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The use of neural networks for solving di�erential equations is practically di�cult due to the

exponentially increasing runtime of autodi�erentiation when computing high-order derivatives. We

propose  -TANGENTPROP , the natural extension of the TANGENTPROP formalism[1] to arbitrarily

many derivatives.  -TANGENTPROP computes the exact derivative   in quasilinear,

instead of exponential time, for a densely connected, feed-forward neural network   with a smooth,

parameter-free activation function. We validate our algorithm empirically across a range of depths,

widths, and number of derivatives. We demonstrate that our method is particularly bene�cial in the

context of physics-informed neural networks where  -TANGENTPROP allows for signi�cantly

faster training times than previous methods and has favorable scaling with respect to both model

size and loss-function complexity as measured by the number of required derivatives. The code for

this paper can be found at https://github.com/kyrochi/n_tangentprop.

Corresponding author: Kyle R. Chickering, krchickering@ucdavis.edu

I. Introduction

Physics-informed neural networks (PINNs) were introduced as a numerical method to solve forward

and inverse problems involving di�erential equations using neural networks instead of traditional

numerical solvers[2]. Their use has recently come under scrutiny for several reasons, including a lack

of high-accuracy results, poor run-times compared to standard numerical methods, and complicated

training dynamics[3]. Due to methodological issues in the aforementioned studies, including the

failure to use the well-established strategies outlined in[4], we believe that the pursuit of PINNs
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should not be abandoned and to that end, propose an algorithm which partially addresses the valid

concerns over PINN training times.

A primary reason to use PINNs over standard numerical methods is because by approximating the

solution to an ODE or PDE by a neural network we obtain a   approximation to the model solution

which can be evaluated at arbitrary points in the domain, as well as allowing for the study of high-

order derivatives (see Figures  7 and  10). This strength is also a weakness, since during training we

must repeatedly take derivatives of the neural network with respect to the inputs. This is done using

autodi�erentiation[5][2], which su�ers from unfavorable scaling when taking multiple derivatives. In

particular, taking    derivatives of a neural network    with    parameters gives the exponential

runtime  . For training PINNs we often need to take two or more derivatives, and in many

practical applications this exponential runtime already becomes prohibitive. Furthermore this

di�culty cannot simply be overcome by horizontally scaling compute, since repeated applications of

autodi�erentiation cannot be parallelized on a GPU due to the recursive nature of computing high-

order derivatives.

In this paper we introduce  -TANGENTPROP , which addresses these issues by computing   in

quasilinear   time instead of the exponential time  .  -TANGENTPROP is an exact

method, and thus there is no accuracy degradation when using this method.  -TANGENTPROP is the

natural extension of the TANGENTPROP formalism[1] to   derivatives. TANGENTPROP was introduced

in the context of MNIST digit classi�cation as a way to enforce a smoothness condition on the �rst

derivative of a neural network based classi�er. The motivation for  -TANGENTPROP starts from the

observation that for PINN training we only need higher-order derivatives with respect to the network

inputs, not with respect to the network weights. In practice the dimensionality of the input data   is

much smaller than the number of parameters  , and therefore it is unnecessary to compute a fully

�lled out computational graph for all higher order derivatives. Instead of building the full

computational graph, we directly di�erentiate the network during the forward pass and can thus

compute all   derivatives with respect to the network inputs during a single forward pass.

Our contributions are three-fold

1. We derive the  -TANGENTPROP formalism and give an algorithm for it’s implementation.

2. We show that for simple network architectures consisting of stacked linear, densely connected

layers with the   activation function, our method empirically follows the theoretical scaling
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laws for a variety of widths, depths, and batch sizes.

3. We show that in the context of PINN training our method can signi�cantly reduce training time

and memory requirements when compared to the standard PINN implementation.

II. PINN Training

PINNs are neural networks trained to approximate the solution to a given ODE or PDE[2]. Because

neural networks with smooth activation functions are   function approximators, and   functions

are dense in most function space which are used in practice (like the    based Sobolev family of

function spaces), we can train a neural network using gradient descent to approximate the solution to

a given di�erential equation. It is this simple observation that led to the introduction of PINNs in the

paper[2]. We give a brief overview of the methodology behind PINNs, but refer the reader to the recent

surveys[6][7][8]  and the references therein, as the literature abounds with introductory material on

PINNs.

Let    be a feed-forward, densely connected, neural network with parameters  . Our goal is to

optimize these parameters in such a way that    is an approximate    solution to the di�erential

equation    for some multi-index  [9]. We train the neural network on the discrete

domain   using the loss target

which is the mean-squared error (MSE) of the di�erential equation residual with BC being

appropriately enforced boundary conditions. Since   is  -times continuously di�erentiable we can

use autodi�erentiation to exactly compute the derivatives appearing above, and thus by the

approximation theorem[10][11], if the solution to   lies in a space in which   functions

are dense, we can theoretically train a neural network to approximate the true solution of the PDE to

arbitrary precision.

In practice this is not so easy: PINN training is complicated by needing to enforce boundary

conditions, which introduces problems inherent to multi-target machine learning[12][13]. There is also

the problem of e�ectively choosing collocation points from the domain, as well as the problem of

choosing a good network architecture[4][14]. PINN training appears naturally unstable, likely due to a

poorly conditioned Hessian, and thus training these networks can be di�cult[15][16][17]. This
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instability has further been related to the conditioning of a speci�c di�erential operator related to the

underlying di�erential operator[18]. PINNs also appear to struggle �tting high-frequency components

of the target solution[19] as a consequence of spectral bias (f-principle)[20][21].

Additionally, convergence under the loss function  (1) is often slow. In practice it is usually better to

use ”Sobolev training”[22][23][24] which replaces (1) with the Sobolev-norm[9] loss function

where    are relative weights which add additional hyperparameters to the training[23]. While this

loss function generally improves accuracy, it also requires computing   extra derivatives of the neural

network  . Due to the nature of autodi�erentiation, this trade-o� quickly becomes costly and in

practice we can often only train with   or  , despite the fact that higher   usually results in

better solution accuracy.  -TANGENTPROP makes this trade-o� much cheaper and we hope that

future authors are able to train with   or higher while retaining reasonable training times.

The appearance of high-order derivatives is also not uncommon in PINN applications. Wang et al.

[25] show that to satisfactorily compute successive high-order unstable shock pro�les for the Burgers,

De Gregorio, and Boussinesq equations, one must take high-order derivatives. For example, to

compute the  -th smooth, self-similar shock pro�le for Burgers equation one must take 

 derivatives. The authors compute the �rst and second pro�les which already requires taking

�ve derivatives and is already slow. Using  -TANGENTPROP we are able to compute the third and

fourth pro�les in this paper in a reasonable amount of time (See section IV-C1 below).

To our knowledge there has been no prior work which directly addresses the exponential runtime of

autodi�erentiation in the literature. Instead, works aimed at making training more computationally

e�cient rely on augmenting the PINN training with some sort of numerical di�erentiation[26][27],

pre-training or transfer learning methods[28][29], or e�cient sampling of the collocation points[30].

There are too many articles in this direction to compile an exhaustive list, and we instead refer again

to the many surveys and studies which abound[6][7][8][4]. We stress that  -TANGENTPROP is an exact

method and all of the aforementioned studies would be accelerated by adopting our proposed

methodology.
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III.  -TANGENTPROP

A. Autodi�erentiation

Autodi�erentiation is a method for computing the derivatives of a neural-network using the

network’s computational graph[5][31]. Autodi�erentiation is usually applied in the context of gradient

descent for optimizing neural networks where it is used to e�ciently and exactly compute the �rst

partial derivatives of the loss with respect to each of the network weights[31]. It is usually applied once

per training iteration, and outputs a vector of �rst-order partial derivatives with respect to all

network inputs (including the weights). It is able to do this computation in   time,

where   is the number of model parameters and   is the dimensionality of the input.

It is less common for autodi�erentiation to be applied repeatedly. However this repeated application is

the key to the e�ectiveness of PINNs[2]. Because there are    second-order partial derivatives,

and    -th order partial derivatives, the repeated application of auto-di�erentiation takes 

  to compute all  -derivatives. This bound does not fully account for the amount of time

required to take the  -th derivative of the activation function, see below. The full runtime is 

. For small networks and a low number of derivatives this runtime is acceptable, but the

exponential growth makes training large PINN models or PINN models for equations involving high-

order derivatives prohibitively di�cult. Furthermore, as discussed above, it appears bene�cial to use

the Sobolev loss (2) which requires taking even more derivatives. In practice PINN training becomes

prohibitively slow when computing more than three or four derivatives of the network.

It is easy to see why autodi�erentiation is not the right tool for computing derivatives in the PINN loss

function: we do not need every partial derivative computed by autodi�erentiation. In fact, we only

need the  -th partial derivatives corresponding to the network inputs, i.e.

which is often a sparse subset of the total derivatives computed by auto-di�erentiation. In what

follows we propose  -TANGENTPROP , which is an e�cient quasilinear algorithm to compute only

these partial derivatives that are needed for the PINN loss function.
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B. Tangent Prop and  -TANGENTPROP

The TANGENTPROP formalism introduced in[1] derives the exact forward and backward propagation

formulas for the derivative of a deep feed-forward network. This was done in the context of MNIST

digit classi�ctation based on the observation that the classi�er (the neural network) should be

invariant to rotations of the input digits, and thus the derivative of the classi�er with respect to the

inputs (the tangent vector) should be zero. This e�ectively enforces a �rst-order (derivative)

constraint on the classi�er.

Let   be an activation function,   be the activations at the  -th layer,   be the weight matrix, and 

 be the network inputs, the authors in[1] derive the formula for the �rst derivative   of the network

using a single forward pass

The formula (3b) is derived by applying the chain rule to the per-layer activation formula (3a).

We can naturally extend TANGENTPROP to compute   derivatives in a single forward pass by applying

Faà di Bruno’s formula[32], which generalizes the chain rule to multiple derivatives. Faà di Bruno’s

formula states that for the composition of   continuous functions   and   we have

where the sum is taken over the set   of partition numbers of order  , which consists of all tuples 

  of length    and satisfying  ,  , and  . The constants    are

explicitly computable and the size of the set    is found using the partition function 

 whose combinatorial properties are well-studied[33].

Since neural networks with smooth activation functions are  , we can apply our new formalism,

which we call  -TANGENTPROP , to take arbitrarily many derivatives of deep feed-forward neural-

networks. Using Faà di Bruno’s formula (4) in place of the chain rule in (3a) allows us to compute an

arbitrary derivative in the same forward pass that we compute the activations. The formula for the  -

th derivative   is given by
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where    are the forward activations computed in  (3a). Thus, in a single forward pass through the

model we can compute all of the required derivatives at once with runtime of  , where 

  is the partition function. Thus, we have reduced the exponential runtime from auto-

di�erentiation to a quasilinear runtime (see Algorithm  III-B and the tighter bound derived below).

Note that the derivatives must be computed in order, since   depends on   for all  .

The coe�cients   appearing in (5b) are the coe�cients of the Bell polynomials of the second kind

(See[32] and references therein). These are well-studied and explicitly computable, and for e�ciently

implementing Algorithm  III-B we recommend pre-computing and caching the required coe�cients

(see our implementation code for more details).
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For the sake of completeness we give a tighter bound on the runtime which takes into account the

dependence on   of the summation appearing in (4). The combinatorial properties of the summation

over the integer partitions   are well studied. In particular, the partition function   counts the

number of integer partitions and thus  . A well-known and classical result of Hardy and

Ramanujan[34]  provides an upper and lower bound on the partition function    which then yields

the asymptotic behavior

n

P(n) p(n)

p(n) = |P(n)|

p(n)
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This implies the more re�ned runtime depending on   and   of   which is our

claimed quasilinear bound. Note that during autodi�erentiation the Faà di Bruno formula must

implicitly be applied to the activation function    and therefore autodi�erentiation has an actual

asymptotic runtime of  . Finally we remark that the memory complexity of  -

TANGENTPROP is linear at   (without a modi�cation from  ) while the memory complexity

of autodi�erentiation is exponential at  . Thus, not only does our algorithm compute

derivatives faster than autodi�erentiation, but we can compute more derivatives on the same

hardware than is even possible using autodi�erentiation.

IV. Experiments

We begin by demonstrating that for a wide range of feed-forward neural network architectures that

our proposed method indeed follows the theoretical asymptotic scaling laws. In particular we consider

a standard feed-forward network with uniform width across the layers and the    activation

function. Then we use our method to train a PINN model to compute the smooth stable and unstable

pro�les for the self-similar Burgers pro�le using the methodology proposed in[25]. This problem

requires taking a large number of derivatives for the training to converge, and we demonstrate that

our method is able to break through the computational bottlenecks imposed by autodi�erentation and

we are able to compute higher-order pro�les which were previously either impractical or impossible

to compute using autodi�erentiation on a single GPU.

A. Implementation Details and Methodology

We run our experiments using Python and PyTorch[31]. In particular we implement  -TANGENTPROP

as a custom forward method for a PyTorch torch.nn.Module implementation of a deep feed-forward

network. For the PINN experiments we then build a custom PINN training framework to handle the

PINN training loop, and we use an open-source L-BFGS implementation[35] instead of the PyTorch L-

BFGS due to the latter not supporting line-search1. All experiments were run locally on a single

NVIDIA A6000 GPU.
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B. Forward-Backward Pass Times

PyTorch implements several asynchronous optimizations that make benchmarking di�cult. To

mitigate the e�ects of built-in optimizations on our benchmarking we implement the following steps

1. Randomly shu�e the experiments over all parameters to ensure that execution order is not a

factor in the results.

2. Synchronize CUDA between runs.

3. Enable cudnn.benchmark.

4. Run the Python garbage collector between runs.

5. Use the Python performance counter instead of the timing module.

These mitigation strategies allow for a fairer comparison between autodi�erentiation and  -

TANGENTPROP .

We �rst explore the e�ect of  -TANGENTPROP on the computation of a single forward and backward

pass to verify that the empirical performance aligns with the predicted theoretical performance

suggested by our derivation. In particular we would expect to see exponential run-times for

autodi�erentiation and quasilinear run-times for  -TANGENTPROP .

For a given network we compute and time the forward pass through the network, compute the loss

outside of a timing module, then compute and time a backwards pass through the network. The total

time includes the time it takes to compute the loss function, while the forward and backwards pass

times only include the time it takes to compute the given pass.

For a �xed network size, we �nd that the end-to-end times for a combined forward and backward

pass for autodi�erentiation scales exponentially and that  -TANGENTPROP scales roughly

quasilinearly (Figure 1), keeping with the theoretical predictions made above by our formalism. We

can further decompose this total execution time into its forward and backward times (Figure 2 and

Figure 3 respectively). We see that the  -TANGENTPROP formalism gives more signi�cant

performance gains during the forward pass when compared to the backwards pass. We hypothesize

that this is due to PyTorch graph optimizations that are applied automatically to the

autodi�erentiation implementation and are not included in our  -TANGENTPROP implementation.

This di�erence is seen most plainly in Figure 3, where autodi�erentiation outperforms  -

TANGENTPROP in backwards pass times for small numbers of derivatives.
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Figure 1. Average runtime for a combined forward and backwards pass using autodi�erentiation

(red) and  -TANGENTPROP (blue). The top and bottom frames show the same data, however

the bottom frame is plotted with a logarithmic  -axis. Each model is run 100 times and the

average for each trial is plotted. The network has 3 hidden layers of 24 neurons each, a common

PINN architecture. The batch size is   samples. The forward and backwards pass times

are shown separately in Figures 2 and 3 respectively.
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Figure 2. Forward pass times for the model shown in Figure 1. The top and bottom frames show

the same data, however the bottom frame is plotted with a logarithmic  -axis. Each model is run

100 times and the average for each trial is plotted. The network has 3 hidden layers of 24 neurons

each, a common PINN architecture. The batch size is   samples.
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Figure 3. Backwards pass times for the model shown in Figure 1. The top and bottom frames

show the same data, however the bottom frame is plotted with a logarithmic  -axis. Each model

is run 100 times and the average for each trial is plotted. The network has 3 hidden layers of 24

neurons each, a common PINN architecture. The batch size is   samples.

We run extensive experiments to analyze the e�ect of varying batch size, network width, network

depth, and number of derivatives. The results of the forward passes are summarized in Figure 4, and

the results of the combined forward and backward pass are summarized in Figure 5.
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Figure 4. The ratio of forward pass run times between autodi�erentiation and  -

TANGENTPROP for a variety of network architectures, input batch sizes, and number of

derivatives. A ratio greater than   indicates that  -TANGENTPROP was faster than
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autodi�erentiation. The baseline ratio of   is plotted as a horizontal dashed line. All plotted

data points represent the average of   trials.
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Figure 5. The ratio of combined forward-backward pass run times between

autodi�erentiation and  -TANGENTPROP for a variety of network architectures, input

batch sizes, and number of derivatives. A ratio greater than   indicates that  -

n

1 n
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TANGENTPROP was faster than autodi�erentiation. The baseline ratio of   is plotted as a

horizontal dashed line. All plotted data points represent the average of   trials. The

forward pass time ratio alone is plotted in Figure 4.

We point out several salient features in these results. First, we observe a performance gap between  -

TANGENTPROP and autodi�erentiation for low derivatives. This is likely a consequence of

implementation details, rather than a de�ciency with the proposed methodology. The PyTorch

implementation of autodi�erentiation is heavily optimized for execution on a GPU, and while our

implementation makes attempts at closing this performance gap, it is written in Python, rather than a

lower level language such as C++, and lacks sophisticated optimization strategies. We suspect that a

more re�ned implementation would close the gap seen for low derivatives.

Second, we observe that the performance gains a�orded by  -TANGENTPROP decrease as we increase

the batch size. We hypothesize that this e�ect is also due to a lack of optimization to take full

advantage of the parallelized computational ability of the GPU in our implementation. For example,

our implementation does not fully vectorize the computation of Equation 5b and thus does not take

full advantage of the hardware scaling a�orded by our GPU. Similarly, we observe that the

performance gains from  -TANGENTPROP decrease as we increase the network width. We suspect

that this is also a consequence of the lack of vectorization. Increasing either width or batch size scales

the compute horizontally, and we have not fully optimized our implementation to account for this

horizontally scaled compute.

Third, we observe that for all of the tested derivatives and batch-sizes, the standard PINN architecture

of three hidden layers and 24 neuron widths[2]  performs better with  -TANGENTPROP than

autodi�erentiation, at least for derivatives of order three or higher. This suggests that for PINN

problems involving higher-order derivatives,  -TANGENTPROP can be used as a drop in replacement

without any further implementation tuning (See Section IV-C below).

Finally, we observe an apparent asymptote for the combined forward-backward pass times as the

number of parameters and batch size increase (see the bottom rows of Figure 5). We suspect that this

is because as we increase the relative number of FLOPs the theoretical gains from  -TANGENTPROP

begin to dominate the superior optimization in PyTorch’s autodi�erentiation implementation. We

hypothesize that with a stronger  -TANGENTPROP implementation we would begin to see similar

asymptotic behaviors even when taking fewer derivatives.

1

100

n

n

n

n

n

n

n

qeios.com doi.org/10.32388/92OY7E 17

https://www.qeios.com/
https://doi.org/10.32388/92OY7E


We add that we could not compute more than nine derivatives using autodi�erentiation because the

required memory exceeded the 49 GB of memory available on our GPU.

C. End-to-End PINN Training

Forward-Backward pass times should correlate to end-to-end model training but it is still important

to measure the e�ect of the proposed modi�cations over the long time-horizons and multiple

optimizers present in end-to-end PINN training. For example, our proposed  -TANGENTPROP

method uses a di�erent memory footprint for forward pass than autodi�erentiation does. It can be

di�cult to reason theoretically about the e�ect that such changes will have to the end-to-end

performance of machine learning models, and as such, empirical analysis is imperative to rule out

performance degradation which arises as a consequence of the complicated end-to-end training

testbed.

We �nd that the widespread use of the L-BFGS optimizer adds to the improvements a�orded by  -

TANGENTPROP . L-BFGS performs quasi-second order optimization using a line-search[36]  which

requires performing multiple forward passes through the network but only a single backwards pass.

Thus, the forward pass performance seen in Figure 4 is expected to dominate and we expect that our

unoptimized  -TANGENTPROP algorithm will outperform standard PINN implementations using

autodi�erentiation.

1. Unstable Self-Similar Burgers Pro�les

Burgers equation is the canonical model for 1D shock formation phenomenon[37] and is given by the

PDE

Due to the nonlinear steepening of the wave pro�les leading ultimately to a gradient blowup, studying

the behavior of shock solutions near the singularity is di�cult. Work in the 20th century explored the

use of self-similarity to study the breakdown of smooth solutions near a shock[38]. Under the self-

similar coordinate transformation

the PDE (6) becomes the ODE[39] for   in 

n

n

n

u + u u = 0.∂t ∂x (6)

u(x, t) = (1 − t U(X), X = x(1 − t ,)λ )−1−λ

U X

−λU + (1 + λ)X + U) = 0,U ′ (7)
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for a scalar valued parameter  . While the solution of this particular problem is elementary and

given implicitly by

the techniques used for the numerical analysis and solution of this problem can be applied to more

challenging problems to yield highly non-trivial results about shock formation in complicated

nonlinear equations[25].

From  (8) we observe that the solution    will be smooth whenever    is an integer, and be

physically realizable (odd) whenever    for some positive integer    [39]. Thus, the possible

values of   corresponding to smooth solutions are   for  . For all other values of   the

solution   will su�er a discontinuity at the origin in one of it’s higher-order derivatives.

Our goal for this problem is to �nd these physically realizable solutions, a problem which is

complicated by the fact that the pro�les corresponding to   are physically and numerically

unstable[39]. Traditional solvers will not converge to these solutions, and they do not manifest as real-

world shocks due to a collapse towards the solution corresponding to  . Regardless, these

unstable pro�les are important to understand mathematically and can give insights into the

underlying behavior of certain systems. See for example the papers[40][41], which apply self-similar

methodology to perturbations of the self-similar Burgers equation 7.

Wang et al.[25] propose a methodology for solving Equation 7 for an unknown value of   using PINNs

to perform a combined forward-inverse procedure and simultaneously solve for    and  . Such a

methodology demonstrates the advantage that PINNs have in certain numerical settings, since solving

this problem using traditional solvers is challenging. We refer the reader to the study by

Biasi[42] which addresses a similar problem using traditional numerical methods and highlights the

attendant di�culties.

The primary observation in[25]  is that a solution to  (7) is smooth for all values of  , except at the

origin, where a discontinuity will appear for derivatives  . Thus, if we restrict the value of 

 to   and enforce a smoothness condition on the third derivative of our neural network, we will

converge to the unique smooth pro�le (if one exists) in the range  . This is because for any non-

smooth pro�le in this range, the third derivative or lower must be non-smooth at the origin. To �nd

higher-order smooth pro�les we can look between   and enforce a smoothness

condition on the  -th derivative.

λ ∈ R>0

X = −U − C ,U
1+ 1

λ (8)

U 1 + 1
λ

1 + = 2k1
λ

k

λ λ = 1
2k

k = 1, 2, ⋯ λ

U

k = 2, 3, ⋯

k = 1

λ

U λ

λ

n ⩾ 1 + 1
λ

λ [1/3, 1]

[1/3, 1]

[1/(2k + 3), 1/(2k + 1)]

2k + 3
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Using a PINN, we can enforce di�erentiability at the origin by taking su�ciently many derivatives

there, since the neural network solution is smooth. This forces the solution to be smooth, which in

turn gives gradient signal to push   towards a valid value. We loosely follow the training schedule used

in[25]  to compute the �rst, second, third, and fourth pro�les in quasilinear, rather than exponential

time. The authors in[25] only computed the �rst and second pro�les, so our results represent the �rst

time the third and fourth pro�les have been computed using PINNs. We stress that computing these

solutions requires taking many derivatives and thus the  -TANGENTPROP formalism is well-suited

for this type of problem. Additionally, computing the third or higher pro�le is extremely

computationally intensive.

We note in passing that we were unable to reproduce the accuracy results claimed by the Wang et al.

paper[25] and the authors do not provide access to their code. Regardless, our work is orthogonal to

theirs and any future attempts at a reproduction of their work will bene�t from using  -

TANGENTPROP .

We run our self-similar Burgers experiments using 64-bit �oating point precision. We give a detailed

description of our methodology and results below in Appendix -A, which we hope will contribute to

the reproducibility of the[25] results.

λ

n

n
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Figure 6. Results from training a PINN to �nd the �rst smooth pro�le for Equation 7. The model

is trained for 15k epochs using the Adam optimizer and 30k epochs using L-BFGS. The top panel

reports our training losses, the middle panel reports   as a function of epochs, and the bottom

panel shows the ratio in runtime between autodi�erentiation and  -TANGENTPROP as a

function of number of epochs. The bottom pannel shows that  -TANGENTPROP is 2.5x faster for

end-to-end training than autodi�erentiation. The horizontal line in the bottom panel indicates a

runtime ratio of 1.

Figure  6 plots the ratio of execution times of autodi�erentiation over  -TANGENTPROP and shows

that we obtain signi�cant speedups in computation time using  -TANGENTPROP instead of

autodi�erentiation. We were only able to compute the timing comparison between autodi�erentiation

and  -TANGENTPROP for the �rst two pro�les since the computational time for the third pro�le

using autodi�erentiation exceeded our allowable computation time of 24 hours. For the �rst pro�le,

which requires taking three derivatives, we obtain an end-to-end speed up of over 2.5 times. For the

second pro�le, which requires taking �ve derivatives, we obtain an end-to-end speed up of over 7

times. We were able to compute the third pro�le, which requires taking seven derivatives, in a little

under 1 hour using  -TANGENTPROP , and the projected time for auto-di�erentiation was over 25

hours, giving an expected speed-up of at least 25 times.

λ

n

n

n

n

n

n
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Using  -TANGENTPROP we were also able to compute the fourth pro�le, which requires taking nine

derivatives. Using  -TANGENTPROP we were able to run the 45k epochs in a little under an hour and a

half. We discuss our results further in Appendix -A, which we think are interesting in their own right.

We stress that computing this fourth pro�le is untenable using autodi�erentiation, as the time and

space complexity render attempts at computation impossible. We estimate that computing the fourth

pro�le using autodi�erentiation would take at least 100 hours (about four days).

Observe from Figure  6 that the most dramatic improvements come when we switch to the L-BFGS

optimizer, which uses multiple forward passes to perform a line search. Because  -TANGENTPROP

has more favorable forward pass dynamics (c.f. Figures 2 and 3), the performance improvements are

much more pronounced during L-BFGS optimization. This emphasizes the advantage a�orded by  -

TANGENTPROP : to obtain high-accuracy results we often use L-BFGS and Sobolev loss (see

Equation  2). These two accuracy improvements require taking higher-order derivatives more

frequently, which are the two areas that  -TANGENTPROP shows the best improvement in. Thus, for

the high-accuracy training phase for PINNs,  -TANGENTPROP yields signi�cant performance

improvements.

We suspect that the dip below a ratio of 1 that we see in Figure 6 for computing the �rst pro�le can be

mitigated through further optimizations of our implementation, and we hypothesize once again that

the dip is likely due to e�ciencies a�orded by graph pruning and operator fusing in PyTorch.

n

n

n

n

n

n
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Figure 7. Results from training a PINN to solve (7) with   constrained to the range 

. The only smooth solution to (7) contained in this parameter range corresponds

to  . The �rst four rows show our learned solution (dashed red) and its derivatives

compared to the true solution (solid blue). The second to last row shows the PINN training

loss as a function of epochs. The model was trained for 15k epochs using the Adam

optimizer and 30k epochs using the L-BFGS optimizer. The bottom row shows the inferred

value for the parameter   as a function of epochs. The bottom two rows are plotted with a

logarithmic  -axis.

Figure  7 shows the result of training a PINN to �nd the third smooth pro�le of  (7). This is the �rst

time that we are aware of that this pro�le has been numerically computed with a �oating value of 

  using either a PINN or a traditional solver. We show the learned solution with a dashed red line

superimposed over the true solution in blue. This pro�le is already computationally expensive to

compute using autodi�erentation and  -TANGENTPROP opens the door to performing novel studies

on equations requiring a high-number of derivatives.

V. Conclusion

We introduced the  -TANGENTPROP formalism and demonstrated both theoretically and empirically

that implementing our formalism in the context of PINNs dramatically reduces training times. We

showed that for derivative-intensive PINN applications like �nding high-order solutions to self-

similar equations,  -TANGENTPROP not only o�ers improvements in end-to-end training times but

allows the computation of previously untenable solutions. Our results are a step in the direction of

making PINNs a more competitive numerical method for di�cult forward and inverse problems. We

recommend that our formalism be adopted by PINN implementations going forward to ensure faster

training of PINNs.

We hope that our work allows the PINN community to explore more complicated problems, deeper

and wider network architectures, and allow for researchers who do not have access to powerful

computer to participate in furthering PINN research.

In this paper we have not focused on the optimization of our algorithm. We think that with

optimization choices like implementing the underlying logic in C++ instead of Python that the

λ

[1/7, 1/5]

λ = 1/6

λ

y

λ

n

n

n
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performance gap between  -TANGENTPROP and autodi�erentiation would widen even further.

Appendix A. Additional Details for the Self-Similar Burgers

Experiments

We report the results from running the self-similar Burgers experiment to �nd the smooth stable and

unstable pro�les. We were not able to reproduce the accuracy reported in [25], however we think that

our results are important in demonstrating that their proposed methodology is robust, at least in

theory. Furthermore, we report several new observations that we think are relevant to the training

dynamics for such a problem.

We train our network using a Sobolev loss function (see Equation  2 function with    and

additionally add a high-order loss term

where   is the residual of the self-similar Burgers equation and the samples   are taken from a small

subset of collocation points centered at the origin, not the entire training domain. Our

implementation contains many more subtle details that we omit for the sake of brevity and we

encourage the reader to download our code to see the full implementation.

n

m = 1

( ) = | R( , ) ,L∗ uθ
1

N ∗
∑
k=1

N ∗

∂n
x uθ xk |2

R xk
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Figure 8. Results from training a PINN to solve (7) with   constrained to the range  .

The only smooth solution to (7) contained in this parameter range corresponds to  .

The �rst two rows show our learned solution (dashed red) and its derivatives compared to

the true solution (solid blue). The second to last row shows the PINN training loss as a

function of epochs. The model was trained for 15k epochs using the Adam optimizer and

30k epochs using the L-BFGS optimizer. The bottom row shows the inferred value for the

parameter   as a function of epochs. The bottom two rows are plotted with a logarithmic  -

axis.

λ [1/3, 1]

λ = 1/2

λ y
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While we were not able to match the accuracy reported by [25], we were able to get our implementation

to perform well in �nding the �rst three smooth solutions to  (7). However our method did not

satisfactorily solve for the fourth pro�le. We discuss this in more detail below.

qeios.com doi.org/10.32388/92OY7E 27

https://www.qeios.com/
https://doi.org/10.32388/92OY7E


Figure 9. Results from training a PINN to solve (7) with   constrained to the range 

. The only smooth solution to (7) contained in this parameter range corresponds

to  . The �rst three rows show our learned solution (dashed red) and its derivatives

compared to the true solution (solid blue). The second to last row shows the PINN training

loss as a function of epochs. The model was trained for 15k epochs using the Adam

λ

[1/5, 1/3]

λ = 1/4
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optimizer and 30k epochs using the L-BFGS optimizer. The bottom row shows the inferred

value for the parameter   as a function of epochs. The bottom two rows are plotted with a

logarithmic  -axis.

For all of the pro�les we found, we report our inferred value of   as a function of training epochs. We

think that this metric is an important scalar quantity and it’s evolution is not reported in the original

paper  [25]. Of particular importance is the apparent inability of the Adam optimizer to satisfactorily

converge to the correct value of  . We see a sharp decrease in the error of   once we begin to use the L-

BFGS optimizer. We think that this phenomenon is interesting and may indicate that the �rst order

derivatives of the residual with respect to the parameter    is insu�cient to capture the true

dependency of the solution on  . Understanding this dependency more deeply may lead to better

training algorithms for these types of problems.

Notably, our code failed to adequately converge to the fourth pro�le corresponding to    (see

Figure 10). Due to the nature of this work we did not pursue this point further and want to emphasize

that we are not claiming that the methodology proposed in  [25]  cannot be applied to higher-order

pro�les. We hypothesize that the nature of the problem makes it more di�cult for PINN or non-PINN

solvers to �nd a solution. We are constraining the ninth derivative to be close to zero near the origin,

but due to the relatively large magnitude of the ninth derivative, minor �uctuations in the network

output will result in large changes to the ninth derivative. This alone may be enough to render our

solver incapable of converging to the desired solution as we are using a �xed ratio to balance the

relative terms in our loss function (see [12]  for further discussion about why multi-target training is

di�cult). Put another way, we suspect that the loss function we are using does not properly account

for the fact that we are taking nine derivatives and that as a consequence the parameter    is not

receiving good gradient signal.

λ

y

λ

λ λ

λ

λ

λ = 1
8

λ
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Figure 10. Results from training a PINN to solve (7) with   constrained to the range 

. The only smooth solution to (7) contained in this parameter range corresponds

to  . The �rst �ve rows show our learned solution (dashed red) and its derivatives

compared to the true solution (solid blue). The second to last row shows the PINN training

loss as a function of epochs. The model was trained for 15k epochs using the Adam

optimizer and 30k epochs using the L-BFGS optimizer. The bottom row shows the inferred

value for the parameter   as a function of epochs. The bottom two rows are plotted with a

logarithmic  -axis.

The purpose of this study was not to �nd the optimal hyperparameters for computing these higher-

order pro�les. Rather, the point of our study is to demonstrate that computing these higher-order

pro�les is feasible. We stress that using autodi�erentitation to �nd this fourth pro�le would likely

take several days on a state-of-the-art GPU, and we were able to compute it in less than two hours. We

leave the re�nement of model accuracy to future studies.
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Footnotes

1 See for example https://discuss.pytorch.org/t/optimizer-with-line-search/19465 and

https://discuss.pytorch.org/t/l-bfgs-b-and-line-search-methods-for-l-bfgs/674 for further

discussion of this de�ciency.
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