
10 April 2025, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

Quantum Meets SAR: A Novel Range-

Doppler Algorithm for Next-Gen Earth

Observation

Ali Ghandour1

1. CNRS-L, National Center for Remote Sensing, Lebanon

Synthetic aperture radar (SAR) data processing is crucial for high-resolution Earth observation and

remote sensing applications, one of the most commonly used algorithms for this task is the Range

Doppler Algorithm (RDA). Using the Fast Fourier Transform (FFT), the collected signal is transformed

to the frequency domain and then goes through the processing steps of this algorithm. However, when

it comes to large datasets, this process can be computationally expensive. This paper explores the

implementation of a Quantum Range Doppler Algorithm (QRDA), relying on the Quantum Fourier

Transform (QFT) as a speedup tool over the classical FFT. Additionally, it proposes a quantum version

of the Range Cell Migration Correction (RCMC) in the Fourier domain, one of the key correctional steps

of the RDA algorithm, and compares it with its classical counterpart.
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I. Introduction

Synthetic Aperture Radar (SAR) is a powerful active imaging modality widely used in remote sensing

due to its ability to operate independently of weather conditions and ambient lighting. In a typical SAR

system, an airborne or spaceborne platform emits microwave pulses toward a target area and records the

backscattered echoes. The raw data collected in this way encodes information about the scene’s

re�ectivity properties, and transforming it into a usable image requires sophisticated processing to

account for the radar’s motion and the geometry of wave propagation. The Range Doppler Algorithm

(RDA) is one of the most widely employed methods for SAR image formation. Its computational core
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relies on the Fast Fourier Transform (FFT) to convert the data into the frequency domain, where key

operations such as range compression, Range Cell Migration Correction (RCMC), and azimuth

compression are performed. However, the FFT’s    complexity—while ef�cient for moderate

datasets—becomes a bottleneck for large-scale or high-resolution SAR applications, where real-time

processing is often desirable. In this work, we explore a quantum computing approach to accelerate the

RDA by replacing classical FFT-based steps with their quantum counterparts. The Quantum Fourier

Transform (QFT) offers a theoretical exponential speedup over the FFT, but this advantage is contingent

on maintaining quantum coherence throughout the entire processing pipeline. Measuring intermediate

results (e.g., after QFT but before RCMC) collapses the quantum state, negating the speedup. Thus, a

practical quantum RDA must integrate all critical steps—including RCMC—within the quantum domain

to avoid decoherence and maximize computational gains.[1]  To address this challenge, we propose two

key innovations (Fig. 1):

�. Ef�cient quantum encoding

�. A quantum-domain RCMC implementation

Figure 1. Quantum circuit approach for the Data Encoding and the RCMC gate implementation.

II. Fundamentals of Quantum Computing

A. Classical vs. Quantum Information

Classical computation relies on bits as its fundamental unit of information, where each bit represents a

binary state (0 or 1). For a system with    distinct states, the minimum number of bits required is 

O(n log n)

m
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. In contrast, quantum computation takes advantage of the qubit (quantum bit), which

generalizes the classical bit by leveraging superposition and entanglement.[2]

B. The Qubit and Superposition

A qubit’s state   is represented as a linear combination of basis states   and  :

where    and    tell us the probability of �nding    in the states    and  . When a qubit is

measured, it will only be found to be in the state   or the state  . This quality of superposition is at the

core of quantum computing, allowing us to tap into more possibilities with a single qubit, along with

giving us exponential scaling, since    qubits can represent    states simultaneously, compared to

classical bits, which can only store one state at a time.[2]

C. Quantum States and Basis Representations

A quantum state   can be written as a linear combination of a basis set   with complex coef�cients of

expansion   as:

with  . The modulus squared of a given coef�cient   gives the probability that measurement

�nds the system in the state  .[2]

D. Quantum Operators and Unitarity

Quantum operators are linear transformations that act on states. An operator    maps    to another

state  . For quantum computation, operators must be unitary, satisfying    ensuring

reversibility and probability conservation.[2]

E. Key Quantum Gates

Quantum gates manipulate qubit states analogously to classical logic gates but with additional

capabilities (e.g., phase shifts, superposition).[2] Two critical single-qubit gates are:

Hadamard gate (H): Creates superposition from computational basis states:

n = ⌈ m⌉log2

|ψ⟩ |0⟩ |1⟩

|ψ⟩ = α|0⟩ + β|1⟩,  where |α + |β = 1|2 |2

|α|2 |β|2 |ψ⟩ |0⟩ |1⟩

|0⟩ |1⟩

n 2n

|ψ⟩ | ⟩vi

ci

|ψ⟩ = | ⟩ = | ⟩ + | ⟩ + … + | ⟩∑
i=1

n

ci vi c1 v1 c2 v2 cn vn

| = 1∑i ci|
2

ci

| ⟩vi

Â |ψ⟩

|ψ⟩ = |ϕ⟩Â U = IU †

H = ( ) ,  where H|0⟩ = |+⟩, H|1⟩ = |−⟩1

2√

1

1

1

−1
(1)
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with 

Phase gate (P): Introduces a relative phase   to  :

III. Range Doppler Algorithm

In SAR imaging systems, microwave pulses are transmitted from an airborne or spaceborne platform

towards the target area. The backscattered echoes are collected and sampled, producing a two-

dimensional raw signal    where    represents the range (fast-time) dimension and    denotes the

azimuth (slow-time) dimension. The Range Doppler Algorithm (RDA) processes these data into a

focused image through sequential range and azimuth compression, leveraging Fourier-domain

transformations.The algorithm achieves this through ef�cient utilization of Fast Fourier Transforms

(FFTs).

A. Classical RDA

The classical RDA consists of four stages[3][4] (Fig. 2)

�. Range Compression: The raw signal undergoes range compression through frequency-domain

matched �ltering:

where   is the range reference function. This operation collapses all targets with identical slant

ranges into single trajectories while preserving phase information.

�. Azimuth FFT: The range-compressed signal is transformed to the azimuth frequency domain:

�. Range Cell Migration Correction (RCMC): A phase correction compensates for slant-range

variations caused by platform motion:

where    is the Doppler compression factor,    is the platform velocity,

and   is the reference range. This step aligns target responses from curved trajectories to straight

lines.

�. Azimuth Compression: Final focusing is achieved through azimuth matched �ltering and

transformation back to the time domain:

|±⟩ =
|0⟩±|1⟩

2√

θ |1⟩

P = ( ) ,  with P |0⟩ = |0⟩, P |1⟩ = |1⟩
1

0

0

eiθ
eiθ (2)

s(τ, η) τ η

(τ, η) = [ [s(τ, η)] ⋅ G( )]src IFFTτ FFTτ fτ

G( )fτ

(τ, ) = [ (τ, η)]s1 fη FFTη src

( ) = exp[4iπ ( ( − 1))]GRCMC fr
fr

c
R0

1

D( ,V )fη

(3)
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The matched �lter is given by:  . where    is the phase history of the target in

the azimuth frequency domain.

Figure 2. Range Doppler Algorithm: block diagram.

B. Quantum RDA

Building upon the classical RDA framework, the proposed quantum implementation replaces FFT

operations with the Quantum Fourier Transform (QFT), offering an exponential speedup in theory. This

also means that the whole algorithm from the encoding to the measurement must be done in the

quantum domain to actually achieve this speedup[1]. (Fig. 3)

Figure 3. Quantum Range Doppler Algorithm: proposed quantum circuit approach.

IV. Amplitude Encoding

The �rst step in our algorithm is the encoding step, for this we have employed a method known as

amplitude encoding. This technique embeds the information into the probability amplitudes of quantum

states, this is done by �rst normalizing our dataset then initializing these values into our amplitudes. In

our case, the encoded information consists of the radar data   samples, complex numbers which

(τ, η) = [ (τ, ) ⋅ H( )]sac IFFTη s2 fη fη

H( ) =fa e−jϕ( )fa ϕ( )fa

s(τ, )fη
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contain both norm and phase data for each range and azimuth sample. Amplitude encoding is especially

powerful because it allows us to encode N features with only   qubits, for example, a 16x16 image

requires only 16 qubits, and so on. Given a classical vector   representing our data,

we encode it into a normalized quantum state:

where:   are computational basis states of an n-qubit system (for  ). The coef�cients   are the

amplitudes that encode the classical data. The vector must be normalized, meaning  .[5][6]

V. Quantum Fourier Transform

The Quantum Fourier Transform (QFT) is the quantum counterpart of the classical Discrete Fourier

Transform (DFT). For   samples, the QFT achieves an exponential speedup over the Fast Fourier

Transform (FFT) —reducing complexity from    to    by exploiting quantum

superposition and entanglement. The QFT transforms a computational basis state    (where 

) into a superposition of Fourier basis states

where   represents frequency components for an  -qubit system.[7]

A. Circuit Implementation

The QFT circuit is constructed recursively using:

�. Hadamard gates ( ) (eq. 1)

�. Controlled phase rotations to encode frequency-dependent phases: 

The structure of the circuit re�ects a recursive decomposition of the Fourier transform, with each qubit

undergoing a Hadamard gate followed by progressively �ner phase rotations conditioned on higher-

order qubits (Fig. 4)

(N)log2

x = ( , , … , )x0 x1 xN−1

|ψ⟩ = |i⟩∑
i=0

N−1

xi

|i⟩ N = 2n xi

| = 1∑i xi|
2

N = 2n

O(n log n) O( n)log2

|x⟩
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QFT|x⟩ = |k⟩
1

N
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√
∑
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1
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Figure 4. Quantum Fourier Transform Gate.[8]

VI. Quantum RCMC

A. Theoretical Foundation

Seeing that the RCMC �lter is a correctional phase shift that realigns received signals—shifted due to a

moving target or radar—our aim will be to create a quantum gate which implements the phase shift

coef�cients that we have calculated classically. The RCMC �lter formula is (eq. 3) meaning it is an array of

phase elements which will �lter the main radar data once multiplied (each RCMC element needs to be

multiplied by every range line in our data)

B. Quantum Gate Implementation

To implement this in our quantum circuit we will have to create a gate that applies the corresponding

phase shift to each of our amplitude encoded data respectively. Being a phase-only array, implementing

the �lter into a gate that acts on the quantum states will not alter any of the probability amplitudes, in

fact, making a diagonal matrix out of the RCMC elements (duplicated because each element corresponds

to a range line and not a single sample) will give us a reversible unitary gate, which is exactly what we

need, each element on the diagonal will be multiplied by the phase of the corresponding state, So we

implemented the RCMC as a diagonal unitary operation:

where    contains the phase corrections for the    -th range bin, and    is the identity on azimuth

qubits.

= ⊗URCMC ⨁
k=1

Nr

eiΘk INa (5)

Θk k INa
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C. Circuit Realization

For a minimal 2x2 example (2 range bins x 2 azimuth samples), (Fig. 1) the RCMC operator takes the

form:

When applied to a state   it yields:

Where    is the probability amplitude of each state  , containing the radar phase data, and    is the

RCMC �lter element acting on each range line k (containing 2 samples in this case)

D. Results

We veri�ed our quantum RCMC implementation using Qiskit’s statevector simulator (AerSimulator),

which emulates an ideal, noise-free quantum computer. We compared the results with classical

processing[9] on Sentinel-1 SAR data (64x64 subset) (Fig. 5). The phase differences between classical and

quantum RCMC processing are on the order of    consistent with 64-bit �oating-point precision

limits. This test con�rms the correctness of the quantum approach.

Figure 5. The Phase Value Difference of the RDA Classical and Quantum approaches.
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VII. Conclusion

This work demonstrates the feasibility of quantum acceleration for Earth observation applications. Our

implementation maintains mathematical equivalence to classical RDA while being fully executable on

quantum hardware, as demonstrated through simulations of a 64x64 Sentinel-1 SAR subset.

Future work will focus on developing a complete, practical quantum RDA that integrates all processing

steps within the quantum domain, as achieving a true speedup requires the successful implementation of

the entire pipeline. Additionally, future advancements in quantum sensors for satellites could eliminate

the need for data encoding, further enhancing speed and ef�ciency.

At the current stage of Noisy Intermediate-Scale Quantum (NISQ) devices, the process remains

constrained by hardware limitations. Moreover, we have not yet accounted for errors and noise inherent

in real quantum computers, which will be a critical consideration as the �eld progresses.
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