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Abstract 

Semi-empirical equations are derived that describe the dependence of shear stress on shear rate during 

the flow of a one-component suspension. The suspension is considered as consisting of three fractions: 

single grains of the solid phase, their dimers and trimers, between which reversible di- and trimerization 

reactions occur. Wherein, dimerization and trimerization are considered as reactions with invariable rate 

constants, and the dissociation of dimers and trimers – as reverse reactions with rate constants that 

increase linearly with the shear rate. The derived equations are based on the Krieger-Doherty formula 

generalized to the case of a multicomponent suspension. The equations describe well pseudoplasticity, 

dilatancy, thixotropy, and rheopexy, as well as suspensions with variable behaviour (when pseudoplastic 

behaviour is replaced by dilatant one, and thixotropic behaviour is replaced by rheopexic one, and vice 

versa). 

Introduction 

In a previous work [1], equations were derived that describe the dependence of the shear stress on the 

shear rate during the flow of concentrated suspensions. The equations were based on the Krieger-

Doherty formula [2, 3] generalized in our paper [4] to the case of multicomponent suspensions: 

𝜂 = 𝜂0 (1 −
𝜑

�̅�0
)
−[�̅�]�̅�0

.                                                               (1) 

 Here [�̅�] and �̅�0 – значения параметров, усредненных по всем твердым компонентам: 

{
 

 [�̅�] =
∑[𝜂𝑖]𝜑𝑖
𝜑

�̅�0 =
𝜑

∑𝜑𝑖/𝜑0,𝑖

,                                                                    (2) 

where 𝜑 is the total volume fraction of the dispersed phase, [𝜂𝑖] is the intrinsic viscosity of i-th 

component, 𝜑𝑖 and 𝜑0,𝑖 – volume fraction and limiting concentration of the i-th component, 

respectively. 
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In [1], a one-component suspension was considered as a system consisting of two fractions: single grains 

("singlets") of the solid phase and their dimers ("doublets"), where single grains and their dimers 

correspond to different values of the parameters [η] and φ0, wherein the singlet dimerization was 

considered as a reaction with an invariable rate constant k1, and the dissociation of doublets was 

considered as a reaction with a rate constant 𝑘, linearly increasing with the shear rate �̇�: 𝑘 = 𝑘2 + 𝑘3�̇�. 

It was shown that the derived equations describe well the flow of both pseudoplastic and dilatant 

suspensions (if the reaction rate is high and the equilibrium between singlets and doublets is reached 

almost instantly), as well as thixotropic and rheopex suspensions (these relaxation effects appear if the 

time to reach the mentioned equilibrium is comparable to experiment time). It was also shown that 

pseudoplastic suspensions exhibit thixotropic behaviour when relaxation effects occur, while dilatant 

suspensions exhibit rheopexic behaviour. 

However, it was also shown there that the pseudoplastic suspensions described in the literature, 

demonstrating rheopexy, as well as suspensions in which they demonstrate alternately rheopexic and 

thixotropic behaviour (at different shear rates) are not described by the equations derived there. In this 

regard, it was suggested that taking into account the formation of trimers (“triplets”) would also make it 

possible to describe such behaviour of suspensions. 

This work is a continuation and further development of the approach described in [1] by taking into 

account the formation of triplets. 

Theory of calculations 

So, we will consider a suspension as a system consisting of three fractions: singlets (we denote their 

volume fraction as 𝜑1), doublets (volume fraction 𝜑2) and triplets (volume fraction 𝜑3) 

Let there be 𝑛0 grains of the solid phase per unit volume of the suspension, while the number of singlets 

per unit volume is 𝑛1, doublets – 𝑛2, triplets – 𝑛3 and let the average volume of grains be equal to 𝑣. 

Then the volume fraction of the solid phase is equal to 𝜑0 = 𝑛0𝑣. At a given shear rate �̇� equilibrium is 

established between singlets, doublets, and triplets with a certain finite rate. In this case, three reversible 

reactions can occur: 

{
2𝑛1 ⇄ 𝑛2

𝑛1 + 𝑛2 ⇄ 𝑛3
3𝑛1 ⇄ 𝑛3

 

and 𝑛1 + 2𝑛2 + 3𝑛3 = 𝑛0. Multiplying the left and right sides of the last equality by 𝑣, we obtain 

𝜑1 +𝜑2 +𝜑3 = 𝜑0.                                                                  (3) 

Since the probability of a triple collision is small, we will neglect the contribution to the kinetics of the 

third reaction. 



We will assume that the dimerization rate constant k1 is invariable, and the reverse reaction rate constant 

k depends linearly on the shear rate �̇�, which, in turn, is a certain function of time: 𝑘 = 𝑘2 + 𝑘3�̇�(𝑡). 

Similarly for the second reaction: the rate constant of the direct reaction 𝑘4, and the reverse – 

𝑘5 + 𝑘6�̇�(𝑡). Thus, the reaction kinetics is described by the system of differential equations 

{

𝑑𝜑1
𝑑𝑡

= −𝑘1𝜑1
2 + (𝑘2 + 𝑘3�̇�)𝜑2 − 𝑘4𝜑1𝜑2 + (𝑘5 + 𝑘6�̇�)𝜑3

𝑑𝜑2
𝑑𝑡

= 𝑘1𝜑1
2 − (𝑘2 + 𝑘3�̇�)𝜑2 − 𝑘4𝜑1𝜑2 + (𝑘5 + 𝑘6�̇�)𝜑3

                               (4) 

Substituting equality (3) into equations (4), we obtain: 

{

𝑑𝜑1
𝑑𝑡

= −𝑘1𝜑1
2 + (𝑘2 + 𝑘3�̇�)𝜑2 − 𝑘4𝜑1𝜑2 + (𝑘5 + 𝑘6�̇�)(𝜑0 − 𝜑1 − 𝜑2)

𝑑𝜑2
𝑑𝑡

= 𝑘1𝜑1
2 − (𝑘2 + 𝑘3�̇�)𝜑2 − 𝑘4𝜑1𝜑2 + (𝑘5 + 𝑘6�̇�)(𝜑0 −𝜑1 −𝜑2)

                   (5) 

As the initial conditions, we choose the concentrations of singlets 𝜑1
𝑖𝑛𝑖𝑡, doublets 𝜑2

𝑖𝑛𝑖𝑡 and triplets 𝜑3
𝑖𝑛𝑖𝑡 

at equilibrium, which is established in the absence of flow, i.e.  �̇� = 0, 
𝑑𝜑1

𝑑𝑡
= 0 and 

𝑑𝜑2

𝑑𝑡
= 0. It leads to 

a system of algebraic equations 

{
𝑘2𝜑2 − 𝑘1𝜑1

2 − 𝑘4𝜑1𝜑2 + 𝑘5(𝜑0 −𝜑1 − 𝜑2) = 0

𝑘1𝜑1
2 − 𝑘2𝜑2 − 𝑘4𝜑1𝜑2 + 𝑘5(𝜑0 −𝜑1 − 𝜑2) = 0

 , 

 whence 

{
𝑘4𝜑1𝜑2 − 𝑘5(𝜑0 − 𝜑1 + 𝜑2) = 0

𝑘1𝜑1
2 = 𝑘2𝜑2

 

From the second equation 𝜑2 =
𝑘1𝜑1

2

𝑘2
; substituting this equality into the first equation, we obtain a cubic 

equation for 𝜑1: 

𝑘1𝑘4
𝑘2

𝜑1
3 +

𝑘1𝑘5
𝑘2

𝜑1
2 + 𝑘5𝜑1 − 𝑘5𝜑0 = 0                                                  (6) 

To find the roots of a cubic equation, there is the Cardano formula, but it requires operations with 

complex numbers, which is not very convenient for practical computer calculations, so equation (6) 

was solved numerically by the Newton method. 

Тhe system of equations (5) is the Riccati equations, which, in the general case, unfortunately cannot be 

integrated in quadratures [5]. Therefore, it was solved numerically by the classical fourth-order Runge-

Kutta method [6]. The result of the numerical solution will be denoted as 𝜑1(𝑡). 

The Krieger–Doherty formula for a three-component suspension according to (1) and (2) has the form 

𝜏 = 𝜏0 + 𝜂0�̇� (1 −
𝜑1
𝜑10

−
𝜑2
𝜑20

−
𝜑3
𝜑30

)
−

[𝜂1]𝜑1+[𝜂2]𝜑2+[𝜂3]𝜑3
𝜑1/𝜑10 + 𝜑2/𝜑20+ 𝜑3/𝜑30

,                             (7) 



with 𝜏 is the shear stress, 𝜏0 is the yield stress, 𝜂0 is the viscosity of the dispersion medium, �̇� is the 

shear rate, 𝜑1 and 𝜑2 are the volume fractions of singlets and doublets (the result of the numerical 

solution of the system of equations (5)), 𝜑3 is the volume fraction of triplets (in according to (3) 

𝜑3 = 𝜑0 − 𝜑1 − 𝜑2), 𝜑10 and 𝜑20 are the corresponding limiting concentrations, [𝜂1] и [𝜂2] are the 

corresponding intrinsic viscosities. 

Having a numerical solution 𝜑1(𝑡) and 𝜑2(𝑡) of the system of differential equations (5), it is possible to 

calculate the shear stress using formula (7). 

Results and discussion 

For the experimental verification of the derived equations, the data published in the literature [7][8] were 

used. The results of comparing theory with experiment are shown in the following figures. 

 Fig. 1. Aqueous suspension of 

palygorskite. Dependence of 

shear stress on shear rate 

according to [7]. 
Parameter values: 

𝑘1 ≈ 1,719; 𝑘2 ≈ 0,9625;  

𝑘3 ≈ 0,01310; 𝑘4 ≈ 3,446; 

𝑘5 ≈ 0,003725; 𝑘6 ≈ 0,0002261 

𝜑0 ≈ 0,4808; 𝜑10 ≈ 0,8816; 

𝜑20 ≈ 0,1804; 𝜑30 ≈ 0,4959; 
𝜏0 ≈ 6,046;  𝜂0 ≈ 0,07798 𝑃𝑎 ∙ 𝑠; 
[𝜂1] ≈ 2,859; [𝜂2] ≈ 27,32; 

[𝜂3] ≈ 2,726. The standard 

deviation of the curves from the 

points is 0.14 Pa (0.73% of the mean 

shear stress). The error indicator 

shows a spread of 3%. 

 

The points in fig. 1 represent the experiment according to the data of [7], the solid curves are the 

calculation according to the derived equations. It is easy to see that the derived equations are in 

exceptionally good agreement with the experiment, and the parameters of the equations take realistic 

values. 

The calculated dependences of the viscosity of the suspension, as well as the volume fraction of singlets, 

doublets and triplets on the shear rate, corresponding to the results presented in Figs. 1, are shown in fig. 

2 and 3, respectively. 

 



Fig. 2. Aqueous suspension of palygorskite. The 

calculated dependence of viscosity on shear rate, 

corresponding to the results in fig. 1. 

 

 

It can be seen from Fig. 2 that as the shear rate 

increases, the viscosity of the suspension 

decreases, i.e. suspension is pseudoplastic. 

However, with a decrease in the shear rate, the 

viscosity is restored not with a delay, as one would 

expect, but with an advance. 

 

Without taking into account the formation of triplets, this behaviour would be impossible to explain, and taking 

that into account - the reason for this behaviour becomes clear, if we watch the kinetics of changes in the 

concentrations of the components (Fig. 3)  

 Fig. 3. Aqueous suspension of palygorskite. The 

calculated dependences of the concentrations of the 

components on the shear rate, corresponding to the 

results in Figs. 1. 

 

It can be seen that before the start of the 

experiment, in the established equilibrium 

between the components in the suspension, 

triplets (the intrinsic viscosity of which is 

relatively low) predominate, which leads to a 

low viscosity of the suspension. 

As the shear rate increases, the triplets are 

destroyed, and singlets begin to predominate in the suspension, the rheological characteristics of which 

differ little from those of triplets, and the viscosity decreases insignificantly. With a thereafter decrease 

in the shear rate, the concentrations of singlets and triplets approach each other, and the concentration 

of doublets increases from 0.7% to 3.3%, i.e. almost 5 times. And although the concentration of doublets 

remains relatively small, due to the fact that they have a very high intrinsic viscosity and low limiting 

concentration, their contribution to the viscosity of the suspension becomes dominant, which leads to a 

rapid increase in viscosity. 

Of interest are also the suspensions described in the literature [8] with a “variable” flow pattern: at low 

shear rates, rheopexy is observed, and at high shear rates, thixotropy. The equations derived in the 

previous work [1] without taking into account the formation of triplets did not allow to describe such 



behaviour. Taking them into account makes it possible to do this, as can be seen from the following 

figures. 

Fig. 4 shows the dependence of the shear stress on the shear rate for a polymer suspension filled with 

ceramic nanoparticles according to [8]. 

It is easy to see that the equations derived taking into account the formation of triplets describe well this 

behaviour of the suspension as well, and the parameters take realistic values. 

 

Fig. 4. Polymer suspension filled 

with ceramic nanoparticles. 

Dependence of shear stress on shear 

rate according to [8]. 
Parameter values: 

𝑘1 ≈ 0,3354; 𝑘2 ≈ 0,09968; 

𝑘3 ≈ 0,006248; 𝑘4 ≈ 0,0001742; 

𝑘5 ≈ 0,00003591; 𝑘6 ≈ 0,002430; 

 𝜑0 ≈ 0,6298; 𝜑10 ≈ 0,7582; 

𝜑20 ≈ 0,5096; 𝜑30 ≈ 0,8801; 
𝜂0 ≈ 0,001625 𝑃𝑎 ∙ 𝑠; 
[𝜂1] ≈ 5,134; [𝜂2] ≈ 3,557 

[𝜂3] ≈ 4,961. 

The standard deviation of the curves 

from the points is 5.1 Pa (1.3% of the 

mean shear stress). The error 

indicator shows a spread of 3% 

 

 

 

The calculated dependences of the viscosity of the suspension, as well as the concentrations of singlets, 

doublets, and triplets, on the shear rate are shown in Figs. 5 and 6, respectively. 

 

Fig. 5. Polymer suspension filled with 

ceramic nanoparticles. The calculated 

dependence of viscosity on shear rate, 

corresponding to the results in fig. 4. 

 

As in the previous example, the 

outstripping increase in viscosity with a 

decrease in shear rate below 100 s–1 is 

surprising. And, as in the previous case, 

consideration of kinetics helps to 

explain this behaviour. 

Fig. 6 shows that the concentrations of doublets at the beginning and at the end of the experiment 

practically coincide, while at the beginning the concentrations of singlets and triplets differ little, and at 

the end singlets predominate. At the same time, singlets have a higher intrinsic viscosity and a lower 



limiting concentration than triplets, therefore, they make a greater contribution to the viscosity of the 

suspension. Therefore, their predominance leads to the observed increase in viscosity. 

 

Fig. 6. Polymer suspension filled with 

ceramic nanoparticles. The calculated 

dependence of the concentrations of the 

components on the shear rate, 

corresponding to the results in fig. 4 

 

 

 

 

 

 

 

 

 

 

Conclusions 

1. Accounting for the formation of triplets makes it possible to describe in a uniform and natural way 

all types of rheological behaviour of suspensions: pseudoplasticity, dilatancy, thixotropy and 

rheopexy. 

2. The proposed model describes as well good suspensions that demonstrate "variable" behaviour, i.e. 

cases when, with a change in shear rate, pseudoplasticity is replaced by dilatancy and vice versa, 

and also when thixotropy is replaced by rheopexy and vice versa. 

3. The type of rheological behaviour of the suspension depends on the ratio of six parameters: limiting 

concentrations of components 𝜑10, 𝜑20 and 𝜑30, their intrinsic viscosities [𝜂1], [𝜂2] and [𝜂3], as 

well as from the kinetics of interconversions of singlets, doublets and triplets. 

4. Pseudoplastic suspensions under certain conditions can demonstrate rheopex behaviour, as, 

probably, dilatant suspensions – thixotropic. 
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