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Convolutional neural networks (CNNs) are extremely popular and effective for image classi�cation

tasks but tend to be overly con�dent in their predictions. Various works have sought to quantify

uncertainty associated with these models, detect out-of-distribution (OOD) inputs, or identify

anomalous regions in an image, but limited work has sought to develop a holistic approach that can

accurately estimate perception model con�dence across various sources of uncertainty. We develop a

probabilistic and reconstruction-based competency estimation (PaRCE) method and compare it to

existing approaches for uncertainty quanti�cation and OOD detection. We �nd that our method can

best distinguish between correctly classi�ed, misclassi�ed, and OOD samples with anomalous regions,

as well as between samples with visual image modi�cations resulting in high, medium, and low

prediction accuracy. We describe how to extend our approach for anomaly localization tasks and

demonstrate the ability of our approach to distinguish between regions in an image that are familiar to

the perception model from those that are unfamiliar. We �nd that our method generates interpretable

scores that most reliably capture a holistic notion of perception model con�dence.

Corresponding authors: Sara Pohland, spohland@berkeley.edu; Claire Tomlin, tomlin@berkeley.edu

1. Introduction

Convolutional neural networks (CNNs) are very useful in image classi�cation tasks but can fail

dramatically with little explanation or warning[1][2][3][4]. To safely deploy CNN-based classi�cation

models in real-world systems, it is crucial to accurately assess the con�dence level of their predictions.

Extensive research has aimed to quantify uncertainty in CNN predictions[5], but these methods are often
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overly con�dent for out-of-distribution (OOD) inputs that differ signi�cantly from those seen during

training[3][6]. This has led to work focused on detecting inputs outside of the model’s training

distribution[7] and identifying anomalous regions in an image[8][9][10]. While these methods help identify

unfamiliar data, they rely on arbitrary thresholds to make binary decisions about whether an input is

anomalous and lack nuanced probabilistic insights to capture the full scope of predictive uncertainty.

We propose a probabilistic and reconstruction-based competency estimation (PaRCE) method. Our

method integrates multiple aspects of predictive uncertainty into a single, comprehensive score that

re�ects the probability that a model’s prediction is accurate for a given image. The probabilistic nature of

this score increases its interpretability and enhances its utility in autonomous decision-making systems

that bene�t from accurate risk assessment. Additionally, we extend our method to estimate a model’s

competency at the regional level within an image, providing valuable information for human users and

decision-making systems. To evaluate PaRCE, we introduce several new datasets and evaluation schemes,

comparing the performance of our method to existing uncertainty quanti�cation, OOD detection, and

anomaly localization methods. Our results demonstrate that PaRCE provides more reliable and

interpretable competency estimates across various image types, enhancing model trustworthiness and

practical applicability.

2. Background & Related Work

CNNs for image classi�cation usually output softmax scores, which can be interpreted as the probability

that an image belongs to each of the training classes. The maximum softmax probability can serve as a

measure of model con�dence, but these probabilities tend to be very close to one[2] and are particularly

unreliable for OOD data[3]. These scores can be better-calibrated through temperature scaling[2] and other

methods, but these calibrated scores still tend to be overly con�dent. This has motivated many other

approaches to quantify model uncertainty (Sec. 2.1). These methods focus on data/aleatoric uncertainty,

arising from complexities of the data (i.e., noise, class overlap, etc.), and model/epistemic uncertainty,

re�ecting the ability of the CNN to capture the true underlying model of the data[11]. These methods do

not tend to capture distributional uncertainty resulting from mismatched training and test

distributions[12]. This has led to methods that seek to detect inputs that are OOD (Sec. 2.2). There is also

related work that aims to identify and localize anomalous regions in input images that differ from

training images (Sec. 2.3).
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2.1. Uncertainty Quanti�cation (UQ)

Extensive research has focused on understanding and quantifying uncertainty in a neural network’s

prediction. The modeling of these uncertainties can be divided into methods based on (1) Bayesian neural

networks (BNNs), (2)  deterministic networks, and (3)  ensembles of networks[5]. A BNN is a stochastic

model whose output is a probability distribution over its predictions[13][14]. Approaches that employ BNNs

extract uncertainty as a statistical measure over the outputs of the model. Methods that use a single

deterministic network often rely on Monte Carlo (MC) dropout as approximate Bayesian inference[15].

Ensemble methods combine the predictions of multiple deterministic networks to form a probability

density function[16]. While these methods address the typical overcon�dence in neural network

predictions with better-calibrated con�dence scores, they generally focus on predictions for in-

distribution inputs, which come from the same distribution as the training data. These approaches are

generally insuf�cient to appropriately assign con�dence scores for OOD inputs that differ signi�cantly

from those seen during training[3][6].

2.2. Out-of-Distribution (OOD) Detection

Many recent approaches have focused on quantifying distributional uncertainty and determining if an

input falls outside of the input-data distribution. These approaches are generally either (1) classi�cation-

based, (2) density-based, (3) distance-based, or (4) reconstruction-based[7]. Classi�cation-based methods

seek to revise the overly con�dent softmax scores at the output of neural networks to detect OOD samples

more robustly[17][18][19][20]. Density-based methods model the training distribution with some

probabilistic model and �ag test data in low-density regions as OOD[21][22][23][24]. Distance-based

methods use distance metrics in the feature space with the assumption that OOD samples should lie

relatively far from the centroids or prototypes of the training classes[25][26][27]. Finally, reconstruction-

based methods rely on the reconstruction loss of autoencoders (AEs) or generative adversarial networks

(GANs), assuming OOD samples will be reconstructed poorly[28][29][30]. While all these methods have

successfully identi�ed OOD samples, they do not fully capture the predictive uncertainty associated with

CNNs.
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2.3. Anomaly Detection & Localization

A �eld of study closely related to OOD detection is anomaly detection and localization, wherein the goal is

to segment the particular pixels containing anomalies[8][9][31][10]. Within the area of anomaly localization,

most approaches are (1)  reconstruction-based, (2)  synthesizing-based, or (3)  embedding-based[32].

Reconstruction-based methods use pixel-wise reconstruction errors to detect anomalies under the

assumption that networks trained with only “normal” data will not accurately reconstruct anomalous

regions[33][34][35]. Synthesizing-based methods estimate the decision boundary between normal and

anomalous data by training on synthetic anomalies generated from anomaly-free images[36][37].

Embedding-based methods embed image features into a compressed space and assume that anomalous

features are far from the normal clusters in the embedding space[38][39][40][41][42]. Similar to the OOD

detection methods, these methods can successfully identify anomalies in an image but cannot fully

capture uncertainty.

2.4. Probabilistic Competency Estimation

UQ techniques focus on quantifying data/aleatoric uncertainty and model/epistemic uncertainty, but

generally fail to capture uncertainty arising from distributional shift. OOD and anomaly detection

techniques better address this type of uncertainty but generally rely on thresholds to generate a binary

decision, rather than capturing a holistic measure of uncertainty. We are interested in perception model

competency–a generalized form of predictive uncertainty for CNNs that combines these various aspects of

model uncertainty into a single probabilistic score[43].

3. De�nition of PaRCE Score

We de�ne a probabilistic score that captures model, data, and distributional uncertainty arising in a CNN-

based perception model (Sec. 3.1), using a reconstruction-based approach to estimate distributional

uncertainty (Sec. 3.2). Our method is designed to directly re�ect the prediction accuracy of the perception

model (Sec. 3.3) and can be extended to generate regional competency images (Sec. 3.4).

3.1. Estimating Model Competency

Let    be the true underlying model of the system from which our images are drawn and    be the

predicted model (referred to as the perception model or classi�er). For an input image,  , the perception

f f̂

X
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model aims to estimate the true class of the image,  , from the set of all classes,  . The competency of

the model for this image is given by

To simplify our notation, let   be the class predicted by the perception model (i.e.,  ) such that

Often, the perception model uses the softmax function to obtain an estimate of the probability 

  for each class  . However, the perception model cannot truly estimate this

probability because it is limited by the data contained in the training sample. It instead estimates the

probability  , where    is the event that the input image is in-distribution (ID) (i.e.,

drawn from the same distribution as the training samples). Let us then write the following lower bound

on competency:

We can assume that the perception model provides an estimate of the class probability, but we need a

method to estimate the in-distribution probability.

3.2. Estimating In-Distribution (ID) Probability

To estimate the ID probability, we design an autoencoder (AE) to reconstruct the same images used to

train the classi�er. The AE’s encoder mirrors the classi�er’s architecture, while its decoder is the inverse

of the classi�er. This architecture establishes a direct connection between the classi�er’s feature vector

and the AE’s latent representation, making reconstruction loss a proxy for the classi�er’s familiarity with

an input image and the ability of its learned features to capture the input. When the classi�er’s features

effectively represent an image, the reconstruction loss remains low, indicating higher prediction

con�dence. Conversely, a high reconstruction loss suggests a discrepancy between the input image and

ID data, implying a decrease in con�dence.

The probability an image,  , is drawn from the same distribution as those in the training sample is given

by

Assume now that the classi�er provides an estimate of  . We can estimate 

  as the probability that the reconstruction loss,  , for image    falls within the

f(X) C

ρ(X) := P ({ (X) = f(X)}|X).f̂ (1)

ĉ (X) =f̂ ĉ

ρ(X) = P ({f(X) = }|X).ĉ (2)

P ({f(X) = c}|X) c ∈ C

P ({f(X) = c}|X, D) D

ρ(X) ≥ P (D ∩ {f(X) = )}|X) (3)ĉ

= P ({f(X) = }|X, D)P (D|X). (4)ĉ

X

P (D|X) = P (D|{f(X) = c})P ({f(X) = c}|X).∑
c∈C

(5)

P ({f(X) = c}|X)

P (D|{f(X) = c}) ℓ(X) X
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lowest   of losses from the training images. Using a holdout set,  , randomly selected from the same

distribution as the training set but not used to train the classi�er, we estimate the distribution of

reconstruction loss for each class   as a Gaussian with mean   and standard deviation  . Because 

  follows a Gaussian distribution,   corresponds to a z-score,  . We estimate the class in-distribution

probability,  , as

where   denotes the cumulative distribution function (CDF) of the standard normal distribution. (See Eqs.

(9) to (13) for the derivation of this estimate.) Let   be the probabilistic output of the perception model

corresponding to class  . We now have the following estimate of competency:

3.3. Calibrating Competency Score

In Eq. (7),   is provided by the trained perception model, while   and   are determined by the holdout

set drawn from the training distribution. We select the z-score,  , such that the average competency score

re�ects the prediction accuracy for the ID holdout set,  . To calibrate our competency estimator, we want

to �nd   such that

Rather than computing the exact value of   that satis�es this equation, we select a z-score to the nearest

�ve hundredth that results in the average competency score (left side of Eq. (8)) closest to the prediction

accuracy (right side of Eq. (8)). (See Fig. 5 for a plot of the calibration curves.)

3.4. Generating Competency Images

Suppose that, in addition to estimating the overall competency score for the image as a whole, we wish to

estimate the competency of a model for particular regions in the image. Now, instead of letting   be the

entire input image,   is a segmented region of the image. In our work, images are segmented using the

graph-based image segmentation algorithm developed by Felzenszwalb[44]. We follow roughly the same

procedures to estimate the probability that each region in the input image came from the same

distribution as the training samples. Now, rather than designing an AE to reconstruct the input image, we

design an image inpainting model to reconstruct a missing segment of the image and measure the

N% X

c ∈ C μc σc

Lc N z

P (D|{f(X) = c})

(D|{f(X) = c}) = 1 − ϕ( − z) ,P̂
ℓ(X) − 2μc

σc

(6)

ϕ

p̂c

c ∈ C

(X) := (1 − ϕ( − z)) .ρ̂ p̂ ĉ ∑
c∈C

p̂c

ℓ(X) − 2μc

σc

(7)

p̂c μc σc

z

X

z

(X) = (X).
1

|X|
∑
X∈X

ρ̂
1

|X|
∑
X∈X

1
{ (X)=f(X)}f

^ (8)

z

X

X

qeios.com doi.org/10.32388/8SPGR0 6

https://www.qeios.com/
https://doi.org/10.32388/8SPGR0


average reconstruction loss over the pixels corresponding to that image segment. We calibrate these

scores again to re�ect the prediction accuracy of the perception model. (See Fig. 7 for the calibration

curves.) We can then use these scores to generate regional competency images. (See the last column of

Figs. 17 to 19.)

4. Analysis of PaRCE Score

We �rst compare our overall PaRCE score (Sec. 3.1) to existing methods for uncertainty quanti�cation

(Sec. 2.1) and OOD detection (Sec. 2.2) in Sec. 4.1. We then compare our regional PaRCE image (Sec. 3.4) to

existing methods for anomaly detection and localization (Sec. 2.3) in Sec. 4.2.

4.1. Overall Competency Scores

We compare our overall model competency estimation method against various existing methods for

quantifying uncertainty and detecting OOD inputs. In particular, we consider the Maximum Softmax

Probability (MSP) baseline, the calibrated MSP with Temperature Scaling[2], Monte Carlo (MC)

Dropout[15], Ensembling[16], the Energy Score[17], ODIN[18], OpenMax[19], DICE[20], KL-Matching[25], the

Mahalanobis Distance[26], and k-Nearest Neighbors (k-NN)[27]. These methods serve as a representative

selection of the many existing approaches and are often used as baselines in other works. Note that we

focus on the most popular methods that are easily implemented with the help of the PyTorch-OOD

library[45].

4.1.1. Evaluation 1: Manually Identi�ed OOD Samples

Datasets:

We conduct analysis across three unique datasets that contain manually identi�ed OOD samples. The �rst

dataset was obtained from a lunar environment, in which the training set contains images from an

uninhabited moon and the test set contains images from a habited moon. The second dataset contains

speed limit signs in Germany[46]. While the training dataset is composed of common speed limit signs

(30 km/hr and higher), the test set also contains an uncommon speed limit (20 km/hr). The third dataset

contains images from regions in a park, in which the training data only contains images from forested

and grassy regions of the park, while the test set additionally includes images from around the park’s

pavilion. See Appendix B for additional details and example images.
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Metrics:

We evaluate scoring methods based on their computation time and their ability to distinguish between

correctly classi�ed, misclassi�ed, and OOD samples. To quantify the ability to distinguish between sets of

samples, we consider the distance between score distributions using the Kolmogorov–Smirnov (KS) test,

the extent of overlap between distributions as measured by the area under the receiver operating

characteristic (AUROC), and the detection error determined by the false positive rate (FPR) at a 95% true

positive rate (TPR), where a true positive indicates the correct identi�cation of a misclassi�ed or OOD

sample. See Appendix D.1 for additional details on these metrics.

Method
ComputationTime

(sec) 

Correct vs. Incorrect Correct vs. OOD Incorrect vs. OOD

Dist.  AUROC  FPR  Dist.  AUROC  FPR  Dist.  AUROC  FPR 

Softmax 0.0001 0.72 0.91 1.00 0.45 0.76 1.00 0.13 0.76 1.00

Temperature[2] 0.0002 0.72 0.91 1.00 0.45 0.76 1.00 0.13 0.75 1.00

MC Dropout[15] 0.2700 0.62 0.86 0.47 0.46 0.80 0.72 0.05 0.79 0.73

Ensemble[16] 0.0668 0.80 0.93 0.28 0.49 0.79 1.00 0.01 0.78 1.00

Energy[17] 0.0002 0.71 0.90 1.00 0.45 0.75 1.00 0.19 0.75 1.00

ODIN[18] 0.1056 0.02 0.40 1.00 0.03 0.48 1.00 0.19 0.49 1.00

OpenMax[19] 0.0017 0.31 0.62 0.87 0.11 0.50 0.87 0.06 0.49 0.87

DICE[20] 0.0129 0.61 0.87 0.50 0.31 0.72 0.81 0.11 0.71 0.81

KL-

Matching[25]
0.0004 0.65 0.80 0.83 0.44 0.74 0.88 0.22 0.74 0.88

Mahalanobis[26] 0.1092 0.53 0.80 0.58 0.45 0.81 0.58 0.20 0.80 0.58

k-NN[27] 0.0190 0.59 0.83 0.41 0.61 0.87 0.37 0.29 0.87 0.38

PaRCE (Ours) 0.0270 0.64 0.87 0.59 0.89 0.99 0.08 0.71 0.99 0.09

Table 1. Comparison of measures of overall model competency for the lunar dataset with manually identi�ed

OOD samples.

↓ ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓
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Method
ComputationTime

(sec) 

Correct vs. Incorrect Correct vs. OOD Incorrect vs. OOD

Dist.  AUROC  FPR  Dist.  AUROC  FPR  Dist.  AUROC  FPR 

Softmax 0.0001 0.86 0.97 0.10 0.78 0.94 0.18 0.06 0.93 0.20

Temperature[2] 0.0002 0.86 0.97 0.10 0.78 0.94 0.18 0.06 0.93 0.20

MC Dropout[15] 6.7872 0.83 0.94 0.17 0.78 0.93 0.17 0.15 0.93 0.20

Ensemble[16] 1.5363 0.77 0.90 0.19 0.68 0.90 0.28 0.17 0.89 0.31

Energy[17] 0.0002 0.86 0.97 0.10 0.78 0.94 0.18 0.03 0.93 0.20

ODIN[18] 0.8650 0.41 0.70 1.00 0.20 0.55 1.00 0.00 0.53 1.00

OpenMax[19] 0.0012 0.53 0.77 0.83 0.14 0.48 0.84 0.03 0.45 0.84

DICE[20] 0.3228 0.74 0.92 0.22 0.77 0.92 0.21 0.16 0.91 0.21

KL-

Matching[25]
0.0004 0.86 0.96 0.10 0.76 0.94 0.18 0.00 0.93 0.20

Mahalanobis[26] 0.8937 0.34 0.66 0.72 0.50 0.78 0.67 0.38 0.79 0.66

k-NN[27] 0.3330 0.45 0.74 0.60 0.55 0.83 0.45 0.28 0.84 0.44

PaRCE (Ours) 0.0928 0.85 0.97 0.11 0.78 0.94 0.18 0.07 0.93 0.19

Table 2. Comparison of measures of overall model competency for the speed dataset with manually identi�ed

OOD samples.

↓ ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓
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Method
ComputationTime

(sec) 

Correct vs. Incorrect Correct vs. OOD Incorrect vs. OOD

Dist.  AUROC  FPR  Dist.  AUROC  FPR  Dist.  AUROC  FPR 

Softmax 0.0001 0.35 0.67 1.00 0.33 0.69 1.00 0.07 0.69 1.00

Temperature[2] 0.0002 0.69 0.87 0.31 0.33 0.56 1.00 0.08 0.55 1.00

MC Dropout[15] 0.2030 0.01 0.41 0.99 0.38 0.62 0.97 0.47 0.67 0.96

Ensemble[16] 0.0471 0.44 0.64 1.00 0.61 0.85 1.00 0.36 0.85 1.00

Energy[17] 0.0002 0.35 0.65 1.00 0.31 0.67 1.00 0.04 0.67 1.00

ODIN[18] 0.0621 0.48 0.72 1.00 0.00 0.46 1.00 0.02 0.46 1.00

OpenMax[19] 0.0018 0.17 0.44 1.00 0.54 0.75 0.44 0.80 0.76 0.44

DICE[20] 0.0109 0.26 0.49 0.80 0.07 0.34 0.90 0.03 0.34 0.90

KL-

Matching[25]
0.0004 0.24 0.32 1.00 0.42 0.72 0.57 0.72 0.73 0.57

Mahalanobis[26] 0.0727 0.49 0.71 0.75 0.84 0.96 0.27 0.88 0.96 0.26

k-NN[27] 0.0141 0.31 0.54 1.00 0.89 0.97 0.10 0.79 0.98 0.09

PaRCE (Ours) 0.0234 0.34 0.58 0.73 0.94 0.98 0.03 0.91 0.99 0.04

Table 3. Comparison of measures of overall model competency for the park dataset with manually identi�ed

OOD samples.

Results: The results are summarized in Tables 1 to 3. We display the distribution of competency scores for

correctly classi�ed, misclassi�ed, and OOD samples in Figs. 8 to 10.

The MSP baseline is the simplest and fastest method, but it tends to assign scores of one or close to one

regardless of whether an image is correctly classi�ed, misclassi�ed, or OOD, implying nearly complete

con�dence across sample types. Temperature Scaling is another fast and relatively simple method that

seeks to calibrate the softmax scores, but the distributions of scores for this method tend to look quite

similar to those of the original softmax method, resulting in an insigni�cant improvement overall. These

↓ ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓
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methods are suf�cient to distinguish correctly classi�ed samples from misclassi�ed and OOD samples in

the speed dataset, but they do not perform as well for other evaluations.

MC Dropout and Ensembling are related methods commonly used for uncertainty quanti�cation. The

performance of these methods is inconsistent across datasets. Both methods generally assign lower

scores to misclassi�ed and OOD samples, as compared to correctly classi�ed ones, but this is not always

the case. These methods are generally unable to distinguish between misclassi�ed and OOD samples and

often assign high scores to OOD images. Note that Dropout is by far the slowest method we consider, and

Ensembling is also on the slower side. Furthermore, Ensembling requires signi�cant computational effort

during training.

The classi�cation-based OOD detection techniques–Energy, ODIN, OpenMax, and DICE–have varying

performance across datasets, but they generally never outperform other methods we consider. The

Energy Score tends to be very similar to the Softmax and Temperature Scaling scores. ODIN assigns a

maximum score to nearly all points across all datasets. OpenMax and DICE show variations in score

distributions for correctly classi�ed, misclassi�ed, and OOD sets but produce scores with a lot of

distribution overlap and little difference in average scores.

The distance-based OOD detection techniques–KL-Matching, Mahalanobis, and k-NN–tend to assign

lower scores to misclassi�ed and OOD images than to correctly classi�ed images, but the extent of this

difference varies across each method and dataset. KL-matching does a good job distinguishing correctly

classi�ed images from misclassi�ed and OOD ones, but these three methods generally do not outperform

other methods we consider.

Our method, PaRCE, performs the most reliably, outperforming other methods across the majority of

evaluations. It is generally not the best at distinguishing between correctly classi�ed and misclassi�ed

samples but tends to best distinguish correctly classi�ed and misclassi�ed samples from OOD samples.

Note that while all methods, other than the MSP, generate scores with somewhat arbitrary values, our

method is probabilistic, generating intuitive scores between zero and one. Our method tends to assign

scores very close to one to correctly classi�ed samples, lower scores to misclassi�ed samples, and even

lower scores to OOD samples.
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4.1.2. Evaluation 2: Generated Data with New Properties

Datasets:

In addition to the spatial anomalies considered in the previous evaluation, we are interested in non-

regional anomalies that reduce model con�dence and prediction accuracy. For each dataset discussed in

4.1.1, we generate new data from the ID samples by adjusting saturation, contrast, brightness, pixelation,

or noise levels. We consider 21 values for each of these image properties, each of which results in either

high, medium, or low prediction accuracy. See Appendix B for additional details and examples.

Metrics:

We evaluate methods based on their ability to distinguish between image modi�cations resulting in high,

medium, and low accuracy. To evaluate the ability to distinguish between sets of samples using each

scoring method, we consider the same metrics discussed in 4.1.1.

qeios.com doi.org/10.32388/8SPGR0 12

https://www.qeios.com/
https://doi.org/10.32388/8SPGR0


Method

High vs. Medium High vs. Low Medium vs. Low

Dist.  AUROC  FPR  Dist.  AUROC  FPR  Dist.  AUROC  FPR 

Softmax 0.16 0.59 1.00 0.08 0.57 1.00 0.00 0.51 1.00

Temperature[2] 0.24 0.63 0.75 0.24 0.62 0.85 0.07 0.56 0.90

MC Dropout[15] 0.23 0.64 1.00 0.30 0.63 1.00 0.08 0.57 1.00

Ensemble[16] 0.31 0.69 1.00 0.36 0.68 1.00 0.12 0.60 1.00

Energy[17] 0.15 0.59 1.00 0.08 0.57 1.00 0.00 0.52 1.00

ODIN[18] 0.00 0.46 1.00 0.00 0.43 1.00 0.00 0.43 1.00

OpenMax[19] 0.12 0.55 0.92 0.26 0.58 0.92 0.15 0.56 0.93

DICE[20] 0.08 0.53 0.98 0.02 0.46 1.00 0.00 0.41 1.00

KL-Matching[25] 0.19 0.59 0.96 0.46 0.65 0.92 0.34 0.64 0.93

Mahalanobis[26] 0.13 0.56 0.96 0.46 0.65 0.94 0.36 0.66 0.92

k-NN[27] 0.11 0.50 1.00 0.45 0.50 1.00 0.37 0.50 1.00

PaRCE (Ours) 0.47 0.80 0.78 0.73 0.83 0.74 0.47 0.73 0.82

Table 4. Comparison of measures of overall model competency for the lunar dataset with modi�ed image

properties.

↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓
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Method

High vs. Medium High vs. Low Medium vs. Low

Dist.  AUROC  FPR  Dist.  AUROC  FPR  Dist.  AUROC  FPR 

Softmax 0.34 0.71 0.91 0.78 0.80 0.84 0.49 0.76 0.83

Temperature[2] 0.34 0.71 0.91 0.78 0.80 0.84 0.49 0.76 0.83

MC Dropout[15] 0.34 0.70 0.90 0.72 0.77 0.83 0.38 0.70 0.82

Ensemble[16] 0.34 0.70 0.83 0.54 0.73 0.74 0.20 0.63 0.77

Energy[17] 0.34 0.71 0.91 0.78 0.80 0.84 0.49 0.76 0.83

ODIN[18] 0.02 0.49 1.00 0.27 0.55 1.00 0.28 0.58 1.00

OpenMax[19] 0.29 0.66 0.89 0.74 0.75 0.85 0.46 0.72 0.85

DICE[20] 0.32 0.70 0.91 0.79 0.80 0.84 0.54 0.77 0.83

KL-Matching[25] 0.34 0.71 0.88 0.80 0.81 0.81 0.53 0.77 0.82

Mahalanobis[26] 0.00 0.41 0.98 0.00 0.31 0.99 0.00 0.30 0.99

k-NN[27] 0.00 0.34 0.99 0.00 0.23 1.00 0.00 0.24 0.99

PaRCE (Ours) 0.49 0.81 0.79 0.83 0.87 0.68 0.36 0.77 0.72

Table 5. Comparison of measures of overall model competency for the speed dataset with modi�ed image

properties.

↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓
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Method

High vs. Medium High vs. Low Medium vs. Low

Dist.  AUROC  FPR  Dist.  AUROC  FPR  Dist.  AUROC  FPR 

Softmax 0.11 0.56 1.00 0.18 0.57 1.00 0.12 0.52 1.00

Temperature[2] 0.38 0.52 1.00 0.55 0.54 1.00 0.25 0.53 0.94

MC Dropout[15] 0.14 0.58 0.95 0.44 0.61 0.94 0.31 0.55 0.94

Ensemble[16] 0.30 0.66 1.00 0.76 0.70 1.00 0.50 0.58 1.00

Energy[17] 0.11 0.56 1.00 0.18 0.57 1.00 0.12 0.51 1.00

ODIN[18] 0.01 0.50 1.00 0.12 0.51 1.00 0.12 0.51 1.00

OpenMax[19] 0.11 0.56 0.96 0.13 0.55 0.96 0.03 0.49 0.98

DICE[20] 0.05 0.51 0.96 0.14 0.48 1.00 0.12 0.45 1.00

KL-Matching[25] 0.25 0.58 1.00 0.68 0.62 1.00 0.64 0.60 0.94

Mahalanobis[26] 0.09 0.52 0.98 0.70 0.56 0.99 0.65 0.57 0.99

k-NN[27] 0.08 0.50 1.00 0.71 0.49 1.00 0.67 0.48 0.99

PaRCE (Ours) 0.59 0.85 0.81 0.88 0.87 0.77 0.37 0.57 0.93

Table 6. Comparison of measures of overall model competency for the park dataset with modi�ed image

properties.

Results: The results are summarized in Tabs. 4-6. We also display the distribution of competency scores

for high, medium, and low accuracy modi�cations in Figs. 11-13.

The MSP and Temperature Scaling methods perform similarly to each other across all datasets. These

methods are not insightful for the lunar or park datasets, assigning a near-maximum score to the

majority of samples, regardless of model accuracy. For the speed dataset, these methods more clearly

assign different distributions of scores to high, medium, and low accuracy image modi�cations, and their

performance is more similar to other existing methods.

↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓

qeios.com doi.org/10.32388/8SPGR0 15

https://www.qeios.com/
https://doi.org/10.32388/8SPGR0


MC Dropout and Ensembling also perform similarly to one another. Their average scores tend to be

similar across accuracy levels, but there is generally more variation for medium and low accuracy

samples. However, the performance of these methods varies signi�cantly across datasets.

For the classi�cation-based OOD detection methods, there tends to be little variation in score

distributions across high, medium, and low accuracy image modi�cations. They all generate more

reasonable score distributions for the speed dataset, but they generally do not outperform previously

mentioned methods, even for this dataset.

Looking at distance-based OOD detection methods, KL-matching generally assigns lower scores to low

accuracy modi�cations than to high and medium accuracy ones, indicating some utility of this method.

k-NN assigns lower scores on average for the low accuracy images in the lunar and park datasets but

higher scores for the speed dataset. The Mahalanobis method assigns similar scores for high, medium,

and low accuracy images across all datasets.

Our method performs the best across nearly all metrics for the modi�ed datasets–best distinguishing

between high, medium, and low accuracy image modi�cations. Again, other than the MSP, our method is

the only probabilistic one, making it the most intuitive. It tends to assign scores close to one to images

with high accuracy modi�cations, scores close to zero for low accuracy modi�cations, and scores in

between zero and one for medium accuracy.

4.2. Regional Competency Images

We compare our regional competency images to various existing methods for anomaly detection and

localization. In particular, we compare our approach to GANomaly[35], DRAEM[36], FastFlow[42],

PaDiM[38], PatchCore[39], Reverse Distillation[40], and Student-Teacher Feature Pyramid Matching[41].

These are several of the state-of-the-art anomaly detection algorithms that generate anomaly maps

similar to our regional competency maps. All methods were implemented with the help of the Anomalib

library[47].

4.2.1. Evaluation: Anomalous Regions of Images

Datasets:

We conduct analysis using the three datasets discussed in 4.1.1. These datasets allow us to assess the

ability of methods to identify unfamiliar objects, detect regions associated with unseen classes, and
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recognize unexplored areas in an environment. See Appendix B for details.

Metrics:

We evaluate methods based on their computation time and their ability to distinguish between familiar

regions (in both ID and OOD images) and unfamiliar regions (in OOD images). Familiar regions are all of

the pixels that occupy image structures that exist in the training set, and unfamiliar pixels are those that

occupy structures that were not present during training. To evaluate the ability to distinguish between

sets of samples using each mapping method, we consider the same metrics discussed in Sec. 4.1.1.

Method Computation Time (sec) 

ID All vs. OOD Unfamiliar OOD Familiar vs. OOD Unfamiliar

Dist.  AUROC  FPR  Dist.  AUROC  FPR 

GANomaly[35] 0.074 0.11 0.58 0.91 0.11 0.56 0.92

DRAEM[36] 0.197 0.36 0.68 0.97 0.46 0.69 0.97

FastFlow[42] 0.036 0.84 0.97 0.15 0.74 0.96 0.17

PaDiM[38] 0.026 0.89 0.98 0.07 0.80 0.98 0.09

PatchCore[39] 0.640 0.94 0.59 0.83 0.78 0.57 0.86

Reverse Distillation[40] 0.083 0.85 0.95 0.10 0.80 0.95 0.11

Student-Teacher[41] 0.014 0.79 0.95 0.33 0.75 0.95 0.32

PaRCE (Ours) 0.122 0.89 0.98 0.06 0.87 0.98 0.07

Table 7. Comparison of measures of regional model competency for the lunar dataset with anomalous regions.

↓
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Method ComputationTime (sec) 

ID All vs. OOD Unfamiliar OOD Familiar vs. OOD Unfamiliar

Dist.  AUROC  FPR  Dist.  AUROC  FPR 

GANomaly[35] 0.075 0.15 0.55 0.80 0.08 0.55 0.80

DRAEM[36] 0.118 0.22 0.62 0.85 0.19 0.62 0.85

FastFlow[42] 0.035 0.43 0.77 0.78 0.34 0.77 0.78

PaDiM[38] 0.025 0.58 0.86 0.42 0.43 0.86 0.44

PatchCore[39] 0.870 0.45 0.50 1.00 0.33 0.50 1.00

Reverse Distillation[40] 0.068 0.22 0.62 0.79 0.16 0.62 0.79

Student-Teacher[41] 0.014 0.32 0.69 0.72 0.18 0.69 0.72

PaRCE (Ours) 0.145 0.75 0.89 0.54 0.52 0.89 0.54

Table 8. Comparison of measures of regional model competency for the speed dataset with anomalous

regions.

↓
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Method ComputationTime (sec) 

ID All vs. OOD Unfamiliar OOD Familiar vs. OOD Unfamiliar

Dist.  AUROC  FPR  Dist.  AUROC  FPR 

GANomaly[35] 0.036 0.06 0.53 0.93 0.07 0.53 0.93

DRAEM[36] 0.120 0.09 0.51 0.95 0.17 0.51 0.95

FastFlow[42] 0.034 0.52 0.83 0.72 0.28 0.83 0.72

PaDiM[38] 0.025 0.54 0.84 0.73 0.28 0.84 0.73

PatchCore[39] 0.937 0.90 0.51 0.98 0.36 0.51 0.98

Reverse Distillation[40] 0.070 0.45 0.77 0.72 0.17 0.76 0.72

Student-Teacher[41] 0.014 0.67 0.92 0.39 0.34 0.92 0.39

PaRCE (Ours) 0.296 0.45 0.74 0.94 0.16 0.74 0.94

Table 9. Comparison of measures of regional model competency for the park dataset with anomalous regions.

Results:

The results are summarized in Tabs. 7-9. We display the distribution of competency scores for pixels in ID

images, familiar pixels in OOD images, and unfamiliar pixels in OOD images in Figs. 14-16. Examples of

the regional competency images are shown in Figs. 17-19.

GANomaly, DRAEM, and Reverse Distillation generally perform worse than competing methods and

never outperform other methods because they tend to assign similar scores to both familiar and

unfamiliar pixels.

FastFlow and PaDiM tend to perform comparably to one another, generating similar score distributions

and competency images. They generally perform better than the �rst three mentioned methods.

Quantitatively, PaDiM tends to perform a bit better that FastFlow. It is one of the methods with the

highest AUROC scores for the lunar dataset and achieves the lowest FPRs for the speed limit signs dataset.

PatchCore is by far the slowest method, requiring around one second to obtain an output for a single

image. It tends to obtain high KS distances, achieving the highest distances for the park dataset and the

↓
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highest distance between ID and unfamiliar OOD distributions for the lunar dataset. However, it also

tends to obtain very high (and often the highest) FPRs due to the large range of scores for familiar pixels.

Student-Teacher Feature Pyramid Matching is consistently the fastest method, maintaining the same low

average computation time across all datasets. It does not perform particularly well for the lunar or speed

datasets but performs better across a number of metrics for the park dataset, achieving the highest

AUROC scores and lowest FPRs.

Our method, PaRCE, scores best across the majority of metrics for the lunar and speed datasets. For the

lunar dataset, it achieves the highest or second highest KS distances, highest AUROC scores, and lowest

FPRs. For the speed dataset, it achieves the highest KS distances, highest AUROCs, and second lowest

FPRs. Along with DRAEM, it is one of only two methods with a consistent score range. Unlike other

methods, it outputs intuitive probability scores that tend to be around one for familiar pixels and below

one for unfamiliar pixels. Despite its success on the lunar and speed datasets, like most other methods, it

performs quite poorly for the park dataset. This reduction in performance may be due to ambiguity in

manually identifying familiar and unfamiliar regions in OOD images for this dataset or limitations of the

simple Felzenszwalb algorithm[44] in segmenting these more complex and detailed images.

5. Conclusions

In this work, we present a probabilistic and reconstruction-based competency estimation (PaRCE)

method that captures predictive uncertainty in CNN-based perception models by estimating prediction

accuracy. Through comparisons with various UQ and OOD detection techniques, we demonstrate that

PaRCE effectively distinguishes between correctly classi�ed, misclassi�ed, and OOD samples. It also

shows robust performance in identifying visual image modi�cations that correspond to high, medium,

and low prediction accuracy. Additionally, we extend PaRCE to generate regional competency maps, which

re�ect model con�dence for speci�c regions within an image. Our comparisons with existing anomaly

localization techniques indicate that PaRCE often outperforms other methods in distinguishing familiar

from unfamiliar pixels within an image.

Despite these strengths, we identi�ed a dataset for which PaRCE, alongside other anomaly localization

methods, performs suboptimally. This limitation could stem from ambiguity in model familiarity with

this dataset or challenges in segmenting images from complex, heterogeneous environments. Future

work could explore domain-speci�c segmentation methods to enhance performance in complex

scenarios. To further improve performance, one could consider the use of different reconstruction loss
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functions or ensembles of autoencoders. Another promising direction would involve integrating

competency scores into decision-making frameworks that bene�t from risk assessment, particularly for

autonomous systems or those that rely on human experts sparingly. Finally, while we evaluated

competency estimation methods using autonomous navigation datasets, future work should evaluate

methods in other domains, such as medical imaging and industrial inspection, where the need for robust

and trustworthy models is equally critical.

Appendix

A. Data & Code Sources

The lunar, speed, and pavilion datasets we use for evaluation, as well as the trained lunar, speed, and

pavilion models, are provided through Zenodo. Instructions for reproducing our results are provided in

the README of our code repository.

B. Datasets for Evaluation

We conduct analysis across three unique datasets that contain manually identi�ed OOD samples. The �rst

dataset was obtained from a lunar environment, in which the training data contains images from an

uninhabited moon and the test data contains images from a habited moon. While the training images

only contain the lunar surface, the sky, and shadows, the test images additionally contain astronauts and

human-made structures. This dataset enables us to assess the ability of overall competency approaches to

detect images with unfamiliar objects and regional competency methods to identify these objects.

Column 1 of Fig. 1 displays example in-distribution images from this dataset, and column 2 shows

example OOD images.

The second dataset contains speed limit signs in Germany[46]. While the training dataset is composed of

common speed limit signs (30 km/hr and higher), the test dataset set also contains signs with an

uncommon speed limit (20 km/hr). This dataset assesses the ability of overall competency methods to

identify images associated with unfamiliar class labels and the ability of regional competency estimators

to detect regions associated with previously unseen classes. Column 1 of Fig. 2 displays example in-

distribution images from this dataset, and column 2 shows example OOD images.

The third dataset contains images from regions in a park. While the training dataset only contains

images from forested and grassy regions of the park, the test dataset additionally includes images from
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around the park’s pavilion. This dataset allows for the assessment of the ability of overall competency

methods to identify images from unexplored regions in an environment and for regional approaches to

further identify these regions within a given image. Column 1 of Fig. 3 displays example in-distribution

images from this dataset, and column 2 shows example OOD images.

While many existing works in OOD detection and anomaly localization focus on spatial anomalies–where

speci�c regions in the image are anomalous–we are also interested in the ability of existing methods to

identify non-regional anomalies that reduce model con�dence. For each of the three mentioned datasets,

we generate new data from the in-distribution samples. Column 1 of Figs. 1-3 displays examples of

unmodi�ed images from each of the original datasets, and columns 3-7 of these �gures show examples of

generated images. These images have been modi�ed by adjusting saturation (column 3), contrast (column

4), brightness (column 5), pixelation (column 6), or noise levels (column 7). These particular image

modi�cations were chosen because they have a signi�cant impact on classi�cation accuracy. We consider

21 different values for each of these �ve image properties. Each image modi�cation results in either high

(0.9 to 1.0), medium (0.5 to 0.9), or low (0.0 to 0.5) prediction accuracy. We are interested in whether overall

competency estimation approaches can distinguish between visual image modi�cations that result in

high, medium, and low prediction accuracy.

Figure 1. Example images from the lunar dataset. Column 1: test images drawn from the same distribution as

the training images (uninhabited moon). Column 2: test images with unfamiliar obstacles drawn from a new

distribution (habited moon). Column 3: test images with varied saturation levels generated from in-

distribution images. Column 4: test images with varied contrast levels generated from in-distribution images.

Column 5: test images with varied brightness levels generated from in-distribution images. Column 6: in-

distribution images that have been pixelated. Column 7: in-distribution images with additive noise.
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Figure 2. Example images from the speed limit signs dataset. Column 1: test images drawn from the same

distribution as the training images (common speed limit signs). Column 2: test images with unfamiliar class

labels drawn from a new distribution (uncommon speed limit signs). Column 3: test images with varied

saturation levels generated from in-distribution images. Column 4: test images with varied contrast levels

generated from in-distribution images. Column 5: test images with varied brightness levels generated from

in-distribution images. Column 6: in-distribution images that have been pixelated. Column 7: in-distribution

images with additive noise.
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Figure 3. Example images from the outdoor park dataset. Column 1: test images drawn from the same

distribution as the training images (forested/grassy regions). Column 2: test images associated with

unexplored regions drawn from a new distribution (regions around pavilion). Column 3: test images with

varied saturation levels generated from in-distribution images. Column 4: test images with varied contrast

levels generated from in-distribution images. Column 5: test images with varied brightness levels generated

from in-distribution images. Column 6: in-distribution images that have been pixelated. Column 7: in-

distribution images with additive noise.

C. Additional Details on PaRCE Score

To estimate the in-distribution probability of our overall PaRCE score, we design an autoencoder to

reconstruct the input image. A holdout set of images, drawn from the same distribution as the training

samples but not seen by the perception model, is used to estimate the distribution of the reconstruction

loss for each class. The distributions for this set across each of the datasets described in Appendix B are

displayed in Fig. 4. Similarly, to estimate the in-distribution probability of our regional PaRCE score, we

design an autoencoder to inpaint missing segments of an image. A holdout set of segments is used to

estimate the distributions of reconstruction loss, which are displayed in Fig. 6 for each of the datasets.

The probability that an image,  , is drawn from the same distribution as those in the training sample is

given by Eq. (5). We estimate    as the probability that the reconstruction loss,  ,

corresponding to image    aligns with the bottom    of losses for the training distribution. For each

class, we assume the reconstruction loss,  , follows a Gaussian distribution with mean   and standard

deviation  . Because   is a Gaussian random variable,   corresponds to a z-score,  . We then estimate

the class in-distribution probability,  , in the following way:

X

P (D|{f(X) = c}) ℓ(X)

X N%

Lc μc

σc Lc N z

P (D|{f(X) = c})
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To calibrate our competency estimator, we select the z-score parameter such that the average competency

score (left side of Eq. (8)) re�ects the prediction accuracy (right side of Eq. (8)) for the in-distribution

holdout set. Fig. 5 displays a plot of the prediction accuracy and average overall competency score for the

holdout set across various z-score values for each of the three datasets. Fig. 7 displays the prediction

accuracy and average regional competency score. The z-score is chosen such that the absolute difference

between the prediction accuracy and average competency score is minimized.

Figure 4. True distribution of reconstruction losses obtained by the trained image reconstruction model for

images in the in-distribution holdout set of the (a) lunar, (b) speed limit signs, and (c) outdoor park datasets

across class labels.

(D|{f(X) = c})P̂ = P ({ > ℓ(X) − ( + z )}) (9)Lc μc σc

= 1 − P ({ ≤ ℓ(X) − ( + z )}) (10)Lc μc σc

= 1 − (ℓ(X) − − z ) (11)F ∼N ( , )Lc μc σc
μc σc

= 1 − ( ) (12)FZ∼N (0,1)

ℓ(X) − 2 − zμc σc

σc

=: 1 − ϕ( − z) . (13)
ℓ(X) − 2μc

σc
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Figure 5. Plot of image prediction accuracy and average overall competency score for the in-distribution

holdout set (de�ned in Eq. (8))versus the z-score parameter (from Eq. (7)) for the (a) lunar, (b) speed limit

signs, and (c) outdoor park datasets.

D. Additional Analysis of Competency Scores

D.1. Evaluation Metrics

We evaluate both overall and regional competency estimation methods based on their computation time

and their ability to distinguish between various types of data. For the overall competency estimation

approaches, we assess their ability to distinguish between correctly classi�ed, misclassi�ed, and OOD

samples. In addition, we evaluate their ability to distinguish between visual image modi�cations

resulting in high, medium, and low prediction accuracy. (Refer to Appendix B for additional details on

these data types.) Comparing regional competency estimation approaches, we consider the ability to

distinguish between familiar pixels (from both in-distribution and OOD images) and unfamiliar pixels

(from OOD samples). Familiar regions are all of the pixels that occupy image structures that exist in the

training set, and unfamiliar pixels are those that occupy structures that were not present during training.

To quantify the ability of each scoring method to distinguish between sets of samples, we utilize three

metrics: the Kolmogorov–Smirnov (KS) test, the area under the receiver operating characteristic curve

(AUROC), and the false positive rate (FPR) at a 95% true positive rate (TPR). Each metric provides unique

insights into method performance in distinguishing between sample types.

The two-sample KS test is traditionally used to assess whether two data samples come from the same

distribution by posing the null hypothesis that both samples come from populations with the same
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distribution. It may also be used to test the extent to which two underlying probability distributions differ

by measuring the maximum distance between the cumulative distribution functions (CDFs) of two score

distributions. This distance is one way to quantify the separability of score distributions associated with

distinct sample types, where higher KS values indicate greater dissimilarity between distributions, thus

signifying better performance in distinguishing these sample types.

We also use the AUROC to quantify the separability of score distributions. A receiver operating

characteristic (ROC) curve is a graph that shows the performance of a model by plotting the TPR against

the FPR at different threshold values. The AUROC is a widely used metric that evaluates the performance

of a binary classi�er across different decision thresholds. Here, we use the AUROC to measure the degree

of overlap between score distributions for different sample types. An AUROC of 1.0 signi�es perfect

separability, while an AUROC of 0.5 suggests no discriminative power between the classes.

Finally, the FPR at a �xed TPR of 95% assesses the rate at which a model incorrectly labels a sample as a

positive point (i.e., OOD, low-accuracy, or unfamiliar) when it is, in fact, a negative point (i.e., in-

distribution, high-accuracy, or familiar). By �xing the TPR at 95%, we ensure the competency estimator

maintains high sensitivity to anomalies or misclassi�cations. A lower FPR at this threshold implies that

the model is better at avoiding false alarms while still accurately identifying true OOD, low-accuracy, and

unfamiliar samples. This metric is valuable because false positives can reduce trustworthiness.

D.2. Overall Competency Scores

In this section, we provide the score distributions for correctly classi�ed, misclassi�ed, and OOD samples

across various methods for assessing overall model competency. Fig. 8 displays box plots of the

distributions for the lunar dataset, Fig. 9 displays plots for the speed limit signs dataset, and Fig. 10

displays plots for the outdoor park dataset. We also provide the score distributions for samples with high,

medium, and low accuracy modi�cations across the same methods for assessing overall model

competency. Fig. 11 displays box plots of the distributions for the lunar dataset, Fig. 12 displays plots for

the speed limit signs dataset, and Fig. 13 displays plots for the outdoor park dataset.
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Figure 8. Box plots capturing the score distributions for correctly classi�ed, incorrectly classi�ed, and OOD

samples in the lunar dataset, where scores are generated by the Maximum Softmax Probability (MSP)

baseline, the calibrated MSP with Temperature Scaling[2], Monte Carlo (MC) Dropout[15], Ensembling[16], the

Energy Score[17], ODIN[18], OpenMax[19], DICE[20], KL-Matching[25], the Mahalanobis Distance[26], k-Nearest

Neighbors (k-NN)[27], and our PaRCE method. We expect correctly classi�ed images to be assigned high

competency scores, while misclassi�ed and OOD samples are expected to have lower associated scores.
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Figure 9. Box plots capturing the score distributions for correctly classi�ed, incorrectly classi�ed, and OOD

samples in the speed limit signs dataset, where scores are generated by the Maximum Softmax Probability

(MSP) baseline, the calibrated MSP with Temperature Scaling[2], Monte Carlo (MC) Dropout[15],

Ensembling[16], the Energy Score[17], ODIN[18], OpenMax[19], DICE[20], KL-Matching[25], the Mahalanobis

Distance[26], k-Nearest Neighbors (k-NN)[27], and our PaRCE method. We expect correctly classi�ed images to

be assigned high competency scores, while misclassi�ed and OOD samples are expected to have lower

associated scores.
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Figure 10. Box plots capturing the score distributions for correctly classi�ed, incorrectly classi�ed, and OOD

samples in the outdoor park dataset, where scores are generated by the Maximum Softmax Probability (MSP)

baseline, the calibrated MSP with Temperature Scaling[2], Monte Carlo (MC) Dropout[15], Ensembling[16], the

Energy Score[17], ODIN[18], OpenMax[19], DICE[20], KL-Matching[25], the Mahalanobis Distance[26], k-Nearest

Neighbors (k-NN)[27], and our PaRCE method. We expect correctly classi�ed images to be assigned high

competency scores, while misclassi�ed and OOD samples are expected to have lower associated scores.
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Figure 11. Box plots capturing the score distributions for images with high, medium, and low accuracy visual

modi�cations in the lunar dataset, where scores are generated by the Maximum Softmax Probability (MSP)

baseline, the calibrated MSP with Temperature Scaling[2], Monte Carlo (MC) Dropout[15], Ensembling[16], the

Energy Score[17], ODIN[18], OpenMax[19], DICE[20], KL-Matching[25], the Mahalanobis Distance[26], k-Nearest

Neighbors (k-NN)[27], and our PaRCE method. We expect high accuracy images to be assigned high

competency scores, while medium and low accuracy samples are expected to have lower associated scores.
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Figure 12. Box plots capturing the score distributions for images with high, medium, and low accuracy

modi�cations in the speed limit signs dataset, where scores are generated by the Maximum Softmax

Probability (MSP) baseline, the calibrated MSP with Temperature Scaling[2], Monte Carlo (MC) Dropout[15],

Ensembling[16], the Energy Score[17], ODIN[18], OpenMax[19], DICE[20], KL-Matching[25], the Mahalanobis

Distance[26], k-Nearest Neighbors (k-NN)[27], and our PaRCE method. We expect high accuracy images to be

assigned high competency scores, while medium and low accuracy samples are expected to have lower

associated scores.
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Figure 13. Box plots capturing the score distributions for images with high, medium, and low accuracy visual

modi�cations in the outdoor park dataset, where scores are generated by the Maximum Softmax Probability

(MSP) baseline, the calibrated MSP with Temperature Scaling[2], Monte Carlo (MC) Dropout[15],

Ensembling[16], the Energy Score[17], ODIN[18], OpenMax[19], DICE[20], KL-Matching[25], the Mahalanobis

Distance[26], k-Nearest Neighbors (k-NN)[27], and our PaRCE method. We expect high accuracy images to be

assigned high competency scores, while medium and low accuracy samples are expected to have lower

associated scores.

D.3. Regional Competency Images

In this section, we provide the score distributions for familiar regions in in-distribution (ID) images,

familiar regions in OOD images, and unfamiliar regions in OOD images across various methods for

assessing regional model competency. Figures 14 displays box plots of the distributions for the lunar

dataset, 15 displays plots for the speed limit signs dataset, and 16displays plots for the outdoor park dataset.

We also provide examples of the competency images generated by each of the same methods for

assessing regional model competency. Figures 17 displays example images for the lunar dataset, 18

displays examples for the speed limit signs dataset, and 19 displays examples for the outdoor park dataset.
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Figure 14. Box plots capturing the score distributions for all pixels of in-distribution (ID) images, familiar

pixels of OOD images, and unfamiliar pixels of OOD images in the lunar dataset, where scores are generated by

GANomaly[35], DRAEM[36], FastFlow[42], PaDiM[38], PatchCore[39], Reverse Distillation[40], Student-Teacher

Feature Pyramid Matching[41], and our PaRCE method. We expect high competency scores for familiar pixels

(from both ID and OOD images) and lower scores for unfamiliar pixels.

Figure 15. Box plots capturing the score distributions for all pixels of in-distribution (ID) images, familiar

pixels of OOD images, and unfamiliar pixels of OOD images in the speed limit signs dataset, where scores are

generated by GANomaly[35], DRAEM[36], FastFlow[42], PaDiM[38], PatchCore[39], Reverse Distillation[40],

Student-Teacher Feature Pyramid Matching[41], and our PaRCE method. We expect high competency scores

for familiar pixels (from both ID and OOD images) and lower scores for unfamiliar pixels.
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Figure 16. Box plots capturing the score distributions for all pixels of in-distribution (ID) images, familiar

pixels of OOD images, and unfamiliar pixels of OOD images in the outdoor park dataset, where scores are

generated by GANomaly[35], DRAEM[36], FastFlow[42], PaDiM[38], PatchCore[39], Reverse Distillation[40],

Student-Teacher Feature Pyramid Matching[41], and our PaRCE method. We expect high competency scores

for familiar pixels (from both ID and OOD images) and lower scores for unfamiliar pixels.

Figure 17. A comparison of the regional competency images obtained for example OOD images in the lunar

dataset, for which the sky and lunar surface are familiar to the perception model while astronauts and

human-made structures are unfamiliar. A pixel assigned a high competency score appears more blue, while a

pixel assigned a low score appears more red. We expect more red regions to correspond to unfamiliar objects

(i.e., an astronaut or human-made structure) while more blue regions should correspond to familiar

structures.
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Figure 18. A comparison of the regional competency images obtained for example OOD images in the speed

limit signs dataset, for which speeds 30-120 km/hr are familiar to the perception model while the speed 20

km/hr is unfamiliar. A pixel assigned a high competency score appears more blue, while a pixel assigned a low

score appears more red. We expect more red regions to correspond to regions associated with the unseen class

(i.e., the number 2) while more blue regions should correspond to other parts of the traf�c sign.

Figure 19. A comparison of the regional competency images obtained for example OOD images in the outdoor

park dataset, for which the grassy and forested regions are familiar to the perception model while regions

around the pavilion are unfamiliar. A pixel assigned a high competency score appears more blue, while a pixel

assigned a low score appears more red. We expect more red regions to correspond to unexplored regions in

the environment (i.e., areas around the pavilion) while more blue regions should correspond to familiar

regions.
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