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Automatic Ship Identi�cation Systems (AIS) play a key role in monitoring maritime tra�c, providing the

data necessary for analysis and decision-making. The integrity of this data is fundamental to the correctness

of inference and decision-making in the context of maritime safety, tra�c management and environmental

protection. This paper analyzes the impact of data integrity in large AIS datasets, on classi�cation accuracy.

It also presents error detection and correction methods and data veri�cation techniques that can improve the

reliability of AIS systems. The results show that improving the integrity of AIS data signi�cantly improves

the quality of inference, which has a direct impact on operational e�ciency and safety at sea.

1. Introduction

As part of data integrity testing, a very important issue is the detection of outlier data and anomalies. Among

the many methods for detecting outliers, it is worth mentioning Isolation Forest[1]  and its numerous

modi�cations[2][3]. In addition, it is worth mentioning other methods that allow for detecting outliers in

multimodal data sets[4]. An interesting approach is the detection of anomalies based on information

granules[5][6].

In coastal regions, the littoral AIS falls short of ensuring operational continuity and system availability,

leaving certain areas uncovered by the network. The authors in the paper[7] propose methods to monitor the

integrity of AIS dynamic data using process models like GPS, Dead Reckoning, and RADAR EKF-SLAM. The

reliability of AIS data was assessed using stochastic techniques grounded in Markov chains.

The paper[8]  presents algorithms to improve the quality and integrity of AIS data for ship trajectories. The

authors presented algorithms for error pre- processing, focusing on physical integrity, spatial logical

integrity, and time ac- curacy. To verify applicability, track comparison maps and tra�c density maps for

various ship types were generated using AIS data from the Chinese Zhoushan Islands.
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Iphar et al. in[9] developed methodologies to assess AIS message integrity and veracity, employing rule-based

methods and logic-based frameworks to detect anomalies and trigger situation-speci�c alerts.

A new method for identifying and repairing abnormal points in trajectories only based the AIS data of the ship

itself, which can e�ectively reduce the missed judgment of outliers is proposed in[10].

The paper[11]  proposes a framework to reconstruct accurate ship trajectories from noisy AIS data using data

quality control and prediction. The framework’s data quality control involved three steps: separating

trajectories, de-noising data, and normalizing it. Outliers in raw AIS data were removed using a moving

average model, then normalized.

The lack of data integrity leaves AIS messages open to unauthorized alterations as shown in[12]. Interestingly,

the concept of non-repudiation for AIS messages has only recently garnered attention, despite its crucial role

in probing maritime incidents and breaches of maritime regulations.

The authors in[13]  pointed that straightforward nature of the AIS protocol has enabled its use in numerous

applications today. However, AIS still lacks the ability to verify message integrity and authentication. For

navigators, it is crucial to cross-check AIS information with radar and visual observations. A signi�cant safety

concern in navigation is AtoN spoo�ng, particularly with V-AtoNs.

Since AIS was introduced to maritime transportation, its potential practical uses have been increasingly

acknowledged in academic circles as stated in[14]. Initially, this recognition focused on AIS data mining and its

applications for navigation safety. As data quality and accessibility improved, research expanded beyond

navigation safety to explore broader and more advanced uses of AIS data.

Previous studies on ship tra�c using AIS data have demonstrated that analyzing historical data can yield

valuable insights into ship behavior. Additionally, the probabilistic characterization of ship trajectories along

speci�c routes facilitates real-time anomaly detection, which is crucial for developing alerts to aid in tra�c

supervision and control. Quality of AIS data in such cases is crucial as pointed in[15].

Identifying unusual vessel behavior, basing on the AIS data, to advance autonomous vessel technology for

sustainable marine transportation was presented in[16]. Authors in[17] stated that detecting anomalies, such as

unexpected sailing behavior, in vessel trajectories is critically important. Methods for identifying these

anomalies range from developing normality models to pinpointing speci�c incidents, like AIS switch-o�s or

collision avoidance maneuvers.

In the article[18]  authors introduce a rule-based method for assessing data integrity. The rules are derived

from system technical speci�cations and expert knowledge, and are formalized using a logic-based

framework, which triggers situation-speci�c alerts. Detecting abnormal data in AIS systems and databases
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aims to enhance marine tra�c surveillance, safeguard human life at sea, and mitigate hazardous behaviors

a�ecting ports, o�shore structures, and the environment.

The study of Wang et al. in[19]  introduces a vision-inspired framework to classify AIS data quality issues,

addressing the limitations of traditional statisti- cal methods in optimizing maritime operations. Accurate

data quality diagnosis is essential for trustworthy AI-driven decision-making.

The paper[20]  presents the results of a spatial analysis of a large volume of AIS data aimed at detecting

prede�ned maritime anomalies. These anomalies are categorized into tra�c analysis, static anomalies, and

loitering detection. The analysis utilized advanced algorithms and technology capable of e�ciently processing

big data.

E�ciently managing AIS data is crucial for improving maritime safety and navigation, but it is challenged by

the system’s large volume and error-prone datasets. Authors in paper[21]  introduces the Automatic

Identi�cation System Database (AISdb), a new tool developed to tackle the di�culties in processing and

analyzing AIS data.

This article[22] examines the landscape of global navigation satellite system (GNSS) spoo�ng. While it is well

known that automated identi�cation system (AIS) spoo�ng can be used in electronic warfare to hide military

activities in sensitive sea areas, recent events indicate a growing interest in spoo�ng AIS signals for

commercial purposes. The shipping industry is currently facing an unprecedented wave of deceptive practices

by tanker operators attempting to evade sanctions. These false ship positions highlight the urgent need for

e�ective tools and strategies to ensure the reliability and robustness of AIS.

In the works[23] and[24] authors pointed that quality of large AIS datasets is very important for proper analysis.

AIS data is crucial for enhancing the safety, e�ciency, environmental performance, and operations of the

global shipping in- dustry. This investigation examines four key aspects of data quality: accuracy,

completeness, consistency, and timeliness. The �ndings reveal that the quality of marine AIS data is

in�uenced by AIS technology, communication protocols, environmental conditions, and human factors.

These studies collectively aim to enhance maritime domain awareness, im- prove data quality, and mitigate

risks associated with AIS data integrity issues. AIS data can lack integrity due to errors or intentional

falsi�cation, requiring a methodology to assess its veracity. In this study we proposed analysis of AIS data

quality based on the database which was purchased on a commercial basis from the S&P Global data provider,

within the IHS Markit. The database consists of more than 225 indicators describing a ship, where data is (or,

at should be at least) sourced from the vessels registration authority. Chapter 2 consists the analysis of the

data integrity for the purpose of inference accuracy. The article is �nalized with conclusions.

qeios.com doi.org/10.32388/8PUBHN 3

https://www.qeios.com/
https://doi.org/10.32388/8PUBHN


2. Data analysis for integrity

The analysis of AIS data integrity was limited to one type of vessel, namely tankers. This type of vessel is

characterized by relatively high variability and, unlike passenger ships, is not limited to �xed routes.

Additionally, these vessels maintain relatively stable speeds. The recorded speed was analyzed in detail, as this

variable most clearly demonstrates the presence of both outliers and more complex anomalies. A summary of

all records pertaining to tankers by year is presented �rst (compare �gure 1).

Figure 1. Number of records in the database describing ship tra�c

In the last analyzed year, there is a signi�cant drop in data. This is due to the fact that only half-year data for

2022 was analyzed. Analyzing the data presented in Figure 1, it can be observed that the number of events

increased until the outbreak of the pandemic. After a brief decline, a clear rebound was noted.

It is worth comparing the number of records with the number for which movement was recorded. Figure 2

presents the number of di�erent tankers in individual years. Comparing the number of observations with the

number of ships, a signi�cant correlation can be seen. This might suggest that a similar number of

observations is recorded for each ship. However, this is not the case, as evidenced by Figure 3.
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Figure 2. Number of tankers sailing in the Baltic Sea by year

Figure 3. Summary of the number of records for each ship

For a large number of tankers, only single observations are recorded, which may be due to the fact that the

boundary between the Baltic Sea and the North Sea is arbitrary, and some tankers only brie�y touch the Baltic.

Moving on to more detailed analyses, it is worth comparing the recorded movement status for tankers in

individual years. Such a comparison is presented in Table 1.

qeios.com doi.org/10.32388/8PUBHN 5

https://www.qeios.com/
https://doi.org/10.32388/8PUBHN


Status\Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Aground 233 591 71 226 38 372 290 166 158 78 553

Anchored 342448 372491 369178 346248 424284 385736 434652 476774 528991 474696 256514

Constrained by

draught
31051 29496 26767 27487 30252 27613 26564 26756 22553 22663 16847

Engaged in

�shing
55 224 9 72 14 171 707 18 16 56 39

Moored 556459 539556 547706 572592 607352 663804 724851 769887 755480 783201 394528

N/A 65281 76899 75193 118676 160342 182812 193448 211266 210582 198546 87523

Not under

command
12183 16766 11473 3769 2813 3247 3509 2548 1395 4202 2264

Restriced

manoeuverability
3565 1624 1130 1691 7144 3865 1857 1705 1225 1077 2268

Under way

sailing
17651 6083 16055 27351 24234 33646 18764 19240 11896 11841 7355

Under way using

engine
1157339 1178957 1163376 1218038 1221510 1233459 1271917 1311935 1225913 1261408 668563

Table 1. Summary of “tra�c statuses” by year

Analyzing the data presented in Table 1, it is easy to notice certain anomalies and numerous “N/A” data gaps.

Anomalies can certainly include “Not under command” or “Under way sailing,” which seem logically

unjusti�ed for tankers. By limiting ourselves to two selected statuses, namely “Moored” and “Under way

using engine,” we can identify further anomalies and evident outliers.
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Figure 4. Mean and median speeds for all available data

Such evident data integrity issues clearly con�rm that proper preprocessing is essential before starting

analyses. Otherwise, one might obtain models that could lead to erroneous conclusions.
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Year\Statistics Moored Average Moored Median Engine Average Engine Median

2012 0,1748 0,0000 8,2631 10,7000

2013 0,1643 0,0000 8,1699 10,6000

2014 0,1714 0,0000 8,1116 10,5000

2015 0,1459 0,0000 7,9135 10,2000

2016 0,1280 0,0000 7,8792 10,1000

2017 0,1118 0,0000 8,0629 10,3000

2018 0,0970 0,0000 8,0141 10,3000

2019 0,0922 0,0000 8,1805 10,4000

2020 0,0885 0,0000 8,3534 10,5000

2021 0,0736 0,0000 8,4195 10,6000

2022 0,0680 0,0000 8,3429 10,5000

Table 2. Summary of average and median speeds by year for two selected tra�c statuses

Analyzing the mean and median speeds (see Figure 4), it is easy to observe that the means are signi�cantly

higher than the medians. This is closely related to the fact that the mean is very sensitive to outliers.

Therefore, in the case of average speed, one should expect many values signi�cantly higher than the others,

which may suggest that these are outliers. Indeed, in the case of tanker speeds, the maximum value is as high

as 102 knots.

An interesting point in Table 2 is the average speed values in the ‘Moored’ status. Positive values suggest that a

signi�cant portion of observations have a speed value greater than zero, which is completely physically

unjusti�ed for the ‘Moored’ status. Therefore, we are dealing with evident anomalies. In the case of the second

status, the median value exceeds the average value each year, suggesting that there are numerous observations

with values close to zero.

The analysis of the data presented in Figure 5 allows for the observation of several signi�cant anomalies.

Firstly, many ships switch to the ‘Moored’ status in open sea, which is physically impossible. Additionally,

moored ships cannot move at a speed of 102 knots towards the shore. Besides anomalies and outliers in the AIS
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data, data gaps can also be encountered. The scale of this problem is illustrated by the example ship route

shown in Figure 6.

Figure 5. Positions of ships of “Moored” status in 2017 with marked speeds.

Maximum values (102 knots) are marked in red.
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Figure 6. Positions of the ship named GOGLAND in the years 2012 -2022

3. Conclusions

The study showed that AIS data integrity is crucial for accurate inferences and safe management of maritime

tra�c. Problems related to incompleteness and anomalies in AIS data can lead to incorrect operational

decisions, which threat- ens safety at sea. The analysis showed that error detection and correction tech-

niques and data veri�cation methods can signi�cantly improve the quality of AIS data, thus reducing the risk

associated with their incorrect interpretation. The results con�rm that proper data processing before analysis

is essential to avoid false conclusions, especially in the context of the development of autonomous maritime

technologies and advanced maritime tra�c monitoring systems.
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