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Abstract

Minkowski spacetime parallax uses the shifting plane of simultaneity (POS), of an accelerating inertial reference frame (IRF),
while referencing a distant signal (such as a pulsar) with regularly recurring intervals. The distance of the signal’s source can
be derived from the Lorentz transfer equations, and the rate which the intervals are changing, due to the shifting (POS) during
acceleration. The advantage of this method of measuring distance is that: Per the Lorentz transfer equations, time displacement
actually increases with distance x, so using time displacement as a parallax to triangulate vast distances (approaching the cosmic
microwave background) becomes feasible. The Time Dependent Hubble Parameter can be approximated, using this method.
Such a method of measurement is well justified, as an alternative to conventional methods of redshift spectroscopy surveys, or
CMB temperature fluctuations, with the intent of resolving the lingering "Hubble Tension".

Keywords Special Relativity · Astronomy: distance measure · Hubble Parameter · Minkowski spacetime

1 Introduction

Proposing an alternate method of measuring galactic distances is well justified, when considering that the discrepancy between
the two current standard methods of determining the Hubble constant (Ho) is greater than 5%, which is equivalent to about
three standard deviations. Using visible spectra redshifting of cepheid variables, the most recent calculation is Ho = 74.03±
1.42km/sec/M pc [1]. However, measurements using temperature fluctuations in the Cosmic Microwave Background (CMB)
are calculated to be Ho = 68.7±1.3km/sec/M pc [2]. Observed discrepancies between such methods might reveal insights into
the nature of the dark energy used in the standard model of cosmology.

2 An Intuitive Description of this Method of Measurement

Measurement of distance involving spacetime displacement, is analogous to classic stellar parallax measurements of nearby
objects [3], in which d is triangulated using the Earth’s orbit mean radius of 1AU. See figure 1
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Stellar Parallax Formula:
d=1/p 

d = distance, in parsecs
p = parallax, in arcseconds 
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Figure 1: Classic Stellar Parallax measurement
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d = tan(π/2−θ) (1)

The standard unit of distance, 1 parsec is equal to the parallax displacement of angle p, in arcseconds,

d(par secs) = 1/p (2)

Minkowski Spacetime Parallax

Minkowski spacetime parallax uses the shifting plane of simultaneity (POS), of an accelerating inertial reference frame (IRF),
while referencing a distant signal (such as a pulsar) with regularly recurring intervals. The distance of the signal’s source can
be derived from the Lorentz transfer equations, and the rate which the intervals are changing, due to the shifting (POS) during
acceleration.
Figure 2 describes spacetime displacement, from the inertial reference frame (IRF) of stationary observer S, with respect to
accelerating observer S′. The spacetime displacement of S′ is indirectly measured by recording pulsar flash periods T during
acceleration from velocity v = 0 to final velocity v f i n . Note that the (POS) is pivoting, during acceleration.
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Figure 2: Spacetime Diagram

3 How the Summation of Pulsar Flashes, With respect to an Accelerating Observer,
can Represent Years of Spacetime Displacement.

Figure 3 (left side) describes how detected average pulse periods Tdet increase over time, during S′ acceleration, as S′ plane of
simultaneity sweeps across n years of the pulsar worldline [4] .

Figure 3 (right side), shows S′ pivoting plane of simultaneity, during acceleration from v = 0 to final velocity v f i n . In this
example S′ summed total pulsar flashes |A′| represents 5 year s of displaced spacetime ∆t . Thus, the accelerating observer’s
pulsar sum |A′| could be several orders of magnitude greater than the stationary observer’s pulsar sum |A|.

Note: Tdet is actually a net result of combined S′ acceleration, and pulsar recession velocity vpul sar (which expands similar
to redshifting).
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From S IRF: As observer S’ accelerates from v=0 to final velocity vfin, 
his plane of simultaneity pivots, sweeping across years of the pulsar worldline. 
The accelerating observer S’ pulsar sum | A’| could be several orders of 
magnitude greater than the stationary observer S pulsar sum | A|. 

S’ Summation of Pulsar Flashes |A’| During Acceleration,
Corresponds to n Years of Displaced Spacetime 𝚫t
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Average Pulse Period T Shifting over Time t, During S’ Acceleration,
Corresponds to Pulsar  velocity dvpulsar over Time dt 

ΔT
Δt ≈      dvpulsar 

dt 𝝮  

     Definitions
ΔT: shift in pulsar period

dvpulsar :pulsar velocity 

𝝮: emitted energy loss

From S IRF: As observer S’ accelerates from v=0 to final velocity vfin, 
his plane of simultaneity pivots, sweeping across years of the pulsar worldline. 
The accelerating observer S’ pulsar sum | A’| could be several orders of 
magnitude greater than the stationary observer S pulsar sum | A|. 

S’ Summation of Pulsar Flashes |A’| During Acceleration,
Corresponds to n Years of Displaced Spacetime 𝚫t
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Detected average Pulse Periods Tdet increase over time, during S’ Acceleration,
As S’ plane of simultaneity sweeps across n years of pulsar worldline 

Note: Tdet is actually a net result of combined S’ acceleration, and pulsar 
recession velocity vpulsar (which expands similar to redshifting).

Figure 3: Left: Increasing pulsar periods. Right: Pivoting plane of simultaneity represents n years of displaced spacetime

Equation for Time Displacement

Figure 4 shows that displacement in time ∆tpul sar , along x ′, is calculated from the difference of the accelerating observer S′
summed flashes |A′|, and the stationary observer S summed pulsar flashes |A|, divided by the initial pulsar period T0

From the known initial pulsar flash period  T0,

Deriving spacetime displacement (Δt),  from |A’|-|A|

(Δtpulsar)

Pulsar Worldline
Accelerating in time

𝚫tpulsar ≈
|A’|-|A|
   T0

x

ct
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Figure 4: Deriving spacetime displacement from pulsar flashes in both I RF

With respect to S′ IRF, |A′| is summed empirically during acceleration, from his time t ′ = 0 to t ′ = t ′f i n (at final velocity), as

his POS pivots across n years of pulsar world line,

|A′| =
n∑

i=1
1( f l ash) (3)

With respect to S IRF, |A| can simply be calculated, from his time period t = 0 to t f i n , and the initial period T0 as,

|A| = t f i n − t 0

T0
(4)

Where t f i n is determined by the reverse Lorentz time transformation equation [5],

t f i n =
t ′f i n + v x ′

c2√
1− v2

c2

(5)
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Thus, time displacement ∆t is the difference between S′ summation of |A′|, and S summation of |A|, over the known pulsar
initial period (T0),

∆t = |A′|− |A|
T0

(6)

4 How pulsar distance can be triangulated from spacetime displacement and simultaneity
plane slope.

From S IRF: Figure 5 describes how pulsar distance xS can then be triangulated from the slope of S′ plane of simultaneity (at
final velocity v f i n) and the spacetime displacement ∆t .

xs ≈ xa - 𝚫xpulsar

𝚫xpulsar
From Observer S’ Plane of simultaneity slope: x’=       and 

spacetime displacement of (Δt), solving for distance (xa):

Equation to Derive Distance (xa) 
from Spacetime Displacement (Δt)

(xa)

xa ≈ 

(Δtpulsar)

x

(Δtpulsar)

Pulsar worldline

Pt a

Equation to Derive Distance (xs) from Distance (xa) 

dT
dt

Pulsar worldline

xa 
xs 

S’  P.O.S.  

x

ct

Pt a

E-5

                     Definitions

vpulsar: Pulsar net velocity

𝚫xpulsar: Pulsar shift in x, during 𝚫t
𝚫tpulsar: Displaced time during S’ 
acceleration

xa: Distance to pulsar at pt a
xs: Distance to pulsar along x

x’→ x’=ct
vfin

       x’=
ct
vfin

ct
vfin

c𝚫tpulsar
vfin

Figure 5: Deriving distance xa from time displacement ∆tpul sar

As observer S’ worldline accelerates to velocity v f i n , his plane of simultaneity pivots to a slope of:

x ′ = ct

v f i n
(7)

Substituting ∆t for t , and solving for xa ,

xa ≈ c∆tpul sar

v f i n
(8)

Thus, ∆tpul sar increases with distance xa . Greater distances of xa require less acceleration to triangulate.
Note that this method has a clear advantage in measurements of very remote distances, approaching the Cosmic Microwave

Background (CMB).

Determining Pulsar Distance XS , with Respect to S IRF, from Establish Distance Xa , at pt a

Equation 8 establishes distance xa , which is the distance at point a, along x, to the pulsar in n years of time displacement ∆t .
However, the objective is to derive xs , which is the measurement of the pulsar, along x, from S IRF (See figure 5, right image). In
order to do so, we must subtract distance ∆xpul sar , which is the distance the pulsar increases over displaced time ∆t , along x,
from S IRF,

xs ≈ xa −∆xpul sar (9)

Integrating Distance vpul sar from Expanding Periods Tdet

Figure 6 shows how to calculate ∆xpul sar by subtracting S′ distance (x f i n) from the integration of detected periods (Tdet ), as
Tdet is a sum of both velocities (S′+T ), during S′ acceleration. Note: Although changing pulsar periods T over time are in fact
discrete, they are so minute as to be considered dT

d t .
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 Determining Pulsar Velocity and Shift during 𝚫t, 
  from Detected Pulsar Period (Tdet) Shifting Over Time

* Note: factoring in the loss of pulsar emitted energy and spin rate over time 𝝮.
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                     Definitions
vpulsar: pulsar net velocity

𝚫xpulsar: pulsar shift in x, during 𝚫t
𝚫t: Displaced time during S’ acceleration
T0 : Known period at time t=0.
v0: Known recession velocity at time t=0.
𝝮: Spin-down luminosity.
Tdet: Detected pulsar period during both   
.       S’ and pulsar accelerations. 

(Tdet)

dTdet
T0 𝚫xpulsar = ∫ vpulsar  dt

0

tfin
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Expanding, similar to 
redshifting. 

Figure 6: Deriving pulsar distance from spacetime displacement.

First, the pulsar velocity vpul sar is derived from the shifting of pulsar periods Tdet and S′ velocity vS′ is subtracted,

vpul sar = v0
dTdet

T 0
− vS′ (10)

Then distance ∆xpul sar is integrated over time t from pulsar velocity vpul sar

∆xpul sar =
∫ t f i n

0
vpul sar d t (11)

Where T0 is the known period, from the stationary observer, at time t = 0, and v0 is the known initial pulsar velocity at time
t = 0.

5 Determining the Time Dependent Hubble Parameter, from Shifted Pulsar periods

The Hubble parameter over time ( d H
d t ) can be approximated from the derivative of vpul sar (equation 10) over time, such that,

d vpul sar

d t 2 ≈ d H

d t
(12)

Figure 7 is scaled to S′ constant acceleration, in order to show the change in pulsar acceleration over time. Note: factoring in
the loss of pulsar emitted energy and spin rate over time (Spin-down luminosityΩ).

Determining Distance x f i n , and x ′
f i n

From the (IRF) of S, Distance x f i n in (of spacecraft S’, at the point of final velocity), can be determined by integrating the function
(Assume a constant acceleration, for simplicity), See figure 8,

x f i n =
∫ t f i n

0

v f i n

t f i n
t d t (13)

From the (I RF ) of S′, distance x’ (at S′ final velocity), is calculated using the Lorentz distance transformation equation [5],

x ′
f i n = x − v t√

1− v2

c2

(14)

6



* Note: factoring in the loss of pulsar emitted energy 𝝮.
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 Determining the Time Dependent Hubble Constant, from Shifted Pulsar Periods

dH
dt

dv 
dt 2

pulsar * ≈ 

                     Definitions

vpulsar: pulsar recession velocity

vS’ : S’ velocity 

dH/dt: time dependent Hubble constant
𝝮: pulsar emitted energy

dvS’

dt 2

pulsar

G

Figure 7: Determining how the Hubble Parameter changes Over time
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Figure 8: Integrating spacecraft S′ distance x, at point of final velocity

6 Measuring vast distances, Approaching the CMB

Theoretically, this same method could also reference oscillating patterns of CMB Anisotropic Dipole Radiation (instead of pulsar
flashes), to measure the most distant light of the observable universe. The spacecraft payload would include a microwave
radiometer. However, would be limited by portable optical instruments, which have yet to be developed. Such instruments
would require ultra an light-weight telescope with moderately good angular resolution.

7 Example Using the Vella Pulsar

For the purpose of example, the Vela Pulsar [6] (a radio, optical, X-ray- and gamma-emitting pulsar associated with the Vela
Supernova Remnant in the constellation of Vela) is described. Vella period = 89.33 mi l l i second s. Note: t (ct ) units are in years.
x units are in light years (l y). Time at final velocity t f i n is assumed to be 0.10l y . Per the NASA Parker Solar Probe [7], final
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velocity: v f i n = 150km/s = 0.0005c.

The total flashes |A|, as calculated by the stationary observer S from equation 4 (Converted to common units of seconds),

|A| = t

T
= 3,155,695s

0.089s
= 35,457,247, or |3.55∗107| f l ashes (15)

|A′| (the I RFo f S′) from equation 3, is hypothetically assumed (as it’s summed empirically, during acceleration) to be a
cardinal value of,

|A′| =
n∑

i=1
1( f l ash) = |3.68∗107| (16)

Pulsar angular time displacement ∆tpul sar , from equation 4,

∆tpul sar ≈
|A′|− |A|

T

= 3.68∗107 −3.55∗107

0.089s
(17)

= 1.48∗107s (18)

∆tpul sar ≈ 0.47yr (19)

Pulsar distance xpul sar , per equation 8, can then be determined as,

x∆t ≈
c∆tpul sar

v f i n

= c ∗0.47yr

0.0005c
(20)

x∆t ≈ 939l y (21)

Note: The integration of distance∆xpul sar is undetermined, as |A′| and Tdet must first be empirically established from actual
measurements, during S′ acceleration.

8 Practical Considerations

Some practical issues to consider, with this proposed method of measurement are listed:

• Folding analysis could not be separated into regularly spaced intervals (i ) during acceleration, as the time differential
decreases with velocity such that: di

d t = k
v .

• A reasonable final velocity v f i n would be similar to the NASA Parker Solar Probe, of 0.0005c.

• Relatively strong emitting pulsars, such as the Vela Pulsar, can be detected (around the Hydrogen line frequency of 1420MHz)
by amateur radio telescopes. By utilizing 5 RTL-SDRs to gather 10 MHz of bandwidth together with some processing, the
minimum required dish aperture could be reduced to 3.5m, which could conceivably fit into a spacecraft Payload

9 Conclusion

The clear advantage of this alternate system of measuring galactic distances, is that the greater distance x, the less acceleration
is required for measurement, as the Lorentz transfer equation for distance is a function of x, as well as velocity.

Continuous systematic development of methodology is an essential component of the scientific method. Discrepancies
from such an alternative method of measuring galactic distance could reveal much about multiple parameters of Cosmology
including: Dark Energy, Accelerated Universal Expansion, The Cosmic Event Horizon.
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