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Abstract

Level densities for the X(692, 214) system are calculated using a single particle methodology incorporating the Rost

interaction and pairing interaction of Blomqvist and Wahlborn. Energy level fluctuations are smoothed utilizing the

constant temperature, power law, and equidistant model functional forms. The constant temperature relationship is

used to model the density and total number of energy levels. The total number of levels is also compared with the

predictions of the power law and equidistant models. Systematics of level densities for existing and potential

superheavy nuclei are discussed.

1.0. Introduction

     Nuclear level density data are available for many nuclei, but most calculations are performed for nuclei with A ≥ 201.

Most calculations utilize realistic single particle levels. Accordingly, shell effects are incorporated into these calculations.

The only residual interaction is a pairing force, and the calculations lead to approximate nuclear densities. These

approaches or other approximate calculations have not been extended to theoretical superheavy nuclei.

     Previous work investigated superheavy nuclei including the Z=204 A=610 system X(610, 204)2,3, X(636, 204)4,5, and

X(692, 214)4. Such an extension is important because superheavy nuclei, such as X(692, 214) represent an endpoint for

density measurements, because this system is about twice as heavy as any known nucleus. Previous efforts investigated

the other extreme in level systematics by evaluating the 4He system6.

2.0 Calculational Methodology

     Since the method for calculating single particle energies in a spherically symmetric potential is well-established, only

salient features are provided. The model used to describe the particle (i) plus core (c) system represents an application of

the standard method of Lukasiak and Sobiczewski7 and Petrovich et. al. 8 

     The binding energy ENLSJ of a particle in the field of a nuclear core is obtained by solving the radial Schrödinger

Equation
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ℏ2

2μ
d2

dr2 −

L(L + 1)
r2 − ENLSJ − VLSJ(r) UNLSJ(r) = 0(1)

where r is the radial coordinate defining the relative motion of the nuclear core and the particle; VLSJ(r) is the model

interaction9,10; ENLSJ is the core plus particle binding energy; UNLSJ(r) is the radial wave function; and L, S, and J are the

orbital, spin, and total angular momentum quantum numbers, respectively. The N quantum number is the radial quantum

number, and μ is the reduced mass. For the present application, VLSJ is defined as:

VLSJ(r) = V0(r) + Vso(r) + VC(r)(2A)

Vo(r) = −

Vo
1 + Bo (2B)

Vso(r) = − Vso(

ℏ
mπc )2

1
asor

Bso
[1 + Bso]

2
F(L,S, J)(2C)

VC(r) = ziZCe
2C(r)(2D)

where

Bj = exp[(r − Rj)/aj](3)

and

R0 = r0A
1/3 = RC;Rso = rsoA

1/3(4)

The parameters V0, r0, and a0 are the strength, radius parameter, and diffuseness for the central potential. Similarly, Vso,

rso, and aso are the corresponding parameters for the spin-orbit potential. To complete the specification of Eq. 2, the

following terms are defined: 

F(L,S, J) = J(J + 1) − L(L + 1) − S(S + 1)(5)

and

C(r) =

1
2RC (3 − r/RC

2); r < RC(6)

C(r) = 1/r; r ≥ RC(7)

For the Coulomb potential, it is assumed that the particle is a point charge of magnitude zie. The core has a charge ZCe

uniformly distributed through a sphere of radius RC. Since the potential is not a function of the spherical coordinates, the

solution of the angular equation is most easily expressed in terms of spherical harmonics YLM(θ, φ).

     The total bound-state wave function Ψ for the relative motion of the core plus particle, interacting through a spherically

symmetric potential, is given by a product of space and spin wave functions:

[ ( ) ]

( )
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Ψ =

1
r UNLSJ(r)∑C(L,ML,S,MS; JM)YLML

(θ,ϕ)χSMS
(8)

where the sum is over ML and MS, ML and MS are the projections of angular momentum and spin, and χ is the spin wave

function. For the calculation of single particle energy levels, N, L, S, and J specify the quantum numbers of the single

particle level.

     The binding energy of a single particle level is obtained by rewriting the radial Schrödinger equation in the form

d2

dr2 − k(p, r) U(p, r) = 0(9)

where

U(p, r) = UNLSJ(10)

and

k(p, r) =

L(L + 1)
r2 +

2μ
ℏ2

ENLSJ + VLSJ(r) (11)

 

     The model searches for values of p in order to obtain the binding energy ENLSJ for a given potential. The method of

searching for p is provided by Brown, Gunn, and Gould11, and the methodology of Ref. 12 to obtain a converged solution

for ENLSJ. 

3.0 Nuclear Interaction

     Nuclear stability with respect to alpha decay, beta decay, positron decay, electron capture, and spontaneous fission is

addressed using the method previously published by the author and coworkers8 that is similar to the approach of Ref. 7.

The single particle level spectrum is generated using a Woods-Saxon potential. The parameters of the potential are

obtained from a fit to the particle levels in 209Pb and 209Bi performed by Rost9. The central potential strength has a

standard form and can be explicitly defined as

V0 = 51.6 1 ± 0.73

N − Z
A (12)

where the upper (lower) sign applies to protons (neutrons). The remaining parameters were held constant and are given

by Rost9: ro = 1.262 (1.295) fm, rso = 0.908 (1.194) fm, ao = aso = 0.70 fm, and λ = 17.5 (28.2) for protons (neutrons) 8,9.

Vso is related to λ by the relationship9:

[ ]

[ ]

[ ]
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Vso =

λV0
180 (13)

     The scaling relationship of Eq. 12 yields reasonable fits to observed single particle levels in 120Sn and 138Ba8. The

pairing correction term of Blomqvist and Wahlborn10 is used in the calculations presented herein. The pairing correction

improves the predicted energies of occupied levels in 120Sn, 138Ba, and 208Pb8.

4.0 Single Particle Level Calculations

     The X(692, 214) level calculations5 using the methodology of Section 2.0 are summarized in Fig. 1. These calculations

suggest the X(692, 214) system has an alpha decay half-life of 36 ms, and a beta decay half-life of 14 ms. The beta decay

occurs through an allowed 3h9/2 (n) to 2h11/2 (p) transition.

 

Fig. 1 Calculated single particle energy levels for nucleus X(692, 214). The notation A/B/C is used to indicate adjacent energy levels with level A

more tightly bound than level B, which is more tightly bound than level C.
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     The results summarized in Fig. 1 are used as the basis for the level systematics summarized in Sections 5.0, 6.0, and

7.0. These results are evaluated using the constant temperature model13 and equidistant model14-17.

     Refs. 18-20 illustrate current applications of the nuclear level density concept. These include determination of energy

dependent ratios of level-density parameters in superheavy nuclei18, nuclear astrophysical reaction rates19, and machine

learning applications20.

5.0 Constant Temperature Model

     Experimental data involving level densities are often analyzed with the constant temperature formula13 

ρ(E) = aexp(E /T)(14)

where ρ(E) is the number of energy levels per MeV, and a and T are constants which are determined from a fit to the

X(692, 214) single particle levels of Fig. 1. It should be recognized that these simple level density approximations may not

accurately reproduce the level density of a nucleus which has marked structure in its single particle levels. As such, the

investigation of level density parameters as a function of mass leads to a better understanding of level density systematics

as well as individual differences between nuclei.

     Within the constant temperature model, the functional form for the level density ρ(E) is expected to be a simple

exponential from experimental measurements on A = 36-66 even-even nuclei13. The information of Fig. 1 can be fit to the

form of Eq. (14), and the values a = 4.68385657 and T = 1 / 0.069647127 = 14.3581 are obtained. These values are

similar to the fits to the X(610, 204) system (a = 5.00473206 and T = 1 / 0.052170492 = 19.1679)3 and X(636, 204)

nucleus (a = 5.75443276 and T = 1 / 0.045587584 = 21.9358)5. Model results for the X(692, 214) system are shown in

Fig. 2.
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Fig. 2 Energy level density for X(692, 214) using the constant temperature model. The "•" symbol represents the state density for a 1 MeV energy

bin. The solid curve is a fit to the constant temperature functional form ρ(E) = a exp(E/T) with a = 4.68385657 and T = 1 / 0.069647127 = 14.3581.

     As expected there is considerable fluctuation in ρ(E), and this can be minimized by considering the total number of

levels N(E) described by the functional form of the constant temperature model

N(E) = cexp(E /d)(15)

When the X(692, 214) levels N(E) of Fig. 1 are fit to the constant temperature model of Eq. (15), the curve shown in Fig. 3

is obtained. The parameters c = 8.47666017 and                     d = 1 / 0.144936667 = 6.8996 are obtained. These values

are similar to the parameters derived for the X(610, 204) system (c =8.47138352 and d = 1 / 0.136811694 = 7.3093)3, and

X(636, 204) nucleus (c = 8.075645 and d = 1 / 0.139798416 = 7.1532)5.

     Eq. 15 underestimates the number of energy levels for the X(692, 214) system below about 28 MeV and overestimates

N(E) above about 30 MeV. A comparison of the X(692, 214) system d value to lighter systems using the constant

temperature model is summarized in Table 1.
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Fig. 3 Total number of energy levels N(E) for X(692, 214) as a function of energy. The "•" symbol represents the total number of energy levels up to

energy E. The solid curve is a fit to the constant temperature functional form N(E) = c exp(E/d) where c = 8.47666017 and d = 1 / 0.144936667 =

6.8996.
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Table 1

 

Constant Temperature Model Parameters for Nuclear
Densitiesa,b,c,d,e 

Nucleus d (MeV)

4He 2.79a

36Ar 1.87

38Ar 1.47

40Ca 1.73

50Cr 1.29

52Cr 1.43

54Cr 1.22

54Fe 1.40

56Fe 1.40

58Fe 1.31

68Zn 0.90

X(610, 204) 7.31b

X(636, 204) 7.15c

X(692, 214) 6.90d

a Ref. 6.

b Ref. 3.

c Ref. 5.

d This work.

e All others Ref. 13.

     The results of Table 1 suggest the level density d parameter behaves differently in the A > 600 mass region compared

with A < 70 nuclear systems. Superheavy d values in the X(610, 204), X(636, 204), and X(692, 214) systems are about a

factor of four larger than the A < 70 values. The d values for A > 600 systems have a declining trend as noted in Table 1.

6.0 Power Law Model

     The fit to the total number of levels N(E) is also modeled using the power law functional form

N(E) = aEb(16)
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where a = 0.8529546 and b = 1.87210143. Fig. 4 summarizes the use of Eq. 16 to fit the levels of Fig, 1. Eq. 16 provides

an improved fit to that of Eq. 15 that has been traditionally utilized to describe the total number of energy levels as a

function of energy. The X(692, 214) parameters are similar to the values derived from the X(610, 204) system (a =

1.25223103 and b = 1.69492108)3 and X(636, 204) (a = 0.82089983 and b = 1.84100287)5.

Fig. 4 Total number of energy levels N(E) for X(692, 214) as a function of energy. The "•" symbol represents the total number of energy levels up to

energy E. The solid curve is a fit to the power law functional form N(E) = aEb where a = 0.8529546 and b = 1.87210143.

7.0 Equidistant Model

     In the equidistant model14-17, the single particle levels are assumed to be equidistant and nondegenerate. The total

state density for a system composed of neutrons and protons is given by

N(E) =

√π
12

exp(2√aE
e5/4a1/4

(17)

where a is a level density parameter. In existing nuclear systems, the parameter a has been determined17 to have the
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value A/8 and A is the atomic mass. 'The formula is sometimes described as a Fermi gas level density expression, but

actually only represents the zeroth order approximation to the level density of a Fermi gas.

     The X(692, 214) levels of Fig. 1 have been fit to the functional form of Eq. (17). A fit to the calculated levels is shown in

Fig. 5. The X(692, 214) fit is obtained for the value a = 1.254 that is similar to the X(610, 204) value (a = 1.175) and

X(636, 204) (a = 1.210). It is important to note that the constant density formula given in Eq. (17) is an approximation that

is valid only for energies that are low compared to the energy of the deepest hole that can be made in the nucleus. Most

investigations consider excitation energies of less than 15-20 MeV. That is, Eq. (17) is an asymptotic expression, which is

valid for an infinite number of occupied levels—i.e. infinite atomic mass A. Accordingly, an improved description of the

level density should be obtained as the nucleus mass increases. However, the equidistant model does not reproduce the

data as well as the power law model incorporating Eq. 16.

Fig. 5 Total number of energy levels N(E) for X(692, 214) as a function of energy using the equidistant model. The "•" symbol represents the total

number of energy levels up to energy E. The solid curve is a fit to the equidistant model with a = 1.254.

     The X(692, 214) a = 1.254 value determined by a fit to Eq. 17 is inconsistent with the A/8 value suggested in Ref. 16.

This discrepancy suggests that level density systematics may differ in superheavy nuclei. In the A > 600 mass region, a

exhibits an increasing trend with increasing A (i.e., X(610, 204) (a = 1.175), X(636, 204) (a = 1.210), and X(692, 214) (a =
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1.254)).

8.0 Conclusions

     The X(692, 214) single particle level calculations predict a series of levels, and the associated level density and total

number of energy levels as a function of energy can be fit with a number of functional forms. Given the scatter in the

number of energy levels/MeV, the level scheme is fit reasonably well by the constant temperature model as summarized

in Fig. 2.

     The total number of energy levels in X(692, 214) as a function of energy is best fit with the power law form N(E) = a Eb

as illustrated in Fig. 4. This power law relationship provides better agreement with N(E) than the constant temperature and

equidistant models. The results of this calculation also provides an A = 692 end point for level density parameters of the

constant temperature, equidistant, and power law models.
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