation angle a plus 
the thrust offset angle q; the applied torque is -T∙sin(q)∙L/2 where L is the length of the 
rocket. 
 
4.C. Computing the trajectory of a rocket launched into orbit 
The differential equations in the model are translated one to one using Euler’s method to 
obtain the computational equations. The computational equations for the orientation 
angle a are: 
a(ti+1) = a (ti) + a’(ti) ∙ dt 
a’(ti+1) = a’(ti) + (-T∙sin(a)∙L/2 )/I∙dt 
where I is the rocket’s moment of inertia about its center of mass. 
 
Figure 6 shows the rocket launched from the equator of a spinning earth, inheriting the 
launch point’s lateral velocity and the earth’s rotation rate, and steered into orbit. 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 6. Trajectory for launch to orbit 
 
 
5. Partial Differential Equations and the Finite Difference Method 
The state variables for the physical processes considered thus far depended on a single 
independent variable, time, and the rate equations for these variables were ordinary 
differential equations, i.e. differential equations having one independent variable. The 
systems described in the remainder of the paper will have multiple variables, and the 
differential equations will be partial differential equations. 
 
Euler’s method for computing solutions to ordinary differential equations can be easily 
extended to compute solutions to partial differential equations, the extended method is 
known as the finite difference method (FDM). 
 
The FDM substitution for a second order partial derivative ∂2v(t,x,y)/∂2x is derived as 
follows: 
 
The central difference Euler estimate of ∂2v(t,x,y)/∂2x = ∂(∂(v(t,x,y) /∂x) /∂x is 
(∂v(t,x+dx/2,y)/∂x - ∂v(t,x-dx/2,y)/∂x) / dx 



 
The central difference estimate of ∂v(t,x+dx/2,y)/∂x is (v(t,x+dx,y) – v(x,y)) / dx  
 
The central difference estimate of ∂v(t,x-dx/2,y)/∂x is (v(t,x,y) – v(t,x-dx,y)) / dx 
 
Substituting the last two estimates into the first yields 
∂2v(t,x,y)/∂2x ~ (v(,x+dx,y) – v(t,x,y)) / dx - (v(t,x,y) – v(,x-dx,y)) / dx) / dx 
= (v(t,x+dx,y) - 2∙v(t,x,y) + v(t,x-dx,y)) / dx2 
 
This is the FDM substitution for a 2nd-order partial derivative. Derivations of the FDM 
estimates for the other 2nd-order partial derivatives are similar [6]. 
 
6. Heat Transfer 

6.A. The physics of 2-D heat transfer 
In two dimensions the heat flow rate is a vector q = (qx, qx). Fourier’s heat transfer law 
in two dimensions is: 
qx(t,x,y) = -k∙ ∂T(t,x,y) /∂x 
qy(t,x,y) = -k∙ ∂T(t,x,y) /∂y 
where q is the heat flow rate in W/m, k is the material conductivity in 
(W/m)/(°K/m), and T is temperature in °K. 
 
The relationship between heat energy and temperature is given by 
heat energy = c ∙ volume ∙ T 
where c is the heat capacity of the material in joules/(volume∙°K) 
 
6.B. The partial differential equation model for 2-dimensional time-
dependent heat transfer 
The model for 2-dimensional time-dependent heat flow is derived as follows: consider 
the control volume (cv) shown in Figure 7, the heat flow rate into the control volume thru 
sides A and B is at time t is qx(t,x-dx/2,y) - qx(t,x+dx/2,y). 
 
 
 
 
 
 
 
 
 
 

Figure 7. Rate of heat flow in/out of control volume 
 
Using Fourier’s heat transfer law, the net flow rate into the control volume through sides 
A and B is 
qx(t,x-dx/2,y) - qx(t,x+dx/2,y) = k∙(∂T(t,x+dx/2,y) /∂x - ∂T(t,x-dx/2,y) /∂x)∙dy 



 
Similarly, the heat flow rate into the cv through sides C and D is 
k∙(∂T(t,x,y+dy/x) /∂y - ∂T(t,x,y-dy/2) /∂y)∙dx 
 
The temperature in the cv is related to the heat energy in the cv by 
T = (1/c) ∙ heat energy / volume = (1/c) ∙ heat energy / dx∙dy 
 
So, ∂T(t,x,y)/∂t = (1/c) ∙ (heat flow rate -> cv) / dx∙dy 
 
= (1/c) ∙ (k∙ (∂T(t,x+dx/2,y) /∂x - ∂T(t,x-dx/2,y) /∂x) ∙dy 
+ k∙ (∂T(t,x,y+dy/x) /∂y - ∂T(t,x,y-dy/2) /∂y) ∙ dx) / (dx∙dy) 
 
= (k/c) ∙ (∂T(t,x+dx/2,y) /∂x - ∂T(t,x-dx/2,y) /∂x) / dx 
+ (∂T(t,x,y+dy/x) /∂y - ∂T(t,x,y-dy/2) /∂y ) / dy 
 
and taking the limit as dx->0 and dy->0 gives the model for 2-dimensional time-
dependent heat transfer 
∂T/∂t = (k/c) ∙(∂2T/∂2x+ ∂2T /∂2y) 
 
6.C. Computing 2-D time-dependent heat transfer 
To analyze heat transfer in a 2-D rectangular plate the time domain 0-T is divided as 
before into N evenly spaced intervals 0 = t1, .... tN+1 = T, with ∆t = T/N, and the spatial 
domain 0-X, 0-Y is divided into a uniform grid of points as shown in the diagram, with 
0 = x1, .... xNX+1 = X, with ∆x = X/NX, and 0 = y1, .... yNY+1 = Y, with ∆y = Y/NY, as 
shown in Figure 8. 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 8. Grid for FDM analysis 
The state variables are the temperature values T(xi, yj) at the grid points. 
 
The computational equations for T are: 
Tn+1(xi,yj) = Tn(xi,yj) + ∆t∙(k/c) ∙(∂2Tn(xi,yj) /∂2x+ ∂2Tn(xi,yj) /∂2y) 
following the standard convention of writing Tn(xi,yj) for T(tn,xi,yj). 
 
Making the FDM substitutions for the partial derivatives, we have 
Tn+1(xi,yj) = Tn(xi,yj) + ∆t∙(k/c)∙[(Tn(xi+1,yj) – 2∙Tn(xi,yj) + Tn(xi-1,yj) )/dx2 



+ (Tn(xi,yj+1) – 2∙Tn(xi,yj) + Tn(xi,yj-1) )/dy2] 
 
With dx = dy this simplifies to 
Tn+1(xi,yj) = Tn(xi,yj) + ∆t∙(k/c)∙[(Tn(xi+1,yj) + Tn(xi,yj+1) – 4∙Tn(xi,yj) + Tn(xi-1,yj) + 
+ Tn(xi,yj-1) ]/dx2 

 
The above equation written in index form is 
Tn+1(i,j) = Tn(i,j) + ∆t∙(k/c)∙[(Tn(i+1,j) + Tn(i,j+1) - 4∙Tn(i,j) + Tn(i-1,j) 
+ Tn(i,j-1) )]/dx2 

 
Given the values for Tn(i,j), i.e. the temperature values for the grid at time tn, the 
computational equations can be used to calculate Tn+1(i,j) for each of the interior points 
in the grid. 
 
There are three common ways of specifying boundary values, as follows: 
-Dirichlet boundary condition – a boundary value is constant, i.e. does not change with 
time, e.g. Tn+1(i,1) = C. 
-Neumann boundary condition – the value of a partial derivative is specified at the 
boundary, e.g. (Tn+1(i,2) - Tn+1(i,1)) /∆y = C, so Tn+1(i,1) = Tn+1(i,2)∙C∙∆y. 
-Robin boundary condition – a linear combination of Dirichlet and Neumann boundary 
conditions. 
 
It’s necessary to specify initial conditions, i.e. temperatures, for all of the grid points at 
time t1 = 0. For the example shown in Fig. 9 Dirichlet boundary conditions keep the 
bottom boundary at 0°K, the upper boundary at 5°K, and the interior section at 10°K, 
Neumann boundary conditions ∂T/∂x = 0 are specified for the left and right borders. 
 

Figure 9. Temperature distribution at t = 0.0, 0.2, and 0.8 seconds 
Note: MATLAB plots the graphs directly from the temperature array. 

 
 
7. Wave Phenomena 

7. A. The physics of wave motion 
The wave equation for a vibrating 2-D surface can be derived from Newton’s 2nd law of 
motion. 
 



7.B. The partial differential equation model for wave motion 
The forces acting on a small control volume in a 2-D surface under constant tension of T 
newtons/m are shown in Fig. 10 below: 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 – Forces acting on a control volume in the surface under tension 
 
The displacement function u(t,x,y) gives the vertical displacement of the surface from 0. 
Fig. 11 shows the cv looking head-on at side C. 
 

 
 
 
 

 
Figure 11. View from front 

 
The vertical forces acting on the control volume on sides A and B are 
T∙dy∙ sin(q1) and T∙dy∙sin(q2) respectively. 
 
From the small angle approximation 
sin(q1)  ≈ -∂u(t,x-dx/2, y)/∂x, and 
sin(q2)  ≈ ∂u(t,x+dx/2, y)/∂x 
The total vertical force on the control volume from sides A and B is 
T∙dy∙(∂u(t,x+dx/2, y+dy/2)/∂x - ∂u(t,x-dx/2, y+dy/2)/∂x) 
 
Similarly, the total vertical force on the control volume from sides C and D is 
T∙dx∙(∂u(t,x, y+dy/2)/∂y - ∂u(t,x, y-dy/2)/∂t) 
 
From the 2nd law of motion, the acceleration of the control volume equals the force on 
the control volume divided by its mass. Thus 

 
where � is the density of the surface in kg/m2. 
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Taking the limit as dx -> 0, dy -> 0 yields the differential equation model for 2-D wave 
phenomena: 
 
 

 
 
7.C Computing wave motion 
Making the FDM substitutions for the derivatives in the differential equation model and 
rearranging to solve for un+1(i,j) gives the computational equation for wave motion. 
 
un+1(i,j) = 2 ∙ un(i,j) - un-1(i,j) + (T/ρ)2∙dt2 ∙(un(i+1,j) - 2∙un(i,j)+ un(i-1,j) 
+ un(i,j+1) – 2∙un(i,j) + un(i,j-1))/dx2 
 
For the example shown in Fig. 12 the surface displacement was initialized to zero except 
for a sine wave pulse in the middle. Dirichlet boundary conditions hold u=0 on all 
boundaries. 
 

 
Figure 12: Initial pulse, a wave traveling outward, wave being reflected at the boundary 

8. Stress and Strain in 2-D Elastic Materials 

8.A. The physics of stress and strain 
8.A.1. The 2-D stress tensor 
The force applied to the surface of an elastic 2-D object is transmitted to the interior of 
the object creating stress throughout the object. Stress is force per unit area, the stresses 
acting on the right side of a vertical surface in a stressed 2-D object are shown in Figure 
13: 
 
 
 
 
 
 
 

 
Figure 13. Stress tensor components for a vertical surface 
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sxx(x,y) = the x-component of stress on a small surface centered at (x,y) with normal 
vector i = (1, 0) 
sxy(x,y) = the y-component of stress on a small surface centered at (x,y) with normal 
vector i = (1, 0) 
There are four components of stress at a point in a 2-D object. syy(x,y) and syx(x,y) are 
the stresses on the top of a horizontal surface centered at (x,y). The four components 
make up a rank 2 stress tensor. 
 
8.A.2. The 2-D strain tensor 
The strain at a point in a stressed object is defined in terms of the partial derivatives of 
the displacement function D(x,y) = (u(x,y), v(x,y)) as shown in Figure 14. 
 
 
 
 
 
 

Figure 14. S(x,y) = (x,y) + D(x,y) = (x,y) + (u(x,y),v(x,y)) 
Normal strain in the x direction is defined as the ratio of change in length to length: 
exx = (B’x – A’x – dx) / dx = (Sx(x+dx,y) - Sx(x,y) - dx)/dx = ((u(x+dx,y) - u(x,y))/dx 
Taking the limit as dx -> 0, the normal strain rate exx= ∂u/∂x. Similarly, eyy = ∂v/∂y 
Shear strain corresponds to a change in the angle between the x and y axes: 

qx ≈ sin(qx) ≈( B’y – A’y) / dx = (Sy(x,y+dx) – Sy(x,y))/dx) = ((v(x+dx,y) - v(x,y))/dx 

qy ≈ sin(qy) ≈ (C’x – Cx) / dy = (Sx(x,y+dy – Sy(x,y))/dy) = ((u(x,y+dy) - u(x,y))/dy 
Taking the limit as dx, dy -> 0, exy(x,y) = eyx(x,y) = qx + qy = ∂v/∂x + ∂u/∂y 

The four components of strain up make up the rank 2 strain tensor. 
 
 
8.A.3. Hooke’s Law 
The physical laws governing stress and strain in materials are Newton’s second law of motion, 
and Hooke’s law relating stress and strain. 

A 2-dimensional form of Hooke’s law is the following:[7] 
E = Young’s modulus 
r = Poisson’s ratio 

G = shear modulus 

exx, eyy, sxx, syy.. are normal strains and stresses 

q, sxy =syx are shear strain and stress 

 
8.B. The partial differential equation model for a stressed elastic object 
8.B.1 The stress equilibrium model 
Figure 15 shows the forces acting on a small control volume in a stressed object. 



 
 
 
 
 
 

 
 
 

 
 
 

Figure 15. Forces acting on a control volume 
 
The x-component force acting on the cv equals 0, thus 

 

 
 

Taking the limit as dx -> 0 and dy -> 0 gives 
∂sxx/∂x +∂syx/∂y = 0. 
Similarly ∂syy/∂y +∂sxy/∂x = 0. This is the stress equilibrium model for a stressed elastic 
object. 
 
Note that ∂sxy acting on the sides of the cv is counter-clockwise and ∂syx acting on the 
top and bottom is clockwise, so with dy = dx the torque on the plate as dx -> 0 is 

 
 

The moment of inertia for a square control volume with density d is I= d∙12∙dx4, so the 
rotational acceleration of the control volume equals T/I -> ∞ unless sxy = syx; thus the 
stress tensor must be symmetric. 
 
Note that the model describes a system that does not evolve with time, and time is not a 
state variable in the model. 
 
8.B.2 The differential equation model for displacement 
The next step is to derive the model in terms of displacement by using Hooke’s law to 
substitute for the stress variables in the stress equilibrium model, giving a model in terms 
of strain variables, and then writing the strain variables using their definitions in terms 
of derivatives of the displacement function. 
 
Inverting the Hooke’s Law gives the stresses as functions of the strains, 
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Substituting these expressions into the stress equilibrium model, and taking derivatives, 
e.g., 𝜕(𝜕u/ 𝜕x)/𝜕x = 𝜕2u/𝜕x2, gives: 

 
 
 
 
 

8.C. Computing stress and strain 
Making the FDM substitutions and rearranging to solve for u and v gives the 
computational equations: 
 

 

 
 

 
This is a steady-
state model, that is, a set of simultaneous linear equations, and the solution is obtained 
using linear algebra, not calculus. Solutions can be calculated using the Jacobi method, 
described in Appendix I. 
 
Figure 16 shows two 2x2 stressed plates, both with fixed Dirichlet boundaries on the 
bottom, one with a downward 1N/m traction along the top, and the other with a 0.2N/m 
shear traction along the top, specified by Neumann boundary conditions. 
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Along the sides, there are no tractions. There is vertical strain; from Hooke’s law, the 
ratio of horizontal strain to vertical strain is given by Poisson’s ratio r. So εxx = r ⋅εyy, 
that is ∂u/∂x = r ⋅ ∂v/∂y creating a Neumann boundary condition for u; vertical 
displacement is copied from the adjacent node using a Neuman boundary condition 
∂v/∂x = 0. 

Figure 16. Plates showing effects of normal and shear stress 
 
9. FLUID DYNAMICS 

9.A The physics of fluid motion 
The laws of physics governing fluid motion are Newton’s 2nd law of motion and 
Newton’s law of viscosity. 
 
9.B. The differential equation model of 2-D fluid motion: the Navier-Stokes 
equations 
The state variables are u and v, the x and y velocities of the fluid, and p, the fluid 
pressure. � is fluid density and µ is viscosity. The Navier-Stokes equations for 
incompressible Newtonian fluids in 2-D are 

 
 
 

 
 

 
 

 
The first two equations are the momentum equations, and the third is the continuity 
equation. The equations are derived by analyzing fluid flowing through a fixed control 
volume (cv) as shown in Fig. 17. 
 

0

)()()(

)()()(

2

2

2

2

2

2

2

2

=
¶
¶

+
¶
¶

¶
¶

+
¶
¶

+
¶
¶

-=
¶
¶

+
¶
¶

+
¶
¶

¶
¶

+
¶
¶

+
¶
¶

-=
¶
¶

+
¶
¶

+
¶
¶

y
v

x
u

y
v

x
v

y
p

y
vv

x
vu

t
v

y
u

x
u

x
p

y
uv

x
uu

t
u

µrr

µrr



 

 

 

 

Figure 17. A fixed control volume in a 2-D moving fluid 

9.C. The continuity equation 

Fig. 18 shows the fluid flow rates in/out of the control volume. 

 
 

 

 

 

 

 

 

 

Figure 18. Fluid flow rates in/out of cv 
 
 
The net flow rate into the cv is 0 since the fluid is incompressible, so we have 

 
 

 

 

 

 
The continuity equation follows taking the limit as dx -> 0 and dy -> 0, giving 
 

 

 

9.D. The momentum equations 

Newton’s law of motion applies to a fixed mass, but the fluid in the control volume is 
constantly changing, so F=M∙A can’t be applied directly to determine the rate of change 
of momentum in the control volume. It can be applied to a system control volume that 
moves with the fluid using the Reynolds Transport Theorem. 
 
Reynolds Transport Theorem: the force applied to a fixed control volume equals the 
rate of change of momentum of the fluid in the control volume plus the rate of 
momentum flow out of the control volume.[8, 9] 
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Let cv be a fixed control volume, and scv be a system control volume consisting of a 
given set of molecules that is coincident with cv at time t, and that moves with the fluid. 
The solid line in Figure 19 represents the cv and the dashed line represents the scv, at 
times t and t+dt; the scv is coincident with the cv at time t. 
 
 
 
 
 
 
 

 
Figure 19 – Fixed and system control volumes at times t and t+∆t 

 
Region I is the area in the cv at time t + dt that is not in the scv, Region II is the area in 
the cv and the scv at time t + dt, and Region III is the area in the scv that is not in the cv 
at time t + dt. 
 
The momentum in the scv at t+˗dt equals the momentum in Region III plus the 
momentum in Region II. Thus, it equals the momentum in Region III plus the 
momentum in the cv minus the momentum in Region I. 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 
9.D.1. The stress tensor 
Figure 14 above shows stresses acting on a control volume in a stressed elastic object. 
The same stresses act on a fixed control volume in a moving fluid. Stress in a moving 
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fluid consists of stress caused by hydrostatic pressure p, and deviatoric stress caused by 
fluid motion and represented by the deviatoric stress tensor t. The total stress tensor s is 

 
 
 
 
 
Stokes assumptions: 

1. deviatoric stress is a linear function of strain rates 
2. deviatoric stress is 0 when the strain rates are 0 
3. the stress to strain rate relation is isotropic, that is, fluid properties are 

independent of direction 
 

9.D.2. The LHS of the momentum equations 
X-momentum flow in/out of the cv. is shown in Fig. 20 

 
 

 

 

 

 

 

Figure 20. x-momentum flow in/out of the control volume 

 
The net x-momentum flow out of the control volume, divided by volume is 

 
 

 

 

 

Taking the limit as dx -> 0 and dy -> 0 gives 
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9.D.3. The strain rate tensor 
Stress and strain are linearly related in elastic objects. In a moving fluid, the strain on 
the control volume is constantly changing; for fluids, stress is linearly related to strain 
rate. The strain tensor is given by: 
 
 
 
 
 
 
Figure 19 shows the deformation of the scv from time t to t + dt. 
 
 
 
 
 
 

 
 

Figure 21: Deformation of the scv due to fluid motion 
 
 
Normal strain at time t+dt in the x-direction is given by: 
 
exx = (B’x – A’x – dx) / dx = (x + dx +u(x+dx,y) ∙ dt – (x + u(x,y)∙dt) - dx) / dx 
 
= (u(x+dx,y)∙dt – u(x,y)∙dt)/dx = (u(x+dx,y) - u(x,y))/dx ∙ dt 
 
Taking the limit as dx -> 0, the normal strain rate exx/dt = ∂u/∂x. Similarly, eyy/dt = ∂v/∂y 
 
Shear strain at time t+dt is calculated using the small angle approximation for the sine 
function: 

qy ≈ sine(qy) ≈ (u(x,y + dy) – u(x,y)) ∙ dt / dy 

qx ≈ sine(qx) ≈ (v(x + dx, y)– u(x,y)) ∙ dt / dx 

qy + qx ≈ (u(x,y + dy) – u(x,y)) /dy ∙ dt + (v(x + dx, y)– u(x,y)) / dx ∙ dt 

Taking the limit as dx -> 0 and dy ->0, qy + qx ≈ (∂u(x,y) / ∂y + ∂v(x,y) / ∂x) ∙ dt 

and the shear strain rate is ∂u(x,y) / ∂y + ∂v(x,y) / ∂x 
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The strain rate tensor is symmetric and is given by: 

 

 
 
 
 
 

 
 
9.D.4. The Relationship Between Stress and Strain Rate 
For a Newtonian fluid the relationship between shear stress due to fluid motion and the 
shear strain rate is given by Newton’s Law of Viscosity, shown in Figure 23. 

 
shear stress = F/A =tyx 
shear strain = q 
tyx  = µ ∙ dq /dt, where µ = fluid viscosity 

 
 
 
The strain rate tensor is defined by spatial derivatives of the fluid velocity functions. 
Since the fluid is isotrophic the matrix relating the stress tensor to the strain rate tensor 
is independent of the coordinate axes, and Newton’s law of viscosity is sufficient to 
determine the entire matrix. 
 
The relationship between the stress tensor and the strain rate tensor is specified by a 
rank 4 isotropic tensor. From Appendix II and Newton’s law of viscosity, we have 
 

	Figure	23	Newton’s	Law	of	Viscosity	
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A geometric derivation of the stress-strain rate relationship from first principles is given 
in [10]. 
 

9.D.5. The RHS of the momentum equations 

The stresses acting on the control volume are 

 
Fig. 24 shows the x components of the forces on a control volume. 
 
 
 
 
 
 
 
 
 
 
 

Figure 24 – x-forces on control volume 
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Thus the sum of the x components of the forces acting on the control volume divided 
by volume is given by 
 

 
 

 
 

 
 

 
 
 

 
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Similarly, the RHS of the y-momentum equation is 
 

 
 
 
 
9.E. Computing 2-D fluid motion 
The FDM substitutions can be applied to the momentum equations to give computational 
equations for the u and v. However, two problems remain, there is no computational 
equation for p, and, the computational equations for u and v do not enforce the continuity 
equation. 
 
An ad hoc method that solves both these problems is to compute u and v at time tn, and 
then solve a Poisson equation for p at time tn that enforces the continuity equation at time 
tn+1.[11] 
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9.E.1. A Poisson Equation for p 
Start with the Euler estimates for ∂u/∂t and ∂v/∂t at time tn+1 
 

 
 

 
 
 

 
Differentiate the 1st equation w.r.t. x and the 2nd w.r.t. y and rearrange: 

 
 
 

 
 
 

 
Add the two equations 

 
 
 

 
Set the LHS of the equation to 0 to enforce the continuity equation at tn+1, giving 

 
 
 

Since r/dt is orders of magnitude greater than r the last term can be dropped, giving a 
Poisson equation for p 

 
 

 
 
9.E.2. Making the FDM substitutions into the computational equations and 
rearranging to solve for u and v yields: 
 

 

 
 
 
 
 
and a similar equation for v. 
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Making the FDM substitutions into the Poisson equation and rearranging to solve for 
the steady-state p(i,j) yields a set of simultaneous linear equations: 

 

Solutions can be calculated using the Jacobi method, see Appendix I. 
 
Figure 25 shows a small pipe opening into a larger pipe. The boundary conditions are 
shown, with the fluid flowing into the pipe from the left with velocity u = 3. 

Figure 25. Fluid flow over a backward step, with contour lines for pressure. Contours 
and ‘quivers’ are built-in MATLAB graphing features. 

10. Electrodynamics 

10.A. The physics of electromagnetic waves 

The physics of electromagnetic waves is given by Maxwell’s 3rd and 4th equations in 
integral form. Both follow from observations made of simple experiments. 
 
Using an experimental setup diagrammed in Fig. 26, Faraday observed that a changing 
current in the coil on the left produced a changing magnetic field in the core which 
extended through the coil on the right and produced a voltage in that coil. 
 
 
 
 
 
 

Fig. 26 – Faraday’s experiment 
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Faraday’s law of induction states that the induced voltage in a loop equals the rate of 
change of the magnetic flux through the loop. Expressed as a line integral Maxwell’s 
third equation in integral form is: 

 
Where E is the induced electric field in volts/meter and FB is the 

magnetic flux through the loop in Webers. 
 
Ampere observed that a current in a wire produces a magnetic field around the wire, 
with magnitude 
 
 
 
where B is the magnetic flux field strength in Webers×m-2, µ0 is the magnetic 
permeability of free space, and I is the current in the wire, see Fig. 27. 
 
 
 
 
 
 
 
 

Figure 27. The magnetic field generated by current in a wire 
 
B is constant on the path C consisting of the circle of radius R, so 

 
 
 

It is easy to show that the integral is path-independent. Maxwell added a term to account 
for the field generated by changing electric flux FE, created by a capacitor, for example, 
giving Maxwell’s fourth equation in integral form. 

 
 
 

10.B. The differential equation model for electromagnetic waves 
Maxwell’s 3rd and 4th equations in differential form are the model for electromagnetic 
radiation. 
 
To derive Faraday’s law in differential form consider an infinitesimal loop in the x,y 
plane, Fig. 28, along with an increasing magnetic field Bz(x,y,t) directed out of the 
page. Denote the induced electric field by E(x,y,t) = (Ex(x,y,t), Ey(x,y,t)). 
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Figure 28. An infinitesimal loop 

 
Fz approximately equals Bz∙h∙k in the loop, so, from Faraday’s Law in integral form: 

Divide both sides of the equation by h∙k, 
 
 
 
 

then with h -> 0 and k -> 0 we have: 
 

 
 

Similarly 
 
 
 
 
 

With an Ez field coming through the loop and out of the page, FE approximately equals 
e0∙Ez∙h∙k, and from Ampere's Circuital Law Circuital Law in integral form, with I = 0: 
Dividing by h∙k gives 

 
then with h -> 0 and k -> 0 we have 
 

 
 
 

Similarly, 
 
 
 
 
 

10.C. Computing 2-D EM waves 
We start with an E field that is in the z direction and varies with x and y, thus Ez(x,y) 
represents our E field, and Ex(x,y) = Ey(x,y) = 0. From the first set of equations, we have 
(with I = 0 and H=B/µ): 
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A perfect electric conductor has zero resistance and infinite conductivity. An electric field 
cannot exist in a perfect electric conductor. A perfect electric conductor on a boundary is 
modeled by a Dirichlet boundary Ez(t,x,y) = 0. The magnetic field is reflected and the 
corresponding boundary condition is ∂Hy(t,x,y) / ∂x = 0. 

Making the FDM substitutions yields the computational equations: 

Fig. 29 shows a 2-D wave before and after hitting a boundary with an opening. 

Fig. 29. EM wave, MATLAB draws the graphs from the E-field array 

10.D. The Yee algorithm 

The state-of-the-art computational method for electromagnetic waves is the Yee algorithm 
[12]. The Zee algorithm is a modified form of the FDM method. Fig. 30 shows the 1-D 
Yee (and FDM) algorithm dependencies for calculating Ez.[13] 
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The 2-D Yee algorithm is identical to the 2-D FDM, except that it only calculates Ezn(i,j) 
for n, i, and j all odd, Hxn(i,j) for n even, i odd and j even, Hy n(i,j) for n even, i even, and j 
odd, and is hence 2×2×2 = 8 times faster than the FDM while calculating fewer points with 
equal accuracy. 

 

11. Conclusions 
We covered an astounding amount of physics in this short paper. This was possible 
because: 

• The laws of physics expressed as differential equations are simple, intuitively 
clear, and concise. 

• The model derivations given for all but the stress and strain and fluid dynamics 
projects were just a few lines long. The fluid dynamics model derivation was 
longer and more complex, but required no difficult math or calculus beyond the 
basic definitions of differential and integral calculus, the product rule, the chain 
rule, and the Leibniz integral rule[14]. 

• Once the models were derived, the application of Euler’s method or the finite 
difference method for computing solutions was routine. 

 
Differential equations have extraordinary analytic and explanatory power, as we’ve seen 
in this short paper. But it takes computers and computational calculus to unlock this 
power. Introducing students early to modeling with differential equations, computational 
calculus, and computers, and focusing on the analysis of real physical systems that they 
make possible, will lead to the development of a new and radically different curriculum 
for classical physics and engineering education. 
 
 
 
 
 
 
 
 

Figure 30 – FDM/Yee algorithm dependencies	
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