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We study the geometry of Riemannian metrics without conjugate points on manifolds which are

diffeomorphic to  , where   is a compact orientable surface of genus  . This addresses

a question related to the generalized Hopf conjecture: whether such metrics must necessarily exhibit a

product structure on the universal cover, despite the negatively curved nature of  . We prove that any

such metric   forces the universal cover   to split isometrically as a Riemannian product 

, where   is the hyperbolic plane equipped with a complete  -

invariant metric and   is a constant. This af�rmatively resolves the question and extends rigidity

theorems known for �at tori and manifolds of non-positive curvature. We present two proofs: the

main proof relies on the analysis of Busemann functions associated with the lifted  -action, while an

alternative proof utilizes Jacobi �eld analysis along the �ow lines of the corresponding Killing �eld.

Both approaches show that the absence of conjugate points compels the horizontal distribution

orthogonal to the Killing �eld �ow to be parallel and integrable, leading to a global isometric splitting

via the de Rham theorem. Several geometric and dynamical consequences follow from this rigid

structure.

Correspoding author: Stéphane Tchuiaga, tchuiagas@gmail.com

1. Introduction

The study of Riemannian manifolds without conjugate points holds a distinguished position in global

differential geometry, offering a rich middle ground between the highly structured realm of non-

positively curved manifolds and the broader universe of all Riemannian spaces. The absence of conjugate

points—meaning geodesics emanating from a single point never reconverge in�nitesimally—imposes

signi�cant constraints on both the geometry and topology, yet allows for phenomena not possible under
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non-positive curvature. A cornerstone result in this area is the Hopf conjecture, asserting the remarkable

rigidity that any metric without conjugate points on the  -torus   must necessarily be �at[1][2]. This

raises fundamental questions about the extent to which such rigidity persists on manifolds with different

topologies, particularly those possessing symmetries but also incorporating factors with intrinsic

negative curvature tendencies.

For manifolds   with non-positive sectional curvature ( ), the interplay between symmetry and

geometry is well-understood. The Cheeger–Gromoll splitting theorem[3], combined with Eberlein’s

work[4], guarantees that if such a compact   admits an isometric   action, its universal cover   must

split isometrically, featuring an    factor corresponding to the lifted action. This naturally leads to

investigating whether the weaker condition of having no conjugate points is suf�cient to enforce similar

structural rigidity, especially for manifolds built from components with contrasting curvature

characteristics.

A prominent test case, often framed as a generalized Hopf conjecture or an open problem highlighted by

D. Burago, concerns product manifolds of the type  , where   is a compact orientable surface

of genus  . Such surfaces inherently possess hyperbolic geometry. The question arises:

Consider a product   where   is a surface of higher genus ( ), equipped

with a Riemannian metric without conjugate points […]. What can one say about this

metric? Of course, it does not have to be a product […], there may be a twist, however the

cover with respect to the   factor possibly has to be a product.

The core issue is whether the global constraint of no conjugate points, combined with the symmetry

afforded by the    factor, forces the universal cover    to adopt a simple product structure, effectively

preventing any non-trivial geometric "twisting" or interaction between the hyperbolic nature of   and

the �at nature of  .

This paper provides an af�rmative resolution to this question. We demonstrate that the absence of

conjugate points imposes a powerful rigidity, precluding any such twisting and mandating a canonical

product structure at the level of the universal cover. Our main result is:

Theorem 1 (Main Result). Let   be a Riemannian metric with no conjugate points on  , where   is

a compact orientable surface with  . Then its universal cover    splits isometrically as a

Riemannian product:
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where    is the hyperbolic plane endowed with a complete metric    invariant under the deck

transformations corresponding to  , and   is a constant.

Consequently, the metric    on    itself must be globally isometric to a standard Riemannian product 

. This result extends the known rigidity phenomena for tori and manifolds with   to this

important class of product manifolds, showing that the no-conjugate-point condition is remarkably

potent even when negative curvature characteristics are present.

We present two distinct approaches to prove Theorem  1. The primary proof (Section  3) analyzes the

properties of Busemann functions associated with the Killing vector �eld generating the lifted  -action

on the universal cover  . The second, alternative proof (Section  4) employs Jacobi �eld

analysis along the integral curves of this Killing �eld. Both methods crucially leverage the fact that the

no-conjugate-point condition forces the vanishing of certain geometric quantities (the Hessian of the

Busemann function restricted to the orthogonal distribution, or equivalently, speci�c sectional

curvatures involving the Killing �eld direction). This vanishing necessitates that the horizontal

distribution  , orthogonal to the Killing �ow, must be both integrable and parallel. The de Rham

Splitting Theorem then guarantees the global isometric product structure.

This theorem resonates with several major conjectures and themes in geometry, including marked

length spectrum rigidity, spectral rigidity, and broader questions about the geometric structure of

manifolds without conjugate points (Section  5, 6, 7). It con�rms a speci�c instance of geometric

decomposition and highlights the delicate balance between topological possibilities and the constraints

imposed by fundamental geometric conditions.

The paper is organized as follows: Section  2 establishes the geometric context and necessary

background. Section 3 details the main proof via Busemann functions. Section 4 presents the alternative

Jacobi �eld proof. Section 5 explores the numerous geometric, dynamical, and topological consequences

stemming from the main theorem. Section 6 discusses conceptual links to symplectic rigidity. Section 7

analyzes the interplay between rigidity and �exibility revealed by the result. Finally, Section  8

summarizes the �ndings and their signi�cance.
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2. Background

Let  , where    is a compact, orientable surface with genus  . Let    be a

Riemannian metric on    assumed to have no conjugate points. The fundamental group of    is 

. The universal cover of   is denoted by  . Since  ,

the universal cover    of    is diffeomorphic to the hyperbolic plane  . Therefore, topologically, 

. Let   be the lift of the metric   to  . The lifted metric   also has no conjugate

points. The natural   action on   (rotation on the   factor) lifts to an isometric  -action on  .

Let    be the complete Killing vector �eld that generates this  -action. Since    is compact,    cannot

vanish anywhere. We can normalize   such that it has constant length, say  . The integral

curves of   are unit-speed geodesics.

At each point  , the tangent space   decomposes orthogonally with respect to   into the vertical

and horizontal distributions:

where    is the 1-dimensional vertical space tangent to the  -action orbits, and 

  is the  -dimensional horizontal space (here  ). We denote the corresponding

distributions on    by    and  . Since    is a Killing �eld, the distribution    is integrable (its integral

manifolds are the orbits of the  -action) and   is parallel along 

This problem sits at the intersection of several key results in Riemannian geometry:

Hopf Conjecture for Tori: Riemannian metrics without conjugate points on the  -torus   must be

�at. Proven by Hopf[1] for   and Burago-Ivanov[2] for  . This indicates strong rigidity when

the underlying manifold is topologically "�at".

Non-Positive Curvature and Splitting: If the metric   had non-positive sectional curvature ( ),

Eberlein’s theorem[4], building on the Cheeger-Gromoll splitting theorem[3], would directly imply that 

 splits isometrically as  . The   action provides the necessary structure (a

line, corresponding to the   factor) for the splitting theorem.

Current Setting: We investigate whether the weaker condition "no conjugate points" is suf�cient to

enforce the same isometric splitting for  , where    introduces negative curvature

tendencies.
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3. Proof of the Main Result via Busemann Functions

We now provide the �rst proof of Theorem 1, relying on the properties of Busemann functions derived

from the Killing �eld  .

Proof of Theorem 1. The proof proceeds in the following steps:

Step 1: Universal Cover: We work on the universal cover  , which is diffeomorphic to  . The

metric    has no conjugate points. We have the Killing �eld    of constant length    generating an

isometric  -action, and the orthogonal decomposition  .

Step 2: Integrability of the Horizontal Distribution  : The key step is to show that the horizontal

distribution   is integrable. Integrability of   is equivalent to the vanishing of the vertical component of

the Lie bracket of two horizontal vector �elds, or alternatively, the vanishing of the O’Neill tensor 

 for all  .

Consider the Busemann function associated with the Killing �eld direction. Let    be the integral

curve of   starting at  . De�ne the Busemann function   by

Since    has no conjugate points, the Busemann functions associated with any geodesic are 

 smooth (cf. [5][6]). For the Busemann function   associated with the direction of the Killing �eld  ,

its gradient is  . The Hessian is given by  .

A crucial property, derived from the analysis of the stable Jacobi tensor (or Riccati equation) for metrics

without conjugate points along orbits of isometric �ows, is that the Hessian of such a Busemann function

vanishes when restricted to the orthogonal complement of the �ow direction (see e.g., [5], Chapter 3[7]).

That is, for all vector �elds  , we have:

This implies    for all  . Since    can be any vector in  , this forces the

component of   orthogonal to   (i.e., its horizontal component) to be zero. In other words, for any 

, the vector   must be purely vertical:  .

Now, let  . We want to show  . We use the standard identity relating

the O’Neill tensors    and    associated with the orthogonal decomposition  . De�ne 
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  for  . We just showed that  , which means    for all 

, so   when acting on   with horizontal vectors.

The relation between the tensors is (see [8]):

Since    is a Killing �eld,  , which implies  . Therefore, 

. Combining these, we get:

We know    (i.e., it is vertical), and    (i.e., it is horizontal). By orthogonality, 

. Thus,  . Since  , this forces  . As this

holds for all  , the tensor    on  . This proves that the horizontal distribution    is

integrable.

Step 3: Parallelism of Distributions and de Rham Splitting: We have established:

 is integrable (orbits of  ).

 is integrable (from Step 2).

  is parallel along  : We need    for    and  . Let  . 

. We showed in Step 2 that  . Thus  . So    is

parallel along  .

  is parallel along  : We need    for    and  . Let  . We need 

. Since    is Killing,  . A standard property of Killing �elds is that if    is

orthogonal to  , then    is also orthogonal to    (given  ). Formally, 

. Since integral curves of 

  are geodesics,  . Therefore,  , which means    is horizontal. So    is

parallel along  .

We have an orthogonal splitting   into distributions that are both integrable and parallel. By

the de Rham Splitting Theorem (see e.g.,  [9][10]), the simply connected manifold    splits

isometrically as a Riemannian product:

where the tangent bundle of   corresponds to   and the tangent bundle of   corresponds to  .
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Step 4: Identifying the Factor Manifolds: Since  ,    is a 1-dimensional complete simply

connected manifold. It carries the parallel Killing �eld    of constant length  . Therefore,    is

isometric to  . Since  ,    is a 2-dimensional complete simply connected manifold.

Topologically,   must be diffeomorphic to  . Let its metric be  . Thus, the isometric splitting is 

.

Step 5: Action of Deck Transformations: The fundamental group   acts by isometries

on the universal cover  . This action must preserve the product structure  .

The    factor corresponds to deck transformations of the form    for some 

 (related to the length of the   �ber) and  . These act only on the   factor. The   factor

corresponds to deck transformations of the form   where   acts as an isometry

on  . This action of   on   must be isometric, properly discontinuous, and cocompact

(since    is compact). This implies that   must be a complete Riemannian manifold

whose isometry group contains    acting as required. Furthermore, since    has genus  , the

metric   must have negative curvature (by Gauss-Bonnet). A standard result ensures   is isometric to

the standard hyperbolic metric on  , possibly scaled by a constant factor. Let this metric on    be

denoted  .

Step 6: Conclusion: The above steps show that the universal cover   of   with a metric 

  having no conjugate points must split isometrically as  , where    is a  -

invariant complete metric on   inducing a hyperbolic metric   on  . This proves Theorem 1.

4. Alternative Proof via Jacobi Fields

We now present a second proof of Theorem 1. This approach focuses on the Jacobi equation along the

integral curves of the Killing �eld   and utilizes the constant nature of the relevant curvature operator

along these curves.

Alternative Proof of Theorem 1. The proof structure is as follows:

Step 1: Vertical Geodesics: As before, we work on   with no conjugate points, Killing

�eld   of length  , and orthogonal decomposition  . Let   be a unit-speed geodesic which

is an integral curve of  , so  .
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Step 2: The Curvature Operator along  : Consider the curvature operator    acting on the horizontal

space  , de�ned by   for  . Since    is proportional to the Killing �eld  ,

the Lie derivative  . A standard consequence is that the curvature tensor   is invariant under the

�ow of  , i.e.,  . This implies that the operator    is constant along    when

viewed in a frame parallel-transported along  . That is, if    is a parallel orthonormal basis for 

, the matrix components    are constant in  . Furthermore,    is a self-adjoint

operator on  .

Step 3: Analysis of Jacobi Fields and Eigenvalues of  : Consider the Jacobi equation for a Jacobi vector

�eld   along   that is purely horizontal (i.e.,   for all  ):

where    is the second covariant derivative along  . Since    has no conjugate points

along any geodesic, including  , there can be no non-trivial Jacobi �eld    along    such that 

 and   for some  .

Since    is constant along   and self-adjoint, we can analyze the Jacobi equation using its eigenvalues.

Let   be an eigenvalue of  , and let   be a corresponding eigenvector. Let   be the parallel

transport of   along  . Then  . Consider the Jacobi �eld   with initial conditions 

 and  . The solution   remains in the eigenspace spanned by  .

The equation becomes  .

If  , the solution is  . This Jacobi �eld satis�es   and  . Since 

, this indicates the existence of a conjugate point   to   along  . This contradicts the

assumption that    has no conjugate points. Therefore, the operator    cannot have any strictly

positive eigenvalues. All eigenvalues   must satisfy  .

Step 4: Vanishing of  : As established in the �rst proof (Section 3, Step 2 and Step 4), the no-conjugate-

point condition implies  , which in turn implies    is vertical for any  . We

showed (Section 3, Step 4, alternative calculation or direct use of formula) that the sectional curvature 

 for   satis�es  . Since   is purely vertical,

its horizontal component    is zero. Therefore,    for all  . Since    is self-

adjoint and   for all  , this forces  .

Step 5: Integrability and Parallelism: The condition    is vertical for    (equivalent to 

 or  ) is the key. As shown in Proof 1 (Section 3, Step 2), this implies   on 
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, which means the horizontal distribution   is integrable.

The parallelism arguments are identical to those in Proof 1 (Section 3, Step 3): Parallelism of   along  :

Follows from    being vertical for  . Parallelism of    along  : Follows from    being a Killing

�eld and  . Thus, both distributions   and   are parallel.

Step 6: de Rham Splitting and Conclusion: We have an orthogonal decomposition    into

integrable and parallel distributions on the complete, simply connected manifold  . The de Rham

Splitting Theorem applies, yielding the isometric splitting

As identi�ed previously,   and  , where    is a complete  -

invariant metric on the hyperbolic plane. This completes the alternative proof of Theorem 1.

5. Consequences and Deeper Implications

The main result, Theorem  1, forcing an isometric splitting    for metrics

without conjugate points on  , has profound consequences across multiple areas of geometry,

topology, and dynamics. Let   be the length of the   factor.

�. Rigid Geometric Structure

Global Product Metric: The metric    on    must be globally isometric to the

Riemannian product  , where   is hyperbolic and   is �at.

No Warping or Twisting: The possibility of a warped product or other non-trivial coupling

between the   and   factors is ruled out.

Curvature: The sectional curvature of    is either constant negative (for planes tangent to  ) or

zero (for planes containing the    direction). In particular,    must have non-positive sectional

curvature a posteriori.

�. Topological Rigidity of Aspherical Manifolds

Asphericity and Structure: The splitting con�rms    is aspherical    is contractible).

Any compact, aspherical 3-manifold   that �bers as   must admit only this rigid

hyperbolic-�at product structure if it supports any metric without conjugate points.

H
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H
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V
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V
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~
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~
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~

H
~

( , )M
~

g~

( , ) ≅( , ) × ( , ).M
~

g~ M1 g1 M2 g2

( , ) ≅(R, d )M1 g1 c2 u2 ( , ) ≅( , )M2 g2 H
2 g0 g0 (Σ)π1

□

( , ) ≅( , ) × (R, d )M
~

g~ H
2 g0 c2 u2

M = Σ × S 1

L S 1

g M = Σ × S 1
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Σ S 1

g Σ

S 1 g
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2
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Homotopy Equivalence Rigidity: The geometric structure aligns with topological rigidity results

like the Borel conjecture for this class of manifolds.

�. Dynamics of the Geodesic Flow

Partial Hyperbolicity: The geodesic �ow on   decomposes into a partially hyperbolic system:

Anosov dynamics (uniform hyperbolicity) on the    component and neutral (isometric

rotation) dynamics on the   component.

Entropy: Topological entropy   equals the entropy of the hyperbolic surface  , as the

�at factor contributes zero entropy.

Livšic Rigidity: Cohomological equations over the �ow inherit the product structure, simplifying

rigidity results.

�. Minimal Surfaces and Harmonic Maps

Totally Geodesic Submanifolds: The factors   and   are totally geodesic. Minimal

surfaces tend to align with this product structure.

Harmonic Map Decomposition: Harmonic maps into   decompose into harmonic maps into the

factors   and  .

�. Stable Norms and Large-Scale Geometry

Pythagorean Stable Norm: The stable norm on    satis�es 

 for  .

Euclidean Structure on  : The stable norm endows   with a Euclidean structure.

Asymptotic Cones: Gromov-Hausdorff limits of   as   are products involving  -

trees and a line factor.

�. Impossibility of Non-Trivial Sasakian Structures

Argument by Contradiction: Assume    is Sasakian with Reeb �eld  , and 

  has no conjugate points. By Theorem  1,    must be isometric to a product 

. Under this isometry, the unit Killing �eld   must correspond to a unit Killing

�eld   for  , which must be parallel to the   factor and satisfy  .

Sasakian Condition Violation: The fundamental Sasakian equation    translates to 

. Since  , this requires  . But   (and hence  ) must be a non-

zero tensor acting as an almost complex structure on the contact distribution  ,

leading to a contradiction.

Conclusion: No Sasakian metric on    (with  ) can be free of conjugate

points. The geometric constraints of Sasakian structures (requiring a speci�c type of "twist") are

MT 1

ΣT 1

S 1

(g)htop (Σ, )ghyp

Σ × {pt} {pt} × S 1

M

Σ S 1
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gprod

X
~ ξ

~
ϕ
~
X
~
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incompatible with the rigidity imposed by the absence of conjugate points on this topology.

�. Spectral Geometry and Inverse Problems

Laplacian Spectrum Splitting: The spectrum of the Laplace-Beltrami operator   on   is the

superposition  , where   is the spectrum of   on   and   is

the spectrum of   on  .

Inverse Spectral Rigidity: The spectrum of   determines both the hyperbolic metric    (up to

isometry, via results on MLS/spectrum for surfaces) and the length    of the    factor, hence

determining   up to isometry.

Marked Length Spectrum Rigidity: The MLS of   (lengths of closed geodesics corresponding

to elements of  ) also determines   up to isometry.

�. Group Actions and Cohomology

Isometry Group: The isometry group   is restricted to a subgroup of  ,

where   is �nite.

Cohomological Constraints: The product structure in�uences the calculation of group cohomology,

bounded cohomology, and  -cohomology of  .

�. Relation to   Rigidity

Strengthening of    Result: While splitting is known for    metrics with an    action,

Theorem  1 shows the weaker "no conjugate points" condition is suf�cient here. This implies

such metrics must, in fact, satisfy  .

��. Contrast with Non-positive Curvature

Beyond  : The Cheeger-Gromoll theorem guarantees splitting for compact manifolds with 

  admitting a line in the universal cover (like the    factor here). Our result shows this

splitting occurs for   under the weaker hypothesis of no conjugate points. It implies

a posteriori that such a metric must satisfy   (since it’s a product of factors with  ),

even though this was not assumed a priori. The no-conjugate-point condition prevents the

existence of any regions with positive curvature that might otherwise exist in a non-product

metric.

Connections: Stable Norms and Entropy

The isometric splitting established by Theorem 1 has clear implications for stable norms and topological

entropy, as detailed in Section 5 (Points 6 and 3).

Δg (M, g)

{ + }λi μk { }λi Δghyp Σ { = (2πk/L ⋅ }μk )2 c2

Δg
S1 S 1

Δg ghyp

L S 1

g

(M, g)

(M)π1 g

Iso(M, g) Iso(Σ, ) × O(2)ghyp

Iso(Σ, )ghyp

L2 (M)π1

K ≤ 0

K ≤ 0 K ≤ 0 S 1

K ≤ 0

K ≤ 0

K ≤ 0 R

M = Σ × S 1

K ≤ 0 K ≤ 0
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The Pythagorean structure of the stable norm is a direct consequence of the isometric splitting forced by

the no-conjugate-point condition. Similarly, the topological entropy being solely determined by the

hyperbolic factor   highlights the dynamical rigidity imposed by the condition; the �at   factor

does not contribute to the complexity growth rate of geodesics. The geometry is rigid in the sense that

there is no "mixing" or interaction between the horizontal ( ) and vertical ( ) dynamics that could

potentially alter the entropy beyond what is expected from the pure product structure.

6. Connection to Symplectic Rigidity

While Theorem  1 concerns Riemannian geometry and the absence of conjugate points, and Gromov’s

celebrated non-squeezing theorem arises from symplectic geometry, they share deep thematic

connections rooted in geometric rigidity. We brie�y explore these parallels.

�. Thematic Parallel: Rigidity of Structure: Both theorems exemplify how a fundamental geometric

structure imposes global constraints that override topological �exibility.

Splitting Theorem: Forces a metric on    to adopt a rigid product structure  ,

prohibiting twists or warping that might seem topologically permissible. The condition ’no

conjugate points’ acts as the obstruction.

Non-Squeezing Theorem[11]: Restricts symplectic embeddings (a large symplectic ball 

  cannot be symplectically embedded into a narrow cylinder    if 

), even though volume preservation alone would allow such "squashing". The symplectic

form itself acts as the obstruction.

This re�ects a shared philosophy: geometric conditions (absence of conjugate points / symplectic

structure) can impose powerful obstructions to seemingly plausible con�gurations or deformations.

�. Geodesic Flows and Symplectic Dynamics: The splitting theorem dictates a speci�c structure for the

geodesic �ow, while non-squeezing governs Hamiltonian dynamics.

Splitting Impact: The geodesic �ow on    decomposes into a partially hyperbolic

system (Anosov on  , isometric on  ). This rigid dynamical structure has �xed entropy

determined by  .

Non-Squeezing Context: Hamiltonian �ows preserve the symplectic structure, and non-squeezing

re�ects this rigidity, often measured by symplectic capacities which obstruct embeddings.

(Σ, )ghyp S 1

H
2

R

Σ × S 1 ⊕ghyp gS1

(R)B2n (r) = (r) ×Z 2n B2
R

2n−2

R > r

(Σ × )T 1 S 1

ΣT 1 S 1

Σ
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Connection Hypothesis: The rigidity enforced by the splitting theorem on the geodesic �ow might impose

constraints on symplectic invariants if   is considered. For instance, the trivial dynamics along the 

 factor could potentially bound certain capacities related to embeddings along that direction.

�. Contact Geometry as a Potential Bridge: If    carries a contact structure    with Reeb �eld 

 aligned with  , Theorem 1 (as seen in Section 5) implies this structure cannot arise from a metric

without conjugate points unless it’s the trivial product. Contact non-squeezing theorems restrict

embeddings related to Reeb dynamics. The forced product structure might imply speci�c (perhaps

trivial) non-squeezing results in the contact setting relative to the Reeb �ow de�ned by the 

 factor.

�. Symplectic Capacities and Geometric Measures: Non-squeezing is intrinsically linked to symplectic

capacities (like Gromov width or cylindrical capacity). The splitting theorem �xes geometric

quantities like volume growth (  has exponential growth dominated by  ) and the length

spectrum. How these Riemannian invariants interact with symplectic capacities on   is

an intriguing question. For example, does the length   of the    factor play a role analogous to a

capacity for certain symplectic questions?

�. Open Questions and Speculation: While a direct technical deduction of one theorem from the other

is not apparent, the conceptual parallels invite exploration:

Can the rigid metric splitting    be used to deduce speci�c bounds or

properties related to symplectic embeddings into   or related spaces?

Conversely, does the presence or absence of conjugate points have implications for the �exibility

or rigidity observed in symplectic or contact geometry on the same manifold?

In conclusion, the connection lies in a shared paradigm: fundamental geometric structures impose

potent global rigidity, limiting topological �exibility and shaping dynamics in profound ways. While

operating in different contexts (Riemannian vs. Symplectic), both Theorem  1 and Gromov’s non-

squeezing theorem underscore this central theme in modern geometry

7. Rigidity vs. Flexibility

The interplay between rigidity (as exempli�ed by Theorem  1) and �exibility in geometry is subtle and

profound. Our result highlights how the ’no conjugate points’ condition dramatically curtails geometric

freedom for metrics on  .

T ∗ M

S 1

Σ × S 1 η

ξ S 1

S 1

× RH
2

H
2

(Σ × )T ∗ S 1

L S 1

(Σ, ) × ( , )ghyp S 1 gS1

(Σ × )T ∗ S 1

M = Σ × S 1
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�. Flexibility Lost: Metric Rigidity. Theorem 1 eradicates �exibility in the global metric structure.

No Warping or Twisting: The metric is forced into the rigid product form  . Warped

products like    or metrics with cross-terms coupling    and    directions are

disallowed, as they would inevitably introduce conjugate points.

Curvature Constraints: The factors must be hyperbolic ( , constant curvature -1 up to scale) and

�at ( ). There is no room for variable curvature within factors or mixing of curvatures

between them. This stark rigidity mirrors Hopf’s theorem for �at tori, where the no-conjugate-

points condition similarly eliminates all metric �exibility.

�. Flexibility Retained: Parameters and Moduli. Despite the structural rigidity, limited �exibility

persists in discrete parameters de�ning the speci�c product metric:

Hyperbolic Moduli Space: The hyperbolic metric   on   is not unique; it corresponds to a point

in the  -dimensional Teichmüller or moduli space of  . Varying this point changes the

conformal structure and length spectrum of the   factor while preserving the product structure

and the absence of conjugate points.

Circle Length: The constant    (determining the length    of the    factor) is a free parameter.

Rescaling   changes the relative size of the factors but maintains the isometric product structure.

Thus, the space of metrics without conjugate points on   is parametrized by the moduli space of 

 and the positive real number  .

�. Flexibility Regained: Relaxing Conditions. If the ’no conjugate points’ assumption is dropped, the

geometric possibilities expand dramatically.

Warped Products: General warped products    become permissible, allowing

interaction between the factors and typically introducing conjugate points unless   is constant.

More General Metrics: Arbitrary Riemannian metrics, potentially exhibiting complex geodesic

behavior, positive curvature regions, and diverse topological features (like non-trivial Sasakian

structures incompatible with Theorem 1), become available. Conjugate points act as

"gatekeepers" restricting access to this broader landscape.

�. Geometric Analysis Implications.

Deformation Stability: The result suggests stability: small perturbations of a product metric 

  that remain within the class of metrics without conjugate points must

themselves correspond to nearby product metrics (nearby point in moduli space and nearby  ).

g = ⊕ghyp gS1

g = +ghyp f 2gS1 Σ S 1

ghyp

gS1

ghyp Σ

( )g0−6 Σ

Σ

c L S 1

c

Σ × S 1

Σ c

g = +ghyp f 2gS1

f

g = ⊕ghyp gS1

c
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Inverse Problems Simpli�ed: Recovering the metric from dynamical data (like MLS or spectrum) is

simpli�ed by the rigidity. The inverse problem reduces to determining the �nite set of

parameters (moduli of  , length  ) de�ning the speci�c product metric.

�. Flexibility in Higher Dimensions? For product manifolds like    ( ), one might

conjecture that a metric without conjugate points forces a splitting  . While the 

  factor seems rigidly determined, the �at    factor retains �exibility corresponding to the

moduli space of �at metrics on  . Investigating this remains an open direction.

�. Hodge Theory Simpli�cation

Splitting of the Laplacian: As noted above, Theorem 1 forces the metric    to be a product 

, which implies the Laplace-Beltrami operator splits:  .

Decomposition of Harmonic Forms: Hodge theory identi�es de Rham cohomology classes 

  with spaces of harmonic  -forms  . Due to the Laplacian

splitting, the space of harmonic forms on    decomposes according to the product structure.

Speci�cally, harmonic  -forms on    can be constructed via tensor products and sums of

harmonic forms on    and  . For instance, 

, and 

.

Rigidity of Hodge Structure: The theorem implies that the Hodge structure (the space of harmonic

forms representing cohomology classes) is rigidly determined by the choice of hyperbolic metric

on  (from its moduli space) and the length   of the   factor. The absence of conjugate points

prevents any other metric structure, and thus any other Hodge structure, from arising on 

. This simpli�es computations and structural analysis within Hodge theory for this

class of manifolds.

Quantum Field Theory and Compacti�cation: If   serves as a model for spacetime or an internal

space in QFT or string theory, the theorem implies that requiring the absence of conjugate points

severely restricts the background geometry to the simple product  . This simpli�es

mode analysis and potentially affects calculations related to vacuum energy or particle

interactions.

�. Relevance to String Theory and Kaluza-Klein Compacti�cations: The manifold   serves as a

simple model for spacetimes with compacti�ed dimensions, a central concept in String Theory and

Kaluza-Klein (KK) theory. Theorem 1 dictates that if such a background geometry is required to lack

Σ L

Σ × T n n ≥ 2
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conjugate points (perhaps for stability or well-behaved dynamics), then the metric *must* be the

rigid product  . This has speci�c consequences:

Kaluza-Klein Spectrum: In KK theory, the geometry of the compact internal manifold

determines the properties (like masses) of �elds in the lower-dimensional effective theory. The

eigenvalues    of the Laplacian on the    factor correspond directly to the

squared masses of the Kaluza-Klein modes arising from compacti�cation on  . Theorem 1

ensures this simple, evenly spaced (in  ) mass spectrum is the only possibility under the no-

conjugate-point condition.

String Modes: In string theory, the modes of a string propagating on    would decompose.

Excitations along the    factor correspond to the KK modes with energies related to  .

Excitations involving the    factor would have energies related to  , re�ecting the hyperbolic

geometry. The total energy levels would combine these, in�uenced by the chaotic nature of 

 and the simple periodicity of  .

Simpli�ed Background Dynamics: The absence of conjugate points and the forced product

structure simplify the analysis of �eld propagation (scalar �elds, gravitons, gauge �elds) on this

background. The d’Alembertian separates,  , facilitating mode decomposition

and analysis in dimensional reduction. The predictable geometry avoids complexities like

gravitational lensing or caustics within the background itself.

Constraint on Models: If a theoretical model requires a factor of   and imposes a condition

like "no conjugate points" on the metric, Theorem 1 severely restricts the allowable background

geometry to the simple, non-warped product. This limits the possibilities for generating gauge

�elds or other phenomena through geometric twisting or warping in the compact dimensions.

Concrete Example: Quantum Particle on  .

Consider the canonical example of a free quantum particle of mass    constrained to move on 

. Its quantum states are described by wavefunctions   satisfying the

time-independent Schrödinger equation:

Theorem 1 guarantees that the metric   must take this simple product form if it lacks conjugate points.

Consequently, the Laplacian separates:  . This allows for separation of variables in the

Schrödinger equation, yielding solutions of the form  , where:

g = ⊕ghyp gS1

{ = (2πn/L }μn )2 S 1

S 1

n2

M

S 1 μn

Σ λk

Σ S 1

= +□g □ghyp □g
S1

Σ × S 1

Σ × S1

m

(M = Σ × , g = ⊕ )S 1 ghyp gS1 ψ(x, θ)

− ψ(x, θ) = Eψ(x, θ).
ℏ 2

2m
Δg

g

= +Δg Δghyp Δg
S1

(x, θ) = (x) ⋅ (θ)ψk,n ϕk χn
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  is an eigenfunction of the Laplacian on the hyperbolic surface    with eigenvalue  : 

. The properties of these eigenfunctions and eigenvalues   are intimately linked

to the classical chaotic geodesic �ow on   and are studied in quantum chaos.

  is an eigenfunction of the Laplacian on the circle    of length  . These are typically 

 with eigenvalues   for  .

Substituting the separated wavefunction into the Schrödinger equation yields the total energy

eigenvalues:

This explicitly demonstrates the additive nature of the energy spectrum, directly re�ecting the product

geometry forced by the absence of conjugate points. The quantum dynamics combines features inherited

from the hyperbolic chaos on    (via  ) and the simple periodicity on    (via  ). The absence of

conjugate points in the metric    ensures that wave packet propagation, particularly components

associated with  , exhibits characteristic spreading without geometric refocusing phenomena. This

provides a clear example of how the geometric rigidity established by Theorem  1 dictates the

fundamental structure of quantum states and energy levels on  .

In summary, Theorem 1 starkly illustrates how a global geodesic condition (’no conjugate points’) can act

as a powerful "geometric police," drastically reducing the allowable metric structures on   from a

potentially vast, �exible space to a tightly constrained family of rigid products parametrized by discrete

data. This tension between underlying topological �exibility and imposed geometric rigidity is a central

theme in modern geometry, evident in �elds ranging from Thurston’s geometrization program to

Gromov’s h-principle. Here, the absence of conjugate points draws a sharp line: either rigid splitting or

the potential for complex, �exible geometries where geodesics can refocus.

8. Concluding Remarks

The principal achievement of this paper, encapsulated in Theorem 1, is the extension of rigidity theorems

to the class of Riemannian metrics without conjugate points on manifolds diffeomorphic to 

, where   is a higher-genus surface. The result provides a de�nitive answer to the question

posed in the introduction: such metrics exhibit a strong structural rigidity imposed by the no-conjugate-

point condition combined with the    symmetry. Speci�cally, the universal cover    must split

(x)ϕk (Σ, )ghyp λk
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= ( + ) = ( + ) .Ek,n
ℏ 2

2m
λk μn

ℏ 2

2m
λk ( )

2πn

L

2

Σ λk S 1 μn

g

Σ

M

Σ × S 1

M = Σ × S 1 Σ

S 1 ( , )M
~

g~

qeios.com doi.org/10.32388/8R62I8 17

https://www.qeios.com/
https://doi.org/10.32388/8R62I8


isometrically as a product  . Consequently, the metric   on   itself must be globally

isometric to a standard Riemannian product metric  .

The potential for a geometrically "twisted" or warped product structure, alluded to in the motivating

question, is explicitly ruled out. This underscores the powerful constraints imposed by the absence of

conjugate points, forcing a simple, non-warped product structure even when one factor ( ) carries

inherent negative curvature. This �nding reinforces the theme that global geodesic properties, even

weaker than non-positive curvature, can lead to signi�cant structural rigidity, particularly in the

presence of symmetry. The numerous consequences detailed in Section 5, ranging from topological and

dynamical rigidity to spectral properties and the impossibility of non-trivial Sasakian structures without

conjugate points, illustrate the profound impact of this geometric rigidity.
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