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Semi-empirical equations are derived that describe the dependence of shear

stress on shear rate during the �ow of a one-component suspension. The

suspension is considered as consisting of three fractions: single grains of the

solid phase, their dimers, and trimers, between which reversible dimerization

and trimerization reactions occur. In this case, dimerization and trimerization

are considered as reactions with invariable rate constants, and dissociation of

dimers and trimers as reverse reactions with rate constants that increase

linearly with shear rate. The derived equations are based on the Krieger-

Doherty formula generalized to the case of a multicomponent suspension. The

equations describe well pseudoplasticity, dilatancy, thixotropy, and rheopexy,

as well as suspensions with variable behaviour (when pseudoplastic behaviour

is replaced by dilatant behaviour, and thixotropic behaviour is replaced by

rheopexic one, and vice versa).
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Introduction

In a previous work  [1], equations were derived that

describe the dependence of the shear stress on the

shear rate during the �ow of concentrated suspensions.

The equations were based on the Krieger-Doherty

formula [2][3] generalized in our paper [4]  to the case of

multicomponent suspensions:

Here    and  – parameter values averaged over all

solid components:

where   – is the total volume fraction of the dispersed

phase,    is the intrinsic viscosity of the i-th

component,   and   – volume fraction and limiting

concentration of the i-th component, respectively.

In [1], a one-component suspension was considered as a

system consisting of two fractions: single grains

("singlets") of the solid phase and their dimers

("doublets"), where single grains and their dimers

correspond to different values of the parameters 

  and  , wherein the singlet dimerization was

considered as a reaction with an invariable rate

constant  , and the dissociation of doublets was

considered as a reaction with a rate constant  , linearly

increasing with the shear rate  . It was

shown that the derived equations describe well the �ow

of both pseudoplastic and dilatant suspensions (if the

reaction rate is high and the equilibrium between

singlets and doublets is reached almost instantly), as

well as thixotropic and rheopexic suspensions (these

relaxation effects appear if the time to reach the
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mentioned equilibrium is comparable to the

experiment time). It was also shown that pseudoplastic

suspensions exhibit thixotropic behaviour when

relaxation effects occur, while dilatant suspensions

exhibit rheopexic behaviour.

However, it was also shown there that the pseudoplastic

suspensions described in the literature, demonstrating

rheopexy, as well as suspensions in which they

demonstrate alternately rheopexic and thixotropic

behaviour (at different shear rates), are not described by

the equations derived there. In this regard, it was

suggested that taking into account the formation of

trimers (“triplets”) would also make it possible to

describe such behaviour of suspensions.

In  [5], it was shown that taking into account the

formation of trimers (“triplets”) makes it possible to

describe suspensions in which the pseudoplastic nature

of the �ow is replaced by a dilatant one and vice versa

(the “equilibrium” case was considered there, i.e., when

the equilibrium between singlets, doublets, and triplets

is achieved instantly). Therefore, it is natural to make

the assumption that taking into account the formation

of trimers (“triplets”) will also make it possible in the

nonequilibrium case to describe suspensions with a

variable �ow pattern (when thixotropy is replaced by

rheopexy and vice versa).

Thus, this work is a generalization, further

development, and synthesis of the approaches outlined

in [1][5][6] by taking into account both the �nite reaction

rate and the formation of triplets.

The purpose of this work is to derive equations that

take into account both the formation of triplets and the

�nal rate of interconversion of singlets, doublets, and

triplets, as well as their experimental veri�cation.

Theory of calculations

So, we will consider a suspension as a system consisting

of three fractions: singlets (we denote their volume

fraction as  ), their dimers, or “doublets” (volume

fraction  ), and trimers, or “triplets” (volume fraction 

).

Let there be    grains of the solid phase per unit

volume of the suspension, while the number of singlets

per unit volume is  , doublets –  , triplets –   and

let the average volume of grains be equal to  . Then the

volume fraction of the solid phase is equal to  .

At a given shear rate    equilibrium is established

between singlets, doublets, and triplets with a certain

�nite rate. In this case, three reversible reactions can

occur:

at that  . Multiplying the left and

right sides of the last equality by  , we obtain

Since the probability of a triple collision is small, we will

neglect the contribution to the kinetics of the third

reaction.

We will assume that the dimerization rate constant   is

invariable, and the reverse reaction rate constant k

depends linearly on the shear rate k depends linearly on

the shear rate  , which, in turn, is a certain function of

time:  . Similarly, for the second

reaction: the rate constant of the direct reaction  , and

the reverse  . Thus, the reaction kinetics is

described by the system of differential equations
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Substituting equality (3) into equations (4), we obtain:

As the initial conditions, we choose the concentrations

of singlets  , doublets    and triplets    at

equilibrium, which is established in the absence of �ow,

i.e. at  ,   and  . It leads to

a system of algebraic equations

whence

From the second equation  ; substituting

this equality into the �rst equation, we obtain a cubic

equation for  :

To �nd the roots of the cubic equation, we used the

Vieta trigonometric formula [7].

Тhe system of equations (5) is the Riccati equations,

which, in the general case, cannot be integrated in

quadratures [8]. Therefore, it was solved numerically by

the classical fourth-order Runge-Kutta method [9]. The

result of the numerical solution will be denoted as 

.

The Krieger–Doherty formula for a three-component

suspension according to (1) and (2) has the form
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with   as the shear stress,   as the yield stress,   as the

viscosity of the dispersion medium,   as the shear rate, 

  and    as the volume fractions of singlets and

doublets (the result of the numerical solution of the

system of equations (5)),    as the volume fraction of

triplets (in accordance with (3)  ), 

  and    as the corresponding limiting

concentrations,    and    as the corresponding

intrinsic viscosities.

Having a numerical solution    and    of the

system of differential equations (5), it is possible to

calculate the shear stress using formula (7).

Results and discussion

For the experimental veri�cation of the derived

equations, the data published in the literature  [10]

[11] were used.

Although the parameters included in the equations

have a clear physical meaning, they are not calculated

theoretically and cannot be determined in independent

experiments. Therefore, they were considered as

“tuning” parameters. This means that they are chosen

in such a way as to minimize the discrepancy (the

standard deviation of the theoretical curve from the

experimental points). For this purpose, a computer

program was developed that minimized the

discrepancy by varying the parameters.

The results of comparing theory with experiment are

shown in the following �gures.
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Fig. 1. Aqueous suspension of palygorskite. Dependence of shear stress on shear rate

according to [10].

Parameter values:

;  ; ;  ;  ;  ; 

;  ;  ;  ; ;  ; 

:  ;  .

The standard deviation of the curves from the points is 0.11 Pa (0.62% of the mean shear

stress). The error indicator shows a spread of 3% (experimental error).

The points in Fig. 1 represent the experiment according

to the data of  [10], and the solid curves are the

calculations according to the derived equations. It is

easy to see that the derived equations are in

exceptionally good agreement with the experiment,

and the rheological parameters of the equations ( , 

,  ,  ,   и  ) take realistic values.

The calculated dependences of the viscosity of the

suspension, as well as the volume fractions of singlets,

doublets, and triplets on the shear rate, corresponding

to the results presented in Figs. 1, are shown in Figs. 2

and 3, respectively.

≈ 1, 96k1 s−1 ≈ 2, 41k2 s−1 ≈ 0, 0219k3 ≈ 6, 98k4 s−1 ≈ 0, 0629k5 s−1 ≈ 0, 000222k6

≈ 0, 456φ0 0 ≈ 0, 740φ1 0 ≈ 0, 110φ2 0 ≈ 0, 462φ3 ≈ 5, 73Paτ0 ≈ 0, 0009Pa sη0

[ ] ≈ 2, 59η1 [ ] ≈ 38, 6η2 [ ] ≈ 2, 50η3
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Fig. 2. Aqueous suspension of palygorskite. The calculated dependence of viscosity on shear

rate, corresponding to the results in Fig. 1.

It can be seen from Fig. 2 that as the shear rate

increases, the viscosity of the suspension decreases, i.e.,

the suspension is pseudoplastic. However, with a

decrease in the shear rate, the viscosity is restored not

with a delay, as one would expect, but with an advance.

Without taking into account the formation of triplets,

this behaviour would be impossible to explain, and

taking that into account – the reason for this behaviour

becomes clear if we watch the kinetics of changes in the

concentrations of the components (Fig. 3).
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Fig. 3. Aqueous suspension of palygorskite. The calculated dependences of the concentrations

of the components on the shear rate, corresponding to the results in Figs. 1.

The fact is that it is not the viscosity that is restored

with a delay, but the concentrations of singlets,

doublets, and triplets. How the viscosity changes

depends on the ratio of the rheological characteristics

of the fractions –  ,  ,  ,  ,   и  .

From Fig. 3, it can be seen that before the start of the

experiment, the established equilibrium between the

components in the suspension has triplets (the intrinsic

viscosity of which is relatively low) predominating,

which leads to a low viscosity of the suspension.

As the shear rate increases, triplets are destroyed, and

singlets begin to predominate in the suspension, the

characteristic viscosity of which is slightly higher than

that of triplets, and the limiting concentration is higher,

i.e., singlets make a smaller contribution to the

viscosity of the suspension, so its viscosity decreases

slightly. With a thereafter decrease in the shear rate, the

concentrations of singlets and triplets approach each

other, and the concentration of doublets increases from

0.46% to 1.63%, i.e., 3.6 times. And although the

concentration of doublets remains relatively small, due

to the fact that they have a very high intrinsic viscosity

and low limiting concentration, their contribution to

the viscosity of the suspension becomes dominant,

which leads to a rapid increase in viscosity.

Of interest are also the suspensions described in the

literature [8] with a “variable” �ow pattern: at low shear

rates, rheopexy is observed, and at high shear rates,

thixotropy. The equations derived in the previous

work  [1]  without taking into account the formation of

triplets did not allow for the description of such

behaviour. Taking them into account makes it possible

to do this, as can be seen from the following �gures.
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Fig. 4. Polymer suspension �lled with ceramic nanoparticles. Dependence of shear stress on

shear rate according to [11].

Parameter values:

;  ;  ;  ;  ; 

;  ;  ;  ;  ; 

;  ;  .The standard deviation of the curves from the points is

5.1 Pa (1.3% of the mean shear stress). The error indicator shows a spread of 3% (experimental

error).

Fig. 4 shows the dependence of shear stress on shear

rate for a polymer suspension �lled with ceramic

nanoparticles according to [11].

It is easy to see that the equations derived taking into

account the formation of triplets describe this

behaviour of the suspension well, and the rheological

parameters  ,  ,  ,  ,   and   take realistic

values.

The calculated dependences of the viscosity of the

suspension, as well as the concentrations of singlets,

doublets, and triplets, on the shear rate are shown in

Figs. 5 and 6, respectively.

≈ 0, 335k1 s−1 ≈ 0, 0997k2 s−1 ≈ 0, 00625k3 ≈ 0, 000174k4 s−1 ≈ 0, 0000359k5 s−1

≈ 0, 00243k6 ≈ 0, 630φ0 0 ≈ 0, 758φ1 0 ≈ 0, 510φ2 0 ≈ 0, 880φ3 ≈ 0, 00163Pa s;η0

[ ] ≈ 5, 13η1 [ ] ≈ 3, 56η2 [ ] ≈ 4, 96η3

φ10 φ20 φ30 [ ]η1 [ ]η2 [ ]η3
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Fig. 5. Polymer suspension �lled with ceramic nanoparticles. The calculated dependence of

viscosity on shear rate, corresponding to the results in Fig. 4.

As in the previous example, the outstripping increase in

viscosity with a decrease in shear rate below 100 s–1 is

surprising. And, as in the previous case, consideration

of kinetics helps to explain this behaviour.
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Fig. 6. Polymer suspension �lled with ceramic nanoparticles. The calculated dependence of

the concentrations of the components on the shear rate, corresponding to the results in Fig. 4.

Fig. 6 shows that the concentrations of doublets at the

beginning and at the end of the experiment practically

coincide, while at the beginning, the concentrations of

singlets and triplets differ little, and at the end, singlets

predominate. At the same time, singlets have a higher

intrinsic viscosity and a lower limiting concentration

than triplets; therefore, they make a greater

contribution to the viscosity of the suspension.

Therefore, their predominance leads to the observed

increase in viscosity.

Conclusions

�. Accounting for the formation of triplets makes it

possible to describe in a uniform and natural way

all types of rheological behaviour of suspensions:

pseudoplasticity, dilatancy, thixotropy, and

rheopexy.

�. The proposed model describes well suspensions

that demonstrate "variable" behaviour, i.e., cases

when, with a change in shear rate,

pseudoplasticity is replaced by dilatancy and vice

versa, and also when thixotropy is replaced by

rheopexy and vice versa.

�. The type of rheological behaviour of the

suspension depends on the ratio of six parameters:

limiting concentrations of components  , 

  and  , their intrinsic viscosities  , 

  and  , as well as on the kinetics of

interconversions of singlets, doublets, and triplets.

�. Pseudoplastic suspensions, under certain

conditions, can demonstrate rheopexy behaviour,

as, probably, dilatant suspensions can be

thixotropic.
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