Open Peer Review on Qeios

Relative Viscosity

Noureddine Ouerfelli¹

1 University of Tunis El Manar

Potential competing interests: No potential competing interests to declare.

The **relative viscosity** is the ratio of the **dynamic viscosity** $(\eta)^{[1]}$ of a **dilute** solution of solute (electrolyte, non electrolyte, polymer, etc^{[2][3]}), and of the pure solvent (η_0) at the same temperature and pressure. $(\eta_{el} = \eta / \eta_0)$. It's a **dimensionless** property.

In laboratory practice, the relative viscosity (η_{rel}) can be expressed as follows:

 $[\eta_{rel} = \rho(Ct - E/t^2)/\rho_0(Ct_0 - E/t_0^2)]$, where ρ the density (g·cm⁻³), C represents the capillary tube or cell calibration constant(cSt·s⁻¹), E is the kinetic energy correction constant(cSt·s⁻²) and t is **flow time** (s).

In the case of **electrolyte solution**, we can use the **Jones-Dole** equation: $(\eta_{reF} 1 + Ac^{1/2} + Bc)$.

References

- 1. Noureddine Ouerfelli. (2024). Dynamic Viscosity. doi:10.32388/20yr03.
- 2. ^Noureddine Ouerfelli. (2024). Viscosity of polymer solutions. doi:10.32388/foydkd.
- 3. [^]Noureddine Ouerfelli. (2024). <u>Viscosity of electrolyte solutions.</u> doi:10.32388/ezlg62.