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rheopexic suspensions: accounting for
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Semi-empirical equations are derived that describe the dependence of shear stress on shear rate

during the flow of a one-component suspension. The suspension is considered as consisting of three

fractions: single grains of the solid phase, their dimers and trimers, between which reversible di- and

trimerization reactions occur. Wherein, dimerization and trimerization are considered as reactions

with invariable rate constants, and the dissociation of dimers and trimers – as reverse reactions with

rate constants that increase linearly with the shear rate. The equations are based on the Krieger-

Doherty formula generalized to the case of a multicomponent suspension. The equations describe well

pseudoplasticity, dilatancy, thixotropy, and rheopexy, as well as suspensions with variable behaviour

(when pseudoplastic behaviour is replaced by dilatant one, and thixotropic behaviour is replaced by

rheopexic one, and vice versa).
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Introduction

In a previous work  [1], equations were derived that describe the dependence of the shear stress on the

shear rate during the flow of concentrated suspensions. The equations were based on the Krieger-

Doherty formula [2][3] generalized in our paper [4] to the case of multicomponent suspensions:

Here   and   are the values of the parameters averaged over all solid components:
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where    is the total volume fraction of the dispersed phase,  is the intrinsic viscosity of i-th

component,  and   – volume fraction and limiting concentration of the i-th component, respectively.

In [1], a one-component suspension was considered as a system consisting of two fractions: single grains

("singlets") of the solid phase and their dimers ("doublets"), where single grains and their dimers

correspond to different values of the parameters    и    , wherein the singlet dimerization was

considered as a reaction with an invariable rate constant    , and the dissociation of doublets was

considered as a reaction with a rate constant   , linearly increasing with the shear rate   :  .

It was shown that the derived equations describe well the flow of both pseudoplastic and dilatant

suspensions (if the reaction rate is high and the equilibrium between singlets and doublets is reached

almost instantly), as well as thixotropic and rheopex suspensions (these relaxation effects appear if the

time to reach the mentioned equilibrium is comparable to experiment time). It was also shown that

pseudoplastic suspensions exhibit thixotropic behaviour when relaxation effects occur, while dilatant

suspensions exhibit rheopexic behaviour.

However, it was also shown there that the pseudoplastic suspensions described in the literature,

demonstrating rheopexy, as well as suspensions in which they demonstrate alternately rheopexic and

thixotropic behaviour (at different shear rates) are not described by the equations derived there. In this

regard, it was suggested that taking into account the formation of trimers (“triplets”) would also make it

possible to describe such behaviour of suspensions.

This work is a continuation and further development of the approach described in  [1]  by taking into

account the formation of triplets.

Theory of calculations

So, we will consider a suspension as a system consisting of three fractions: singlets (we denote their

volume fraction as   ), doublets (volume fraction   ) and triplets (volume fraction   ). Let there be 

  grains of the solid phase per unit volume of the suspension, while the number of singlets per unit

volume is    , doublets – , triplets – and let the average volume of grains be equal to    . At a given

shear rate   equilibrium is established between singlets, doublets, and triplets with a certain finite rate.

In this case, three reversible reactions can occur:
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and   . Multiplying the left and right sides of the last equality by   , we obtain

Since the probability of a triple collision is small, we will neglect the contribution to the kinetics of the

third reaction.

We will assume that the dimerization rate constant   is invariable, and the reverse reaction rate constant

k depends linearly on the shear rate    , which, in turn, is a certain function of time:  .

Similarly for the second reaction: the rate constant of the direct reaction    , and the reverse –

. Thus, the reaction kinetics is described by the system of differential equations

As the initial conditions, we choose the concentrations of singlets    , doublets – and triplets –

at equilibrium, which is established in the absence of flow, i.e.  ,   и   . It leads to a

system of algebraic equations

where

From the second equation   ; substituting this equality into the first equation, we obtain a cubic

equation for   :

To find the roots of a cubic equation, there is the Cardano formula, but it requires operations with

complex numbers, which is not very convenient for practical computer calculations, so equation (6) was

solved numerically by the Newton method.

Unfortunately, the system of equations (5) is the Riccati equations, which, in the general case, cannot be

integrated in quadratures  [5]. Therefore, it was solved numerically by the classical fourth-order Runge-
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Kutta method [6]. The result of the numerical solution will be denoted as   .

The Krieger–Doherty formula for a three-component suspension according to (1) and (2) has the form

where    is the shear stress,    is the yield stress,    is the viscosity of the dispersion medium,    is the

shear rate,    and    are the volume fractions of singlets and doublets (the result of the numerical

solution of the system of equations (5)),    is the volume fraction of triplets (in according to (3) 

),    and    are the corresponding limiting concentrations,    и    are the

corresponding intrinsic viscosities.

Having a numerical solution   and   of the system of differential equations (5), it is possible to

calculate the shear stress using formula (7).

The calculation results thus depend on 12 parameters: rate constants    – ; limiting concentrations 

 – , as well as intrinsic viscosities   – .

Results and discussion

For the experimental verification of the derived equations, the data published in the literature [7][8] were

used. The results of comparing theory with experiment are shown in the following figures.
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Fig. 1. Aqueous suspension of palygorskite. Dependence of shear stress on shear rate according to [7]

Parameter values:

The standard deviation of the curves from the points is 0.14 Pa (0.73% of the mean shear stress). The error

indicator shows a spread of 3%.

≈ 1, 719;   ≈ 0, 9625;k1 k2

≈ 0, 01310;   ≈ 3, 446k3 k4

≈ 0, 003725;   ≈ 0, 0002261k5 k6

≈ 0, 4808;   ≈ 0, 8816;φ0 φ10

≈ 0, 1804;   ≈ 0, 4959φ20 φ30

≈ 6, 046;τ0

≈ 0, 07798 Pa ⋅ s;η0

[ ] ≈ 2, 859;   [ ] ≈ 27, 32η1 η2

[ ] ≈ 2, 726.η3
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The points in fig. 1 represent the experiment according to the data of  [7], the solid curves are the

calculation according to the derived equations. It is easy to see that the derived equations are in

exceptionally good agreement with the experiment, and the parameters of the equations take realistic

values.

The calculated dependences of the viscosity of the suspension, as well as the volume fraction of singlets,

doublets and triplets on the shear rate, corresponding to the results presented in Figs. 1, shown in fig. 2

and 3, respectively.

It can be seen from Fig. 2 that as the shear rate increases, the viscosity of the suspension decreases, i.e.

suspension is pseudoplastic. However, with a decrease in the shear rate, the viscosity is restored not with

a delay, as one would expect, but with an advance. Without taking into account the formation of triplets,

this behaviour would be impossible to explain, and taking that into account - the reason for this

behaviour becomes clear, if we watch the kinetics of changes in the concentrations of the components

(Fig. 3)
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Fig. 2. Aqueous suspension of palygorskite. The calculated dependence of viscosity on shear rate,

corresponding to the results in fig. 1.
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Fig. 3. Aqueous suspension of palygorskite. The calculated dependences of the concentrations of the

components on the shear rate, corresponding to the results in Figs. 1.

It can be seen that before the start of the experiment, in the established equilibrium between the

components in the suspension, triplets (the intrinsic viscosity of which is relatively low) predominate,

which leads to a low viscosity of the suspension.

As the shear rate increases, the triplets are destroyed, and singlets begin to predominate in the

suspension, the rheological characteristics of which differ little from those of triplets, and the viscosity

decreases insignificantly. With a thereafter decrease in the shear rate, the concentrations of singlets and

triplets approach each other, and the concentration of doublets increases from 0.7% to 3.3%, i.e. almost 5

times. And although the concentration of doublets remains relatively small, due to the fact that they have

a very high intrinsic viscosity and low limiting concentration, their contribution to the viscosity of the

suspension becomes dominant, which leads to a rapid increase in viscosity.

Of interest are also the suspensions described in the literature  [8] with a “variable” flow pattern: at low

shear rates, rheopexy is observed, and at high shear rates, thixotropy. The equations derived in the

previous work  [1]  without taking into account the formation of triplets did not allow to describe such

qeios.com doi.org/10.32388/93XMTM 8

https://www.qeios.com/
https://doi.org/10.32388/93XMTM


behaviour. Taking them into account makes it possible to do this, as can be seen from the following

figures.

Fig. 4 shows the dependence of the shear stress on the shear rate for a polymer suspension filled with

ceramic nanoparticles according to [8]:

Fig. 4. Polymer suspension filled with ceramic nanoparticles. Dependence of shear stress on shear

rate according to [8].

Parameter values:

≈ 0, 3354;   ≈ 0, 09968;k1 k2

≈ 0, 006248;   ≈ 0, 0001742k3 k4

≈ 0, 00003591;   ≈ 0, 002430k5 k6

≈ 0, 6298;   ≈ 0, 7582;φ0 φ10

≈ 0, 5096;   ≈ 0, 8801φ20 φ30

qeios.com doi.org/10.32388/93XMTM 9

https://www.qeios.com/
https://doi.org/10.32388/93XMTM


The standard deviation of the curves from the points is 5.1 Pa (1.3% of the mean shear stress). The error

indicator shows a spread of 3%.

It is easy to see that the equations derived taking into account the formation of triplets describe well this

behaviour of the suspension as well, and the parameters take realistic values.

The calculated dependences of the viscosity of the suspension, as well as the concentrations of singlets,

doublets, and triplets, on the shear rate are shown in Figs. 5 and 6, respectively.

Fig. 5. Polymer suspension filled with ceramic nanoparticles. The calculated dependence of viscosity

on shear rate, corresponding to the results in fig. 4.

As in the previous example, the outstripping increase in viscosity with a decrease in shear rate below 100

s–1 is surprising. And, as in the previous case, consideration of kinetics helps to explain this behaviour.

Fig. 6 shows that the concentrations of doublets at the beginning and at the end of the experiment

practically coincide, while at the beginning the concentrations of singlets and triplets differ little, and at

the end singlets predominate. At the same time, singlets have a higher intrinsic viscosity and a lower

≈ 0, 001625 Pa s;η0

[ ] ≈ 5, 134;   [ ] ≈ 3, 557η1 η2

[ ] ≈ 4, 961η3
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limiting concentration than triplets, therefore, they make a greater contribution to the viscosity of the

suspension. Therefore, their predominance leads to the observed increase in viscosity.

Fig. 6. Polymer suspension filled with ceramic nanoparticles. The calculated dependence of the

concentrations of the components on the shear rate, corresponding to the results in fig. 4.

Conclusions

1. Accounting for the formation of triplets makes it possible to describe in a uniform and natural way

all types of rheological behaviour of suspensions: pseudoplasticity, dilatancy, thixotropy and

rheopexy.

2. The proposed model describes as well good suspensions that demonstrate "variable" behaviour, i.e.

cases when, with a change in shear rate, pseudoplasticity is replaced by dilatancy and vice versa, and

also when thixotropy is replaced by rheopexy and vice versa.

3. The type of rheological behaviour of the suspension depends on the ratio of six parameters: limiting

concentrations of components   ,  and   , their intrinsic viscosities   ,  and   , as well

as from the kinetics of interconversions of singlets, doublets and triplets.

φ10 φ20 φ30 [ ]η1 [ ]η2 [ ]η3
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4. Pseudoplastic suspensions under certain conditions can demonstrate rheopex behaviour, as,

probably, dilatant suspensions – thixotropic.
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