
18 December 2024, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

SiReRAG: Indexing Similar and Related
Information for Multihop Reasoning

Nan Zhang1,2, Prafulla Kumar Choubey2, Alexander Fabbri2, Gabriel Bernadett-Shapiro2, Rui Zhang1,

Prasenjit Mitra1, Caiming Xiong2, Chien-Sheng Wu2

1. Pennsylvania State University, United States; 2. Salesforce AI Research

Indexing is an important step towards strong performance in retrieval-augmented generation (RAG)

systems. However, existing methods organize data based on either semantic similarity (similarity) or

related information (relatedness), but do not cover both perspectives comprehensively. Our analysis

reveals that modeling only one perspective results in insufficient knowledge synthesis, leading to

suboptimal performance on complex tasks requiring multihop reasoning. In this paper, we propose

SiReRAG, a novel RAG indexing approach that explicitly considers both similar and related information.

On the similarity side, we follow existing work and explore some variances to construct a similarity tree

based on recursive summarization. On the relatedness side, SiReRAG extracts propositions and entities

from texts, groups propositions via shared entities, and generates recursive summaries to construct a

relatedness tree. We index and flatten both similarity and relatedness trees into a unified retrieval pool.

Our experiments demonstrate that SiReRAG consistently outperforms state-of-the-art indexing methods

on three multihop datasets (MuSiQue, 2WikiMultiHopQA, and HotpotQA), with an average 1.9%

improvement in F1 scores. As a reasonably efficient solution, SiReRAG enhances existing reranking

methods significantly, with up to 7.8% improvement in average F1 scores.

1. Introduction

Retrieval-augmented generation (RAG) has shown strong potential in augmenting large language models

(LLMs) with highly specialized and constantly updated knowledge[1][2]. Getting rid of fine-tuning LLMs, it

is an efficient method for handling users’ queries that require domain knowledge. A typical RAG pipeline

may involve chunking, embedding, indexing, retrieval with queries, reranking, and LLM response

generation[3].

The indexing step is a prerequisite. It focuses on organizing a large amount of data and serves as an

upstream step of retrieval. For example, RAPTOR[4]  shows a significant performance improvement by

Qeios

qeios.com doi.org/10.32388/93O2S3 1

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


adding recursive summaries to text chunks of a dataset, which demonstrates the potential of adding

synthesized information for retrieval. The added recursive summaries combine semantically similar

information within a dataset. GraphRAG[5], on the other hand, indices an entire corpus via an entity-guided

knowledge graph. It then constructs summaries from closely-related entities and their mentions,

synthesizing the connections and relatedness among different pieces of information.

However, none of the existing methods address the importance of indexing from both similarity and

relatedness sides, which limits a holistic understanding of the provided dataset. We define similarity as the

semantic distance of text pieces and relatedness as the degree of connection of texts based on signals such

as entities and propositions. Indexing similar and related information facilitates more comprehensive

knowledge integration than indexing individual kind of information. As shown in Figure 1, a complex

question that involves two hops of reasoning requires the retrieval and synthesis of relevant entity chunks.

For example, synthesizing entity 1 and 2 chunks would encourage LLMs to generate “Francis Bacon”, which

is a common mistake. Entity 1 and 2 chunks have close semantic distance. On the other hand, synthesizing

entity 2 and 3 chunks would not maximize the probability of the correct answer even when entity 1 chunk is

retrieved, since LLMs may struggle to reason about the painter of “Head I” in long-context environment[6].

In this case, entity 2 and 3 chunks are related due to a shared topic. Therefore, it is important to synthesize

both similar and related information in order to maximize the chance of retrieving relevant knowledge, in

particular, for multihop reasoning questions. We verify the bottleneck of solely modeling similarity or

relatedness through quantitative methods in Section 3 and demonstrate that neither perspective yields the

optimal performance.

In this paper, we propose SiReRAG, which stands for RAG indexing of similarity and relatedness as shown in

Figure 2. On the similarity side, SiReRAG follows RAPTOR[4]  to build a recursive tree based on chunk

similarity. We adopt a shallow tree with 4 levels in total. On the relatedness side, SiReRAG first extracts

entities (e.g., “Sonnet 110” and “William Shakespeare”) and fine-grained propositions (e.g., “Sonnet 110 is

one of 154 sonnets written by William Shakespeare.”) from each text chunk/document using LLMs. We

group these propositions into aggregated ones via entities, simply concatenating them with the original

order in chunk/document. These proposition aggregates contain related information, because they mention

shared entities. Then, recursive summaries with soft clustering are built on top of those aggregated

propositions. Finally, we index both trees by flattening nodes in each tree for retrieval.

We show that SiReRAG is effective on a variety of multihop question answering (QA) datasets including

MuSiQue[7], 2WikiMultiHopQA[8], and HotpotQA[9]. We find that SiReRAG consistently outperforms the

strongest RAG indexing methods, achieving an average F1 score improvement of at least 1.9%. We conduct

qeios.com doi.org/10.32388/93O2S3 2

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


an ablation study on several components in SiReRAG and observe that adding proposition aggregates to the

similar information within a dataset yields the most improvement, which echoes our motivation. SiReRAG

is also a reasonably efficient model, as it does not introduce many lengthy or redundant retrieval

candidates.

Figure 1. Challenges of existing RAG indexing methods for multihop reasoning. Entity 1 and 2 chunks contain

similar information while entity 2 and 3 chunks contain related contents. Since synthesizing information

only based on entity 1 and 2 (or entity 2 and 3) will lead to a higher probability of a wrong answer, an indexing

method that considers both similarity and relatedness is needed to maximize retrieving relevant knowledge

for multihop questions.

2. Related Work

RAG

RAG is a framework that integrates retrieval mechanisms into generative models to enhance text generation

by leveraging external knowledge. This concept has evolved from earlier retrieval-based methods such as

DrQA[10]  and DPR[11]. Instead of separating retrieval and generation phases, researchers also showed the

potential of tightly coupling retrieval and generation into an end-to-end framework[1].

Recent advances in retrieval mechanisms include leveraging LLMs as retrievers[12][13]  and exploring

retrieval granularity such as proposition[14]. Here each proposition is an atomic expression that contains a

factoid presented in natural language, which is similar to the propositions used by SiReRAG. Inspired by the

idea of retrieval granularity, we combine several different text granularities (entity, propositions, text

qeios.com doi.org/10.32388/93O2S3 3

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


chunk, and summary) to index data. As a representative work on text segmentation, researchers proposed

the frst supervised approach to generate hierarchical segmentation structures[15].

RAG Indexing

An earlier work[1] shows the benefits of document index on the overall retrieval performance. Most recent

works on RAG indexing include RAPTOR that builds a tree with recursive summaries[4], HippoRAG that

leverages the hippocampal indexing theory of human long-term memory for deep knowledge

integration[16], and GraphRAG that constructs an entity-guided knowledge graph[5]. However, all these

works overlooked the importance of considering both similarity and relatedness during indexing.

Specifically, RAPTOR integrated knowledge only based on similarity, and the other two only considered

relatedness to synthesize information. Although these three approaches achieved competitive performance

on different kinds of datasets and HippoRAG has the same goal as ours (multihop reasoning benchmarks),

SiReRAG is fundamentally different from them in terms of the explicit incorporation of both similar and

related knowledge.

Figure 2. SiReRAG Tree. We adopt RAPTOR[4] to construct the similarity tree (left). On the right, we construct

the relatedness tree by clustering the propositions based on their entities to get proposition aggregates and

having recursive summaries on top. Note that propositions are not included in the relatedness tree, so their

connections to proposition aggregates are marked with dashed lines.

qeios.com doi.org/10.32388/93O2S3 4

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


3. Bottleneck of Solely Modeling Similarity or Relatedness

To verify our hypothesis of insufficient knowledge integration when solely modeling similarity or

relatedness, we perform different kinds of clustering philosophies on a retrieval corpus of MuSiQue[7].

Using the same retrieval corpus as HippoRAG[16], we obtain 1000 questions from the validation set of

MuSiQue along with their candidate passage clusters (each cluster includes supporting and distractor

passages). We include distractor passages for a more realistic setting, since they are semantically close

and/or related to the supporting candidates. Treating these clusters as the gold labels for different queries,

we run our own clustering on all passages based on either similarity or relatedness.

Following RAPTOR[4], we use Gaussian Mixture Models (GMMs) to perform soft clustering, assuming that a

candidate passage can belong to multiple clusters. For similarity, we run GMMs on the deep representations

of all passages to find semantically similar groups. For relatedness, we first extract the topic of each passage

using OpenAI GPT-4o and then cluster passages based on the representations of their topics, because we

assume that related passages share similar topics. To obtain deep representations of either passages or

topics, we use OpenAI text-embedding-3-small for a balance of performance and efficiency. To evaluate the

overlapping ratio among clusters, we convert every cluster into pairwise connections. For instance, given

two clusters [1, 2, 3] and [3, 5], the resulting pairwise connections are as follows: “1-2”, “1-3”, “2-3”, and

“3-5”. By computing the number of shared pairwise connections between gold clusters and predicted

clusters, we aim to see how many pairwise connections from gold labels are covered by our two clustering

philosophies, and we believe this coverage is a key indicator of knowledge integration for RAG indexing. We

also report the overlapping ratio between “supporting only” similarity and relatedness to make a point of

combining both clustering philosophies.

Table  1 shows the coverage of supporting only or all passages as gold labels. Higher coverage is obtained

when we only use supporting passages as gold, which indicates the commonality of supporting ones with

respect to distractors. Both philosophies are able to capture this commonality. However, all these

percentage scores are low, with the highest one being around one-fifth of the total coverage (19.14%). This

indicates a significant insufficiency in knowledge synthesis when we model similarity or relatedness solely.

As a result, the chance of retrieving relevant knowledge for multihop reasoning questions could be

suboptimal.

Taking a further step in the supporting-only setting, we find that only 50.15% of the correct similarity

connections overlap with the correct relatedness connections. Correct similarity connections are those gold

connections covered by similarity, while correct relatedness connections are those covered by relatedness.

Conversely, 68.85% of the correct relatedness connections overlap with the correct similarity connections.

qeios.com doi.org/10.32388/93O2S3 5

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


In other words, predictions based on similarity or relatedness are not identical, and we can potentially

leverage both to improve retrieval performance and facilitate a more comprehensive knowledge integration

process. Although more customized clustering algorithms of each clustering philosophy can be proposed,

combining both similarity and relatedness offers an effective and straightforward solution.

 
Similarity Coverage Relatedness Coverage Overlapping Ratio

Supporting Only All Supporting Only All Overlap@Similarity Overlap@Relatedness

Coverage 19.14% 10.70% 13.94% 8.51% 50.15% 68.85%

Table 1. Coverage percentage between different clusters. MuSiQue clusters include supporting and distractor

passages. The “all” setting treats both as gold, while “supporting only” uses only supporting passages as

gold. We first show the coverage of supporting or all passages under two clustering philosophies. We then

report the overlapping ratio between “supporting only” similarity and relatedness to motivate our work of

combining both philosophies.

4. Methodology

We propose SiReRAG, a RAG indexing framework guided by similarity and relatedness. As shown in Figure 2,

its left tree integrates information based on similarity while its right tree integrates information based on

relatedness. As a first step, we study an alternative tree design to determine whether we can develop a

generalized tree structure for similarity and relatedness trees, and beyond (Section  4.1). After the

construction of the similarity tree, we extract propositions and their entities from our multihop reasoning

dataset and perform clustering based on entities to synthesize related information (Section 4.2). Indexing

separate similarity and relatedness trees (Section 4.3), SiReRAG explicitly models both kinds of information

within our dataset.

4.1. Exploring a hierarchical structure of trees

For efficiency, we stick to a tree structure to organize texts and explore whether a more structured tree

design would offer performance improvement. RAPTOR placed all text chunks at the bottom level and

recursive summaries at upper levels, but this design does not closely follow the commonsense definition of

a tree[17], where multiple levels of data abstraction are provided. The reason is that different text chunks of

a document may showcase different levels of abstraction, which serves as the assumption of many

qeios.com doi.org/10.32388/93O2S3 6

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


document discourse trees[18][19]. For example, text chunks of the introduction section of a research paper

are more likely to be more abstractive than those from the methodology section. Therefore, we first explore

placing different text chunks on different levels of a tree based on their levels of abstractiveness.

For this analysis, we choose QuALITY dataset[20]  instead of multihop reasoning ones, because the

documents of QuALITY are longer, resulting in more text chunks than using the other datasets. We prompt

GPT-4o to identify a two-level hierarchy for all candidate chunks: low (text chunks describing fine-grained

details about a topic) and high (text chunks giving an overview of a topic and summarizing fine-grained

details) abstractiveness. Summary nodes will still start from the second level (the level above the bottom

level), so the second level will contain both summary nodes (of the low-abstractive chunks) and high-

abstractive chunks. As in RAPTOR, nodes of the third level and above are recursive summaries of their

children. Using the same text chunks across two methods, we compare RAPTOR against our hierarchical

design. Since we simply retrieve the top 10 relevant nodes via an embedding model (text-embedding-3-

small) when a query arrives, the idea of hierarchical structure of chunks would affect summary nodes due

to the differences of their children.

  Average Accuracy Standard Deviation

RAPTOR 78.88 0.005

Hierarchical Text Chunks 78.76 0.004

Table 2. QA performance of having hierarchical text chunks on the validation set of QuALITY. Due to

randomization of clustering and generation temperature of LLMs, we run each indexing method for 5 times

and compute their average and standard deviation of accuracies.

As shown in Table 2, we do not observe a clear trend of improvement from using hierarchical text chunks,

even averaged over 5 different runs. The RAPTOR tree is relatively more efficient, as identifying hierarchical

text chunks and document discourse trees would require additional computation. Thus, we conclude that a

more structured tree design would not significantly improve performance, as long as the correct

information is indexed to answer a question. Since RAPTOR uses Gaussian Mixture Models and

representations of text chunks to perform clustering, it sets a nice example of integrating knowledge based

on similarity. We adopt it to construct our similarity tree as shown in the left part of Figure 2.

qeios.com doi.org/10.32388/93O2S3 7

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


4.2. Synthesizing information based on relatedness

For relatedness, we need to synthesize information based on a different philosophy than RAPTOR. Because

related information pieces always share some degree of connection (e.g., overlapping subjects), we assume

that two text pieces are related if they mention the same entity (e.g., person, location, product, etc). For

example, entity 2 and 3 chunks in Figure 1 are unlikely to be clustered in the same group based on similarity,

but since they both mention Francis Bacon, we are able to connect them together.

Modeling Relatedness with Entity-Specific Propositions:

To effectively use entities for organizing related content, we first need to determine the appropriate

granularity for text pieces. There are three main limitations with directly connecting entities to standard

text chunks. First, a chunk often contains information beyond the scope of a specific entity, making it

challenging to localize information about one entity, potentially adding noise. Second, aggregating all

chunks in an indexing corpus for each entity can result in hundreds of thousands of tokens for each entity,

which may lead to long context performance issues, such as losing critical information in the middle[6] or

experiencing low coverage and citation performance[21]. Third, linking with chunks will introduce

redundancy as each chunk may be a part of multiple entity clusters. Therefore, inspired by recent works on

retrieval granularity[22][14], we propose to use short entity-specific “propositions” to represent fine-

grained knowledge about entities and build our relatedness tree.

Extracting Propositions and Entities from Documents

We define a proposition as “a factual statement describing important information (preferably about some

entities) from a paragraph”. We extract entities and propositions using the Distill-SynthKG pipeline[23],

adapting its SynthKG workflow. Specifically, we first rewrite chunks of documents taken from 10K

BAAI/IndustryCorpus documents1 to resolve entity references. Here we use Meta-Llama-3-70B-

Instruct2[24], and the LLM prompt of rewriting chunks is in Figure 6. Then, after we obtain entities from

these rewritten chunks, we extract all relevant propositions and their associated entities (using the same

LLM) as detailed in the LLM prompt in Figure 7. Finally, we consolidate all propositions and entities as the

training data to fine-tune Mistral-7B-Instruct-v0.33[25]. This smaller fine-tuned model is used to

extract propositions and their associated entities from our multihop datasets.

Our prompt for extracting propositions and entities does not require every proposition to have associated

entities. When we prompt LLMs to generate entities for each proposition, they sometimes produce common

nouns as entities for those propositions that lack actually associated entities. This can lead to the clustering

qeios.com doi.org/10.32388/93O2S3 8

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


of unrelated propositions based on common nouns, potentially introducing noise into the relatedness tree.

For example, as illustrated in Figure 3, we prefer to avoid LLMs generating Drug as an entity for proposition 1

due to its ambiguity. Subsequently, we exclude propositions without associated entities when constructing

the relatedness tree, ensuring that only high-quality, entity-linked propositions are utilized. The Table 3

provides a detailed breakdown of key statistics for extracted propositions and entities from the MuSiQue,

2Wiki, and HotpotQA datasets.

  #Props per Entity

Dataset #Chunks #Props. #Ents #Pops Aggs. Avg. Max. Min.

MuSiQue 11,656 54,605 50,926 20,788 2.74 168 1

2Wiki 6,119 27,697 29,490 11,108 2.49 195 1

HotpotQA 9,221 47,153 46,856 18,278 2.66 165 1

Table 3. Key Statistics for extracted propositions and entities from MuSiQue, 2Wiki, and HotpotQA datasets.

We show the number of chunks, propositions, entities, proposition aggregates, and the average, maximum,

and minimum number of propositions per entity across the three datasets.

Figure 3. Examples of propositions with and without associated entities.

From Entity-specific propositions to Relatedness Tree

We concatenate related propositions that share the same entity using exact match to form proposition

aggregates. We ensure that all propositions from the same document are grouped together and maintain

their original order. By treating these proposition aggregates as pseudo-documents, we apply the same

clustering pipeline in RAPTOR to obtain recursive summaries at levels above them and build the relatedness

tree. Given that most propositions involve multiple entities, each proposition is associated with several

entity clusters, offering two key advantages. First, it effectively mimics soft clustering as a single

qeios.com doi.org/10.32388/93O2S3 9

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


proposition may belong to multiple aggregates. Secondly, when constructing recursive summaries within

the RAPTOR framework, the shared propositions across different aggregates result in high embedding

similarity, ensuring that these aggregates remain clustered together even at higher levels in the tree. This

relatedness tree forms the right part of SiReRAG as shown in Figure 2. Note that we only index aggregated

propositions instead of individual propositions for better inference efficiency.

4.3. Indexing similarity and relatedness trees

We propose to construct similarity and relatedness trees independently. This approach ensures that

summary nodes in one tree do not access the clusters of the other, leading to a simpler design. There is

another slightly complex design in which we allow summary nodes from one tree to access clusters from the

other tree. This interaction may enables summary nodes in both trees to inform and enhance each other and

improving their informativeness and consequently performance. However, this approach sacrifices the

distinction between similarity and relatedness. Additionally, allowing cross-tree interaction leads to more

nodes to cluster at each level as well as requires summarization based on a greater number of nodes per

cluster, all of which increases the overall complexity of the system. We experimented with both settings and

did not observe performance improvement as shown in Appendix  A. Therefore, we opted for the simpler

first implementation in our evaluation.

Flattening all tree nodes, we place them into a unified retrieval pool. In other words, regardless of a node’s

origin (e.g., bottom or upper levels, similarity or relatedness trees), it is added to a single list containing all

nodes.

5. Experiment Setup

5.1. Datasets

To demonstrate the effectiveness of SiReRAG, we select three representative multihop QA datasets:

MuSiQue[7], 2WikiMultiHopQA[8], and HotpotQA[9]. Using the same corpus as HippoRAG[16], we obtain

1000 questions from each validation set of these three datasets.

5.2. Baselines

We select RAPTOR, HippoRAG, and GraphRAG as state-of-the-art retrieval baselines. As discussed above,

RAPTOR integrates knowledge based on similarity while the other two approaches focus on relatedness.

Specifically, HippoRAG has both indexing and retrieval components, and we use ColBERTv2[26]  as the

retriever of HippoRAG due to its strongest QA performance reported. Although GraphRAG has a different

qeios.com doi.org/10.32388/93O2S3 10

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


goal (global questions directed at an entire dataset) than ours, we include it to show its performance on

multihop QA datasets. Since the queries in our datasets ask fine-grained details, we use the local search

function of GraphRAG instead of its global search.

5.3. Evaluation metrics

We use exact match (EM) and F1 scores to measure the QA performance of different models. Both metrics

evaluate how accurate a generated answer is with respect to the ground truth. Like RAPTOR[4], we do not

assess retrieval performance directly. The reason is that both SiReRAG and RAPTOR create new candidates

(e.g., summary and proposition aggregate) in the retrieval pool, so it would be unfair to compare methods in

terms of retrieval scores across different pools. Instead, QA performance is the best indicator of the overall

capability of both RAG pipelines.

We use the average time per query (TPQ) and the time-pool efficiency ratio (TPER) to measure the

efficiency of SiReRAG and RAPTOR, as both methods share a significant portion of their retrieval candidates.

Average TPQ measures the average time (in seconds) taken to answer a query, and it represents the

inference time of a method. For TPER, it computes the growth of total inference time with respect to the

growth of the retrieval pool size between two methods:

Setting SiReRAG as method A and a baseline as method B, we aim to ensure that the growth of inference

time does not scale proportionally with the increase in the retrieval pool size. The reason behind is that

there are many efficiency considerations (e.g., length and redundancy of retrieval candidates) beyond just

the sheer number of retrieval candidates. Parallelization could also be designed to retrieve candidates

simultaneously from similarity and relatedness trees, thereby minimizing the effect of retrieval pool size. A

TPER value less than 1 indicates reasonable efficiency, whereas a TPER value greater than 1 signifies low

efficiency.

5.4. Implementation details

To generate final answer, we use GPT-4o and the same prompt (“answer this question in as fewer number of

words as possible.”) to answer queries for all methods, since we aim to control the instruction-following

capabilities across all methods. We use either GPT-3.5-Turbo or GPT-4o as the choice of LLM if any

methods involve LLM calls. We use OpenAI’s text-embedding-3-small as the embedding model for all

methods. During retrieval, we select top 20 candidates that match the provided query for all methods,

TPER =
Inference-Time A/Inference-Time B

Pool-Size A/Pool-Size B
(1)

qeios.com doi.org/10.32388/93O2S3 11

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


because there is a large number of text chunks in our datasets and SiReRAG is expected to perform better

when retrieving more due to the incorporation of proposition aggregates and their recursive summaries.

6. Results and Analysis

Our results and analysis aim to answer the following research questions:

RQ 1: How does SiReRAG compare against other state-of-the-art baselines (sec 6.1)?

RQ 2: As an important contribution of SiReRAG, is considering both similarity and relatedness an

effective method (sec 6.1 and 6.2)?

RQ 3: What is the effect of each component in SiReRAG(sec 6.2)?

RQ 4: What is the applicability of SiReRAG(sec 6.3)?

RQ 5: With the addition of relatedness tree, is SiReRAG an efficient method (sec 6.4)?

6.1. Overall results

Our overall results are presented in Table  4. We show results on more datasets (single-hop QA, other

multihop QA, and ambiguous questions) in Appendix  E to show the generality of SiReRAG across various

complex reasoning tasks. Besides quantitative scores, we also conduct our qualitative analysis in

Appendix D.

Table 4. QA performance of SiReRAG and baselines. As elaborated in Section 5.4, GPT-4o is used to handle QA

for all models, and we use two different LLMs (specified in the parentheses) to build indexing structures. We

highlight the best scores using either LLM for indexing in green color.

Improvement over baselines

SiReRAG delivers consistent improvement over RAPTOR, HippoRAG, and GraphRAG. With an exception on

2Wiki when comparing against HippoRAG, SiReRAG achieves significantly higher performance than

indexing baselines (e.g., approximately 5% higher than RAPTOR on average F1, up to 8.3% improvement of

qeios.com doi.org/10.32388/93O2S3 12

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


F1 on MuSiQue than HippoRAG, and more than 20% higher than GraphRAG on average EM and F1). This

demonstrates the advantage of SiReRAG on multihop QA and modeling both similarity and relatedness.

Specifically, SiReRAGoutperforms RAPTOR due to the incorporation of a relatedness tree, and it has better

overall performance than HippoRAG, because we explicitly model similarity while HippoRAG prioritizes

relatedness signals such as nodes with the most edges. We see that HippoRAG is particularly strong on

2Wiki benchmark, which is also reported in its original paper. Thus, we believe 2Wiki is the best fit of

HippoRAG, but it has lower performance scores than SiReRAG on other datasets. One potential reason is that

the entity-centric design of 2Wiki may be well-suited for HippoRAG, as noted in the HippoRAG paper.

As for GraphRAG, it considers relatedness solely, and it delivers the worst performance scores on our

datasets. After a manual verification, we find that GraphRAG often provides “I don’t know” answers,

suggesting that it prefers not to give a concrete answer. Since GraphRAG is designed to handle query-

focused summarization of an entire corpus, it is not a competitive method in terms of accuracy for existing

multihop QA tasks.

Effect of LLM choice

When comparing the performance of SiReRAG using GPT-4o as the LLM against itself using GPT-3.5-

Turbo, we find the QA performance is not significantly affected. This phenomenon also holds on RAPTOR.

Since the choice of LLM for SiReRAG and RAPTOR only affects summarization results, we believe GPT-3.5-

Turbo is a sufficiently good option for both methods. This allows researchers to pursue a more cost-

effective solution with SiReRAGfor indexing.

6.2. Ablation study

To dissect SiReRAG, we perform a comprehensive ablation analysis as shown in Table 5. There are several

variances, including (A) remove the recursive summary on the relatedness tree; (B) add all the propositions

into the retrieval pool, and keep all aggregated propositions and recursive summary on the relatedness tree;

(C) same as (B) but remove aggregated propositions; (D) same as (C) but further remove the recursive

summary design on the relatedness tree.

qeios.com doi.org/10.32388/93O2S3 13

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


Table 5. Ablation study of SiReRAG.

Entity clustering.

In (E), we do not maintain a separate relatedness tree and add an additional clustering philosophy to the

similarity tree. Specifically, each text chunk in the similarity tree is simplified to, ’This chunk mentions

entity 1 and entity 2,’ if both entities are extracted by our LLM. We then run GMMs (the same clustering

method as RAPTOR) on these simplified chunks. Once the clustering decisions are obtained, we group the

original chunks as additional clusters and append these clusters to the similarity tree, allowing higher levels

of the tree to incorporate both clustering philosophies. Since entities primarily determine the outcome of

this additional clustering approach, we apply entity clustering to model relatedness on the similarity tree.

This allows us to eliminate proposition aggregates in order to examine their utility.

Findings.

Overall, we observe performance drops across all variations, highlighting the effectiveness of our design for

SiReRAG. First, the recursive summary on the relatedness tree proves beneficial, as seen in both (A) and (D).

Interestingly, adding more propositions to retrieval negatively impacts performance, as shown in (B). This

indicates adding redundant information into the retrieval pool hurts the QA performance, since we keep the

aggregated propositions in SiReRAG. From (C), we also find that aggregated propositions are essential, with

their removal resulting in a significant performance decline. This is an important indicator that adding

grouped knowledge about relatedness to the similarity tree would offer improvements, which echoes the

bottlenecks described in Section 3.

Both (A) and (B) have better performance than RAPTOR (GPT-4o) from Table  4, which indicates the

advantage of proposition aggregates. In contrast, although (E) also models both similarity and relatedness,

it exhibits a notable decline comparing against SiReRAG. This finding demonstrates the necessity of

proposition aggregates of modeling relatedness. Because proposition aggregates reduce noise and

qeios.com doi.org/10.32388/93O2S3 14

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


information redundancy more effectively than text chunks as described in Section  4.2, they serve as an

effective carrier of related dataset contents.

6.3. Applicability of SiReRAG

We analyze how applicable SiReRAG is when a specific retrieval method is chosen. Therefore, we select

BM25[27] and ColBERTv2[26] as additional reranking-based options. We run them on the retrieval pool of

SiReRAG to demonstrate its utility. We show how SiReRAG can complement these non-indexing options in

Table  6. Results show that having SiReRAG benefits both BM25 and ColBERTv2 significantly, which

demonstrates the advantage of our solution as the upstream step of these methods. On the other hand,

RAPTOR only improves the QA performance on MiSuQue while showing performance degradation on other

datasets. Thus, the utility of SiReRAG surpasses that of RAPTOR in the context of multihop reasoning. We

also apply SiReRAG on an iterative retrieval method called self-ask[28] and obtain significant performance

improvement as shown in Appendix  B. Our method showcases wide applicability on multihop QA across

various retrieval methods.

Table 6. Applicability of SiReRAG when a specific retrieval method is selected. We feed our non-indexing

models with the retrieval pool of SiReRAG and see whether QA performance improves.

6.4. Efficiency of SiReRAG

As shown in Table  7, we compare the efficiency of SiReRAG and RAPTOR using the metrics described in

Section 5.3. All the values listed involve the time taken to retrieve the top 20 candidates and prompt GPT-4o

to answer the query.

RAPTOR requires less inference time than SiReRAG on average, which is expected due to SiReRAG’s larger

retrieval pool. However, with slightly longer inference time, SiReRAG has much better performance as

discussed previously. To evaluate whether SiReRAG remains a reasonably efficient method, we compute its

TPER values to measure its growth of total inference time relative to its growth of retrieval pool size. Since

qeios.com doi.org/10.32388/93O2S3 15

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


all its TPER values are well below 1, SiReRAGdemonstrates reasonable efficiency without introducing many

lengthy or redundant retrieval candidates.

  MuSiQue 2Wiki HotpotQA Average

Model TPQ TPER TPQ TPER TPQ TPER TPQ TPER

RAPTOR 1.560 - 1.437 - 1.502 - 1.500 -

SiReRAG 2.653 0.600 1.974 0.499 2.319 0.517 2.315 0.539

Table 7. Efficiency of SiReRAG and RAPTOR. Since both methods share a significant portion of retrieval

candidates, we designate SiReRAG as Method A and RAPTOR as Method B in the TPER columns, as defined in

Equation 1.

7. Conclusion

In this paper, we identify the bottleneck of solely modeling similarity or relatedness when we need to index

a multihop reasoning dataset for knowledge integration. To address it, we introduce SiReRAG, an innovative

RAG indexing approach that considers both similarity and relatedness. SiReRAG delivers a consistent

improvement over state-of-the-art indexing baselines across several multihop QA benchmarks.

Appendix A. An Alternative Design of Allowing Cross-Tree Interaction

We discuss an alternative design of combining similarity and relatedness trees. Specifically, this design

combines nodes from both sides in the same pool for finding additional clusters and performing

summarization at every tree level. In other words, we find additional clusters by concatenating the nodes of

both trees, which considers cross-tree interaction instead of keeping them separate.

As shown in Table 8, the performance of considering cross-tree interaction is slightly lower than SiReRAG.

Therefore, it is more efficient to keep trees separate in order to reduce the overall complexity of the system

as discussed in Section 4.3.

Appendix B. Additional Experiment on Other Non-Indexing Methods

Although there are many existing methods that work on multihop reasoning tasks, SiReRAG is about

indexing corpus data under RAG setup. In other words, instead of being our baselines, other non-indexing

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

qeios.com doi.org/10.32388/93O2S3 16

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


works[28][29] focus on other dimensions of improving performance on complex reasoning tasks.

To further demonstrate the applicability of SiReRAG, we have run two additional sets of experiments: (1) the

closed-book setting, and (2) an iterative retrieval method[28]  called self-ask specifically designed for

multihop reasoning. The closed-book setting means to directly get the final answer from GPT-4o without

any retrieval. For self-ask, we prompt GPT-4o in two iterations without using a search engine. In the first

iteration, the model is prompted to propose follow-up questions and provide answers to them. In the

second iteration, GPT-4o is instructed to answer the final question by incorporating the follow-up thought

process. We feed the model with a one-shot example and 10 retrieved candidates that match the final

question in both iterations. For the self-ask retrieval pool, we use either all text chunks or SiReRAG.

Similar to Table 6, our experiment in Table 9 on self-ask shows that SiReRAG can complement existing

methods for optimal performance. We see that the closed-book setting yields the worst performance, which

indicates that LLMs’ parametric knowledge alone does not offer a decent performance on our datasets.

Then, we see SiReRAG successfully improves the scores of self-ask, demonstrating its wide applicability. By

leveraging SiReRAG’s retrieval pool, we view our method as an augmentation to other non-indexing

methods for multihop reasoning, rather than as a competitor.

Efficiency-wise, we show TPQ of using both SiReRAG and self-ask in Table 10. By having SiReRAG, the TPQ

of self-ask increases by approximately    seconds over the three datasets. Since self-ask requires two

iterations of LLM prompting in our implementation, the increase in TPQ is relatively small compared to the

significant performance improvement brought by SiReRAG.

Appendix C. Retrieval Pool Size

The retrieval pool sizes of SiReRAG on MuSiQue, 2Wiki, and HotpotQA are 35070, 19100, and 29934

respectively. The retrieval pool sizes of RAPTOR on MuSiQue, 2Wiki, and HotpotQA are 12371, 6939, and

10031 respectively. SiReRAG’s retrieval pool size is slightly less than three times the size of RAPTOR’s.

Considering the discussion on TPER in Section 6.4, we believe our method is reasonably efficient.

Appendix D. An Example SiReRAG Tree

Using the question “who is the father of the artist who painted Head I?” as an example, we focus on the

relevant part of the SiReRAG tree in Figure 4 to conduct our qualitative analysis.

1.2

qeios.com doi.org/10.32388/93O2S3 17

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


Figure 4. Relevant part of the SiReRAG tree for the question: “who is the father of the artist who painted

Head I?”.

Table 8. QA performance of two designs: separating similarity and relatedness trees (SiReRAG) and allowing

cross-tree interaction.

qeios.com doi.org/10.32388/93O2S3 18

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


Table 9. QA performance of closed-book and self-ask. We feed self-ask with the unified retrieval pool of

SiReRAG and see whether performance benifits from that.

Model MuSiQue TPQ 2Wiki TPQ HotpotQA TPQ Average TPQ

Self-ask 2.72 2.21 2.29 2.41

SiReRAG + self-ask 4.53 3.07 3.30 3.63

Table 10. Efficiency of using self-ask with SiReRAG. We show TPQ on MuSiQue, 2Wiki, and HotpotQA

datasets.

For the multihop question in Figure 1 (correct answer: Nicholas Bacon), the MuSiQue corpus contains one

relevant paragraph stating, “Francis Bacon was born on 22 January 1561 at York House near the Strand in

London, the son of Sir Nicholas Bacon…”. This paragraph is a leaf node of the similarity tree shown in

Figure 4. The similarity tree for the entire MuSiQue corpus has two more mentions (both mentions are in

summary nodes) of Nicholas Bacon, one of which reads: “…Francis Bacon: Born on 22 January 1561, son of

Sir Nicholas Bacon and Anne Cooke Bacon…” The addition of our relatedness tree adds two more mentions

of Nicholas Bacon: one is in a proposition aggregate (“…Francis Bacon was the son of Sir Nicholas Bacon,

Lord Keeper of the Great Seal, and Anne (Cooke) Bacon… Head I is a small oil and tempera on hardboard

painting by Francis Bacon, completed in 1948…”), and the other one is a summary node (”The text provides

detailed genealogical and biographical information about several individuals from different families and

historical periods… Francis Bacon was the son of Sir Nicholas Bacon and Anne (Cooke) Bacon, making

William Cecil, 1st Baron Burghley, his uncle…”). Thus, our similarity tree (RAPTOR tree) has three mentions

of Nicholas Bacon, but none of them contains Head I information. SiReRAG has five mentions of Nicholas

Bacon, and one of them (the proposition aggregate) contains Head I information. This proposition

aggregate groups several propositions together via the entity “Francis Bacon”. Because this node is the only

retrieval candidate that fully matches the question, retrieving it would maximize the chance of generating

qeios.com doi.org/10.32388/93O2S3 19

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


the correct answer. If we use the RAPTOR tree only, we will not have this retrieval candidate. We believe this

is an excellent example of how a comprehensive knowledge integration process can enhance the

performance of RAG in multihop reasoning.

Appendix E. Performance on Single-Hop QA, MultiHop-RAG, and

Ambiguous Questions

To showcase the generality of SiReRAG on more datasets of complex reasoning tasks, we run the

comparison between SiReRAG and RAPTOR on single-hop questions and MultiHop-RAG dataset[30]. We

also try ASQA dataset[31]  that contains ambiguous factoid questions. For single-hop questions, we use

MuSiQue dataset and collect all the decomposed questions of multihop queries. We filter out some

decomposed questions if they are still multihop or are based on another question. As a result, we end up

with 502 single-hop questions from MuSiQue. As for MultiHop-RAG, it is a more recent dataset. We filter all

unanswerable questions and randomly select 350 “comparison” queries and 350 “inference” queries, which

forms a pool of 700 queries in total.

Moreover, the primary difference between the multihop QA datasets and ASQA is that ASQA requires LLMs

to reason across multiple perspectives (e.g., disambiguated questions) of an ambiguous question and

organize their generation into a coherent and detailed answer. We report scores on ASQA based on all 948

ambiguous questions of its development set.

Table 11 shows the performance scores of RAPTOR and our method. On the single-hop questions, SiReRAG

still outperforms RAPTOR, but the lead narrows compared to the scores in Table 4. Since all queries in

MuSiQue involve at least two hops, we observe that an increased number of reasoning hops positively

impacts SiReRAG’s performance. This is because single-hop questions may not require comprehensive

knowledge synthesis, as they only involve retrieving the relevant chunks for the single hop. However, with

more hops, we not only need to retrieve relevant chunks but also synthesize them comprehensively.

SiReRAG also delivers better performance on MultiHop-RAG, which echoes our main experiment.

Table 11 also displays STR-EM (string exact match), Disambig-F1, and Disambiguation-Rouge metrics for

ASQA dataset. Specifically, STR-EM and Disambig-F1 dissect RAG answers to ambiguous questions into

multiple perspectives and measure their accuracy with respect to each disambiguated question.

Disambiguation-Rouge serves as an overall statistic that incorporates both ROUGE (with respect to the

references) and accuracy scores. We see SiReRAG delivers a consistent improvement over RAPTOR, which

again demonstrates the benefit of adopting SiReRAG on ambiguous queries.

qeios.com doi.org/10.32388/93O2S3 20

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


Our comprehensive selection of datasets demonstrates the generality and contribution of SiReRAG across

various complex reasoning tasks, with the most significant improvement observed in multihop QA.

Appendix F. LLM Prompts

The prompt we use to perform summarization on a cluster of nodes is “summarize the provided text,

including as many key details as needed”. This prompt is the same as RAPTOR. In Section 3, we use ‘identify

the high-level topic of this paragraph as concise as possible” to extract the topic of each passage. As

mentioned in Section 4.1, the prompt used for identifying a two-level hierarchy for all chunks is shown in

Figure 5. As mentioned in Section 4.2, the LLM prompt for rewriting chunks is shown in Figure 6, and the

prompt for extracting propositions and entities is shown in Figure 7.

Table 11. QA performance on single-hop questions, MultiHop-RAG, and ASQA.

qeios.com doi.org/10.32388/93O2S3 21

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


Figure 5. Prompt of identifying a two-level hierarchy for all candidate chunks.

qeios.com doi.org/10.32388/93O2S3 22

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


Figure 6. Prompt for rewriting a paragraph (e.g., a document chunk) by resolving entity coreferences.

qeios.com doi.org/10.32388/93O2S3 23

https://www.qeios.com/
https://doi.org/10.32388/93O2S3


Figure 7. Prompt for extracting propositions and entities from a document.

Notes

Nan Zhang: Work done while interning at Salesforce AI Research.

Footnotes

1 https://huggingface.co/datasets/BAAI/IndustryCorpus

2 https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct

3 https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

References

1. a, b, cLewis P, Perez E, Piktus A, Petroni F, Karpukhin V, Goyal N, Küttler H, Lewis M, Yih W, Rocktäschel T, Rie

del S, Kiela D. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In: Larochelle H, Ranzat

qeios.com doi.org/10.32388/93O2S3 24

https://huggingface.co/datasets/BAAI/IndustryCorpus
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://www.qeios.com/
https://doi.org/10.32388/93O2S3


o M, Hadsell R, Balcan MF, Lin H, editors. Advances in Neural Information Processing Systems. Curran Associa

tes, Inc.; 2020. p. 9459-9474. Available from: https://proceedings.neurips.cc/paper_files/paper/2020/file/6b4

93230205f780e1bc26945df7481e5-Paper.pdf.

2. ^Gao Y, Xiong Y, Gao X, Jia K, Pan J, Bi Y, Dai Y, Sun J, Wang M, Wang H (2024). "Retrieval-Augmented Gener

ation for Large Language Models: A Survey". arXiv. Available from: https://arxiv.org/abs/2312.10997.

3. ^Wang X, Wang Z, Gao X, Zhang F, Wu Y, Xu Z, Shi T, Wang Z, Li S, Qian Q, Yin R, Lv C, Zheng X, Huang X (202

4). "Searching for Best Practices in Retrieval-Augmented Generation". arXiv. arXiv:2407.01219 [cs.CL].

4. a, b, c, d, e, fSarthi P, Abdullah S, Tuli A, Khanna S, Goldie A, Manning CD (2024). "Raptor: Recursive abstractiv

e processing for tree-organized retrieval". arXiv preprint arXiv:2401.18059.

5. a, bEdge D, Trinh H, Cheng N, Bradley J, Chao A, Mody A, Truitt S, Larson J (2024). "From local to global: A gra

ph rag approach to query-focused summarization". arXiv preprint arXiv:2404.16130.

6. a, bLiu NF, Lin K, Hewitt J, Paranjape A, Bevilacqua M, Petroni F, Liang P (2024). "Lost in the middle: How lan

guage models use long contexts". Transactions of the Association for Computational Linguistics. 12: 157–173.

7. a, b, cTrivedi H, Balasubramanian N, Khot T, Sabharwal A (2022). "MuSiQue: Multihop Questions via Single-

hop Question Composition". arXiv. Available from: https://arxiv.org/abs/2108.00573.

8. a, bHo X, Duong Nguyen AK, Sugawara S, Aizawa A. Constructing a multi-hop QA dataset for comprehensive e

valuation of reasoning steps. In: Scott D, Bel N, Zong C, editors. Proceedings of the 28th International Confere

nce on Computational Linguistics. Barcelona, Spain (Online): International Committee on Computational Lin

guistics; 2020. p. 6609-6625. doi:10.18653/v1/2020.coling-main.580. Available from: https://aclanthology.or

g/2020.coling-main.580.

9. a, bYang Z, Qi P, Zhang S, Bengio Y, Cohen W, Salakhutdinov R, Manning CD. HotpotQA: A dataset for diverse,

explainable multi-hop question answering. In: Riloff E, Chiang D, Hockenmaier J, Tsujii J, editors. Proceeding

s of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium: Associatio

n for Computational Linguistics; 2018. p. 2369-2380. doi:10.18653/v1/D18-1259. Available from: https://aclan

thology.org/D18-1259.

10. ^Chen D, Fisch A, Weston J, Bordes A. Reading Wikipedia to answer open-domain questions. In: Barzilay R, Ka

n M-Y, editors. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Vol

ume 1: Long Papers). Vancouver, Canada: Association for Computational Linguistics; 2017. p. 1870-1879. doi:1

0.18653/v1/P17-1171. https://aclanthology.org/P17-1171.

11. ^Karpukhin V, Oguz B, Min S, Lewis P, Wu L, Edunov S, Chen D, Yih W. Dense passage retrieval for open-doma

in question answering. In: Webber B, Cohn T, He Y, Liu Y, editors. Proceedings of the 2020 Conference on Emp

irical Methods in Natural Language Processing (EMNLP). Online: Association for Computational Linguistics; 2

qeios.com doi.org/10.32388/93O2S3 25

https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2407.01219
https://arxiv.org/abs/2108.00573
https://doi.org/10.18653/v1/2020.coling-main.580
https://aclanthology.org/2020.coling-main.580
https://aclanthology.org/2020.coling-main.580
https://doi.org/10.18653/v1/D18-1259
https://aclanthology.org/D18-1259
https://aclanthology.org/D18-1259
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://aclanthology.org/P17-1171
https://www.qeios.com/
https://doi.org/10.32388/93O2S3


020. p. 6769-6781. doi:10.18653/v1/2020.emnlp-main.550. Available from: https://aclanthology.org/2020.e

mnlp-main.550.

12. ^Yu W, Iter D, Wang S, Xu Y, Ju M, Sanyal S, Zhu C, Zeng M, Jiang M (2023). "Generate rather than Retrieve: L

arge Language Models are Strong Context Generators". arXiv. https://arxiv.org/abs/2209.10063.

13. ^Sun Z, Wang X, Tay Y, Yang Y, Zhou D (2023). "Recitation-Augmented Language Models". arXiv. https://arxi

v.org/abs/2210.01296.

14. a, bChen T, Wang H, Chen S, Yu W, Ma K, Zhao X, Yu D, Zhang H (2023). "Dense x retrieval: What retrieval gra

nularity should we use?" arXiv preprint arXiv:2312.06648. arXiv:2312.06648.

15. ^Nair I, Garimella A, Srinivasan BV, Modani N, Chhaya N, Karanam S, Shekhar S. A neural CRF-based hierarc

hical approach for linear text segmentation. In: Vlachos A, Augenstein I, editors. Findings of the Association fo

r Computational Linguistics: EACL 2023. Dubrovnik, Croatia: Association for Computational Linguistics; 2023.

p. 883-893. doi:10.18653/v1/2023.findings-eacl.65. Available from: https://aclanthology.org/2023.findings-e

acl.65.

16. a, b, cGutiérrez BJ, Shu Y, Gu Y, Yasunaga M, Su Y (2024). "HippoRAG: Neurobiologically Inspired Long-Term

Memory for Large Language Models". arXiv preprint arXiv:2405.14831. Available from: https://arxiv.org/abs/

2405.14831.

17. ^Zhang J, Silvescu A, Honavar V. Ontology-driven induction of decision trees at multiple levels of abstraction.

In: Abstraction, Reformulation, and Approximation: 5th International Symposium, SARA 2002 Kananaskis, Al

berta, Canada August 2-4, 2002 Proceedings 5. Springer; 2002. p. 316-323.

18. ^Maekawa A, Hirao T, Kamigaito H, Okumura M. Can we obtain significant success in RST discourse parsing b

y using large language models? In: Graham Y, Purver M, editors. Proceedings of the 18th Conference of the Eu

ropean Chapter of the Association for Computational Linguistics (Volume 1: Long Papers). St. Julian's, Malta:

Association for Computational Linguistics; 2024. p. 2803-2815. Available from: https://aclanthology.org/202

4.eacl-long.171.

19. ^Liu Z, Shi K, Chen NF (2021). "DMRST: A joint framework for document-level multilingual RST discourse seg

mentation and parsing". arXiv preprint arXiv:2110.04518. arXiv:2110.04518.

20. ^Pang RY, Parrish A, Joshi N, Nangia N, Phang J, Chen A, Padmakumar V, Ma J, Thompson J, He H, Bowman S.

"QuALITY: Question Answering with Long Input Texts, Yes!" In: Carpuat M, de Marneffe MC, Meza Ruiz IV, ed

itors. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies. Seattle, United States: Association for Computational Linguistics;

2022. p. 5336-5358. doi:10.18653/v1/2022.naacl-main.391. Available from: https://aclanthology.org/2022.na

acl-main.391.

qeios.com doi.org/10.32388/93O2S3 26

https://doi.org/10.18653/v1/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://arxiv.org/abs/2209.10063
https://arxiv.org/abs/2210.01296
https://arxiv.org/abs/2210.01296
https://arxiv.org/abs/2312.06648
https://doi.org/10.18653/v1/2023.findings-eacl.65
https://aclanthology.org/2023.findings-eacl.65
https://aclanthology.org/2023.findings-eacl.65
https://arxiv.org/abs/2405.14831
https://arxiv.org/abs/2405.14831
https://aclanthology.org/2024.eacl-long.171
https://aclanthology.org/2024.eacl-long.171
https://arxiv.org/abs/2110.04518
https://doi.org/10.18653/v1/2022.naacl-main.391
https://aclanthology.org/2022.naacl-main.391
https://aclanthology.org/2022.naacl-main.391
https://www.qeios.com/
https://doi.org/10.32388/93O2S3


21. ^Laban P, Fabbri AR, Xiong C, Wu C-S (2024). "Summary of a haystack: A challenge to long-context llms and

rag systems". arXiv preprint arXiv:2407.01370.

22. ^Liu Y, Fabbri AR, Zhao Y, Liu P, Joty S, Wu C-S, Xiong C, Radev D (2023). "Towards interpretable and efficien

t automatic reference-based summarization evaluation". arXiv preprint arXiv:2303.03608. Available from: ht

tps://arxiv.org/abs/2303.03608.

23. ^Choubey PK, Su X, Luo M, Peng X, Xiong C, Le T, Rosenman S, Lal V, Mui P, Ho R, Howard P, Wu CS (2024).

"Distill-SynthKG: Distilling Knowledge Graph Synthesis Workflow for Improved Coverage and Efficiency". arX

iv. arXiv:2410.16597 [cs.CL].

24. ^AI@Meta (2024). "Llama 3 Model Card". https://github.com/meta-llama/llama3/blob/main/MODEL_CAR

D.md.

25. ^Jiang AQ, Sablayrolles A, Mensch A, Bamford C, Chaplot DS, de las Casas D, Bressand F, Lengyel G, Lample G,

Saulnier L, Lavaud LR, Lachaux MA, Stock P, Le Scao T, Lavril T, Wang T, Lacroix T, El Sayed W (2023). "Mistr

al 7B". arXiv. Available from: https://arxiv.org/abs/2310.06825.

26. a, bSanthanam K, Khattab O, Saad-Falcon J, Potts C, Zaharia M. ColBERTv2: Effective and efficient retrieval vi

a lightweight late interaction. In: Carpuat M, de Marneffe MC, Meza Ruiz IV, editors. Proceedings of the 2022

Conference of the North American Chapter of the Association for Computational Linguistics: Human Languag

e Technologies. Seattle, United States: Association for Computational Linguistics; 2022. p. 3715-3734. doi:10.1

8653/v1/2022.naacl-main.272. Available from: https://aclanthology.org/2022.naacl-main.272.

27. ^Robertson SE, Walker S. Some simple effective approximations to the 2-poisson model for probabilistic weig

hted retrieval. In: SIGIR’94: Proceedings of the Seventeenth Annual International ACM-SIGIR Conference on

Research and Development in Information Retrieval, organised by Dublin City University. Springer; 1994. p. 2

32–241.

28. a, b, cPress O, Zhang M, Min S, Schmidt L, Smith N, Lewis M. Measuring and narrowing the compositionality g

ap in language models. In: Bouamor H, Pino J, Bali K, editors. Findings of the Association for Computational L

inguistics: EMNLP 2023. Singapore: Association for Computational Linguistics; 2023. p. 5687-5711. doi:10.186

53/v1/2023.findings-emnlp.378. Available from: https://aclanthology.org/2023.findings-emnlp.378.

29. ^Islam SB, Rahman MA, Hossain KSMT, Hoque E, Joty S, Parvez MR. Open-RAG: Enhanced retrieval augment

ed reasoning with open-source large language models. In: Al-Onaizan Y, Bansal M, Chen Y-N, editors. Findin

gs of the Association for Computational Linguistics: EMNLP 2024. Miami, Florida, USA: Association for Comp

utational Linguistics; 2024. p. 14231-14244. doi:10.18653/v1/2024.findings-emnlp.831. https://aclanthology.

org/2024.findings-emnlp.831.

30. ^Tang Y, Yang Y (2024). "MultiHop-RAG: Benchmarking Retrieval-Augmented Generation for Multi-Hop Qu

eries". arXiv. https://arxiv.org/abs/2401.15391.

qeios.com doi.org/10.32388/93O2S3 27

https://arxiv.org/abs/2303.03608
https://arxiv.org/abs/2303.03608
https://arxiv.org/abs/2410.16597
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://aclanthology.org/2022.naacl-main.272
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://aclanthology.org/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2024.findings-emnlp.831
https://aclanthology.org/2024.findings-emnlp.831
https://aclanthology.org/2024.findings-emnlp.831
https://arxiv.org/abs/2401.15391
https://www.qeios.com/
https://doi.org/10.32388/93O2S3


31. ^Stelmakh I, Luan Y, Dhingra B, Chang MW. "ASQA: Factoid Questions Meet Long-Form Answers." In: Goldbe

rg Y, Kozareva Z, Zhang Y, editors. Proceedings of the 2022 Conference on Empirical Methods in Natural Lang

uage Processing. Abu Dhabi, United Arab Emirates: Association for Computational Linguistics; 2022. p. 8273-

8288. doi:10.18653/v1/2022.emnlp-main.566. Available from: https://aclanthology.org/2022.emnlp-main.56

6.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/93O2S3 28

https://doi.org/10.18653/v1/2022.emnlp-main.566
https://aclanthology.org/2022.emnlp-main.566
https://aclanthology.org/2022.emnlp-main.566
https://www.qeios.com/
https://doi.org/10.32388/93O2S3

