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We investigate prethermalization by studying the statistical properties of the time-dependent largest

Lyapunov exponent   for unitary-circuit maps upon approaching integrability. We follow the evolution

of trajectories for di�erent initial conditions and compute the mean   and standard deviation   of  .

Thermalization implies a temporal decay   at a converged �nite value of  . We report

prethermalization plateaus that persist for long times where both   and   appear to have converged to �nite

values, seemingly implying di�ering saturated Lyapunov exponent values for di�erent trajectories. The

lifetime of such plateaus furnishes a novel time scale characterizing the thermalization dynamics of many-

body systems close to integrability. We also �nd that the plateaus converge to their respective thermal

values for long enough times.

Dedicated to Professor Alexander Kovalev from B. Verkin Institute for Low Temperature Physics and Engineering of

the NASU (Kharkiv, Ukraine) on the occasion of his 80th birthday.

1. Introduction

The study of thermalization usually starts from the Gibbs assumption of equal probability for each microstate,

and assumes that the system displays ergodicity, i.e. in�nite time averages have to be equal to phase space

(ensemble) averages[1]. A standard approach to investigate thermalization dynamics then consists of choosing

observables and extracting ergodization time scales on which their time averages converge to their ensemble

averages. Since these observables are functions of phase-space coordinates, their phase-space averages are

not correlated with the ergodization time, which can diverge when tuning the system parameters towards an

integrable limit. Thus, the ambiguity in the choice of observables ends up in a multitude of di�erent

ergodization times.

To bypass such ambiguity, an alternative approach consists in computing Lyapunov exponents - either the

largest or the entire spectrum[2]. The inverse of a Lyapunov exponent provides a unique time scale which
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characterizes the exponential decay of correlations in the system. The computation reduces again to the time

averaging of a certain quantity along a trajectory, which in this case can no longer be interpreted as an

observable. Indeed, it is uniquely de�ned from the system’s Hamiltonian and keeps track of correlations along

the trajectory. A remarkable property of these quantities is that the resulting Lyapunov exponents are

di�erential invariants[3], such that there is no ambiguity in their associated time scales, e.g. their values being

inversely proportional to the ergodization times of their corresponding Lyapunov observables.

The measurement of Lyapunov times and ergodization times of properly chosen observables provide new

insights into the slowing down of thermalization upon approaching integrable limits[4][5][6][7][8][9][10]. The

Lyapunov spectrum scaling shows universality and establishes di�erent classes of weakly nonintegrable

perturbations. These perturbations connect the actions, which are conserved for the integrable limit model,

into long range networks (LRN) or short range networks (SRN). The di�erent network classes demonstrate

unique correlations between the scalings of the Lyapunov spectrum and the ergodization time of the above

actions[8][9]. The LRN scaling is roughly characterized by one diverging time scale (e.g. the smallest Lyapunov

time obtained by inverting the largest Lyapunov exponent), i.e. all other thermalization time scales diverge

proportionally. The SRN scaling is characterized by a second diverging quantity - the exponent which controls

the decay of the Lyapunov spectrum. This exponent and its divergence are believed to be connected to the

divergence of the distance between chaotic multiplets of actions[4][5][6]. The distance here is measured in

action space using the network metrics, and corresponds to a distance in a real physical space for most

models.

The proximity to an integrable limit results in slow thermalization, which is particularly prone to

intermediate prethermalization dynamics. As a key phenomenon in nonequilibrium dynamics,

prethermalization has attracted signi�cant attention across various research �elds[11][12][13][14][15][16][17][18]

[19][20][21][22][23]. Many studies use the existence of additional integrals of motion (e.g. spin systems, many-

body quantum systems with conserved particle numbers or their classical analogues if available) or at least the

existence of almost conserved quantities (e.g. the energy in certain realizations of Floquet systems) to enforce

slow relaxation. Typically a quench is performed, and a particular observable is picked, to follow the

�uctuations of the latter and to extract either slow or even the absence of relaxation over signi�cant times. A

few studies pick random initial states, and again choose a particular observable to be followed. Others even

take integrable systems and use generalized Gibbs-ensemble concepts. Most of the investigations are

performed in the quantum regime and few of them in the classical one. The previously discussed ambiguity in

the choice of observables appears to be a limiting factor in characterizing thermalization and therefore also

prethermalization, attesting to how tricky such characterization can be. Thus, in view of their invariance, it is
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interesting to search for prethermalization characteristics of typical initial states through the measurement of

Lyapunov exponents.

In the prethermal regime, observables behave as if converged for temporal windows of varying length before

�nally relaxing to their true asymptotic values. One way to observe such phenomenon is to start from a non-

typical initial state for which the dynamics is trapped in a near-regular part of phase space for long times. A

prominent example is the Fermi-Pasta-Ulam-Tsingou paradox (FPUT)[24][25]. Exciting a single mode

(action) of a weakly nonintegrable anharmonic chain results in surprisingly long times to reach equipartition,

with Lyapunov times being much shorter, suggesting some converged Lyapunov spectrum for a system still

being far from convergence[26]. Another instance of prethermal dynamics that does not require the use of

special initial states is the previously discussed SRN regime of a weakly nonintegrable system, which is the

approach pursued here.

We study thermalization dynamics in a one-dimensional system of nonintegrable nonlinear unitary circuit

maps[8][9]. These maps conserve the total norm, similar to the conservation of total energy for continuous-

time Hamiltonian dynamics. Note that technically unitary dynamics can be mapped back onto a stroboscobic

Poincaré-like map of some underlying Hamiltonian system, which conserves both norm and energy. What

matters is the bulk of evidence that the thermalization dynamics of unitary maps considered here show full

similarity to the conventional thermalization dynamics of Hamiltonian systems[4][5][6][7][10][27][28]. We

quantify the temporal convergence properties of Lyapunov exponents using trajectories with randomly

chosen initial values. We observe the tantalizing convergence of Lyapunov exponents along such randomly

chosen trajectories for time windows of varying duration, with the theoretically expected convergence to a

unique and trajectory-independent value taking place only at much longer times.

II. Model

We employ the nonlinear unitary circuit map used in Refs.[8][9][10]. It is a one-dimensional lattice consisting

of   unit cells, where each unit cell is labeled by an odd site   and its corresponding even site  . Here, 

 takes odd values ( ), and   is the next even site ( ). Each site 

  is represented by a complex component  , and the initial state of the lattice is described by the vector 

, representing all the sites in the lattice. The system evolves in a phase

space of dimension  , as each complex component is one degree of freedom which contributes two real

variables. The evolution follows a deterministic trajectory de�ned by the initial conditions and is achieved

through iterative applications of the unitary map, 

N n n + 1

n n = 1, 3, 5, … , 2N − 1 n + 1 n + 1 = 2, 4, 6, … , 2N

n ψn

ψ = ( , , , , … , , )ψ1 ψ2 ψ3 ψ4 ψ2N−1 ψ2N

4N

= ,Û n ĜnĈn−1,nĈn,n+1 (1)
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with each iteration corresponding to one time step.

Figure 1. A schematic representation of the unitary circuits map. It evolves from bottom to

top and consists of alternating large yellow blocks and small light green blocks,

representing unitary matrices   parameterized by the angle   and local nonlinearity

generating maps   parameterized by the nonlinearity strength  , respectively. The states 

 and   evolve to   and  , respectively, through subsequent

applications of these transformations. One time step contains three substeps.

The unitary map   is constructed from two key components, namely two successive rotation operations and

a nonlinear operation as illustrated in Fig. 1. The rotation operations,  , are unitary transformations that act

on pairs of neighboring sites   and  . Speci�cally, they are de�ned as, 

In addition to the rotation operations, the map includes a nonlinear operation  , which introduces site-

dependent phase shifts that are proportional to the norm    on site  . The nonlinear

operation is de�ned as, 

By combining the two rotation operations   and   with the nonlinear operation  , we derive the

evolution equations, 

Ĉ θ

Ĝ g

(t)ψn (t)ψn+1 (t + 1)ψn (t + 1)ψn+1

Û n

Ĉ

n n + 1

( ) = ( )( ).Ĉn,n+1
(t)ψn

(t)ψn+1

cos θ

− sin θ

sin θ

cos θ

(t)ψn

(t)ψn+1
(2)

Ĝn

| (t)ψν |2
ν, ν = n, n + 1

(t) = (t).Ĝnψν eig|ψν |2 ψν (3)

Ĉn−1,n Ĉn,n+1 Ĝn
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where   and   denote the states   and  , respectively, after applying two rotation operations  . In

the simulations, we use periodic boundary conditions  . The map ensures that the total squared

norm    is a conserved quantity. The local norm density    is drawn from a Gibbs

distribution    with an average squared-norm density of  , and the phases are

chosen from a distribution which is uniform on the interval  . This map possesses two distinct integrable

limits   (linear case) and   (decoupled sites). The limit   corresponds to the case where the sites

are decoupled, and the norm of each site is conserved, resulting in   independent conserved quantities. The

squared norms here can be regarded as the analog of the actions in time-continuous Hamiltonian systems. In

the limit    the nonlinearity vanishes, but the coupling between the sites remains, and the norms of the

corresponding normal modes are conserved. Weak perturbations o� the integrable limits result in LRN (

) and SRN ( ) universality classes[8][9] (see also Appendix A).

III. Lyapunov Exponent Computation

We determine the time evolution of deviation vectors to obtain the time-dependent largest Lyapunov

exponent. To derive the equations of motion for the deviation vectors, we decompose the trajectory   into

an unperturbed trajectory    and a deviation  . Thus, the trajectory can be expressed as 

. For convenience, we de�ne the two operators,   and  ,

Expanding the nonlinear exponential term in the equations for   and   followed by a linearization

in   with  , we derive its linearized evolution equation

We are only interested in the largest time-dependent Lyapunov exponent  , which is obtained from the

running time-average of the Lyapunov observable  , where    is the length of the

deviation vector  . Accordingly, we compute at each time step the Lyapunov observable   and then the

temporal average  . After each calculation step,    needs to be normalized. It follows

that   is a running time average of the Lyapunov observable  . In contrast to usual observables,   can

not be simply expressed through a function of the phase space coordinates. It keeps correlations and memory

along the trajectory as the trajectory evolves. Attempts to replace its time average by a procedure of phase

(t + 1)ψn

(t)φn

(t + 1)ψn+1

(t)φn+1

= (t),eig| (t)φn |2 φn

= ( θ (t) − cos θ sin θ (t) + θ (t) + sin θ cos θ (t))sin2 ψn−2 ψn−1 cos2 ψn ψn+1

= (t),eig| (t)φn+1 |2 φn+1

= (− sin θ cos θ (t) + θ (t) + sin θ cos θ (t) + θ (t)) ,ψn cos2 ψn+1 ψn+2 sin2 ψn+3

(4)

φn φn+1 ψn ψn+1 Ĉ

=ψ2N+1 ψ1

A = | (t)∑m ψm |2 |ψm |2
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2
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space averaging are notoriously complicated, and usually only possible in certain limiting regimes[29][30]. At

the same time, and in the spirit of the ergodic theorem, the computational time average of    is usually

saturating at its ergodization time and becomes time independent.

Since we are only calculating the largest Lyapunov exponent,    is merely a random complex vector. The

largest Lyapunov exponent represents the strongest exponential divergence in the system. Calculating only

the largest exponent not only e�ciently captures the key dynamical features but also reduces computational

complexity, allowing simulations to extend to longer time scales.

IV. Statistical Properties of Lyapunov Observables

To understand the statistical behavior of Lyapunov observables in systems approaching an integrable limit,

we analyze their probability-density function (PDF)    of the Lyapunov observables    and associated

statistical properties, such as the mean and standard deviation. We performed    iterations of the unitary

map Eq.  (1) yielding    values of    that were accounted for in the evaluation of their PDF. Two distinct

regimes are considered, namely LRN and SRN.

r(t)

W(t)

P (r) r(t)

109

109 r(t)
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Figure 2. Probability-density function   of the Lyapunov

observable   for the SRN case with  . Panel (a) shows the PDF on

linear scales, while panel (b) presents the same data with the  -axis

plotted on a log  scale. The colors corresponding to di�erent values

of   in (a) and (b) are shown in the legend of panel (a). The unitary

map Eq. (1) is iterated   times, yielding   values for   that were

all used to calculate  . The number of unit cells in the system is 

.

Figure 2 shows the PDF   for the SRN case with   and various values of   ranging from   to  .

Panel (a) presents the PDF on a linear scale, while panel (b) uses a logarithmic scale (base  ) on the  -axis.

The results reveal a clear trend, namely as    decreases,    becomes increasingly symmetrically

concentrated around  , with the peak height near   growing signi�cantly. This behavior is particularly

P(r)

r g = 1

y

10

θ

109 109 r(t)

P(r)

N = 100

P (r) g = 1 θ 0.001 0.1

10 y

θ P (r)

r = 0 r = 0
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evident in panel (b), where the logarithmic scale highlights the increase of the peak height as   approaches

smaller values. Physically, this re�ects the system approach toward the marginal stability regime, where the

Lyapunov observable    remains close to zero for longer durations. At larger values of  , the distribution

broadens, indicating stronger deviations from zero and a higher degree of dynamical instability. The slow yet

observable steepening of peak of    near    for small    highlights the system’s tendency to exhibit

weaker chaotic dynamics as it approaches the integrable limit.

Figure 3. Same as Fig. 2 for the LRN case with  . The colors

corresponding to the di�erent values of   in (a) and (b) are shown in

the legend of panel (a).

Figure  3 shows the PDF    for the LRN case with  . Panel (a) presents the PDF on a linear scale,

while panel (b) shows the same data with the  -axis plotted on a logarithmic scale (base  ). The behavior of 

 for di�erent values of   (ranging from   to  ) is qualitatively consistent with the SRN case shown in

θ

r(t) θ

P (r) r = 0 θ

θ = 0.33π

g

P (r) θ = 0.33π

y 10

P (r) g 0.001 0.1
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Fig. 2. As   decreases, the distribution becomes increasingly peaked around  , re�ecting the same trend

observed in SRN, namely the Lyapunov observable spends more time near zero when approaching smaller  .

Note, however, that the LRN PDF appears to become narrower much faster upon approaching its integrable

limit, than the SRN PDF. To quantify these observations, we compute the mean and standard deviations of the

PDFs.

g r = 0

g
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Figure 4. Average value,  , and standard deviation,  , of the

Lyapunov observable for the SRN and LRN cases, with both panels

using a log  scale on the  -axis. Panel (a) represents the SRN case

with   and varying  , while panel (b) shows the LRN case with 

 and varying  . The red solid line represents the mean value

( ), and the blue dashed line represents the standard deviation ( ).

The circles correspond to the speci�c values of   or   used in the

calculation. The unitary map Eq. (1) is iterated   times, yielding 

 values for   that were all used to compute the mean and

standard deviations. The system consists of   unit cells.

Figure 4 shows the average value and standard deviation of the Lyapunov observable  , with panel (a)

exhibiting the SRN case and panel (b) showing the LRN case. In the SRN case, as   approaches smaller values,

μ σ
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both    and    decrease. However, the standard deviation remains larger than the mean while both    and 

 appear to saturate at a nonzero value. Extensive further computations (see Appendix B) indicate that both

mean and standard deviation eventually tend towards zero upon approaching the integrable limit, yet this

process appears to be rather slow. This behavior indicates that as  , the Lyapunov observable shows

anomalous nonzero �uctuations, a possible prerequisite to prethermalization.

For the LRN case, as  , both    and    tend to zero much faster than in the SRN case. The standard

deviation quickly approaches the mean and both quantities decrease rapidly towards zero. Note that the

standard deviation reaches values by a factor of    smaller than for the SRN case, and the mean reaches

values by a factor   smaller than for the SRN case. As we further reduce   we start to see anomalies similar

to those for the SRN case (see appendix B).

We conclude this section with the observation that the statistics of Lyapunov observables in the LRN regime

appears to show expected features - no anomalous �uctuations, and fast diminishing distribution width and

peak position upon approaching the integrable limit. On the contrary, in the SRN regime we observe

anomalous �uctuations, and mean and standard deviation seemingly frozen at nonzero values which are 100-

1000 times larger than the corresponding numbers from the LRN regime.

V. Observation of Prethermalization

The statistical analysis of the Lyapunov observable does not account for temporal correlations between the

measured observables generated by the �ow along a given trajectory. Prethermalization is expected to result

in long-time periods with seemingly converged Lyapunov exponents whose values nevertheless depend on

the initial conditions. That implies that temporal correlations do not decay up to times beyond such time

windows. In this section we analyze the time evolution of   for the SRN and LRN systems, i.e. the running

time averages of the Lyapunov observable along a given trajectory.

μ σ μ

σ

θ → 0

g → 0 μ σ

10−3

10−2 g

Λ(t)
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Figure 5. Time evolution of the largest Lyapunov exponent   on a

log  scale for up to   iterations for   (a) and   (b)

in the LRN case for  . Each panel shows 100 trajectories

obtained from randomly chosen initial conditions. The system

consists of   unit cells.

Figure  5 shows the time evolution of the largest Lyapunov exponent    for the LRN system with a �xed

coupling parameter    for ( ), each for 100 di�erent trajectories with random initial

conditions. For   the running time average quickly converges to a number which appears to be rather

trajectory independent. This is the usual perception of a well thermalized ergodic system, with time averages

of observables being independent of the chosen trajectory. Reducing the nonlinearity parameter to 

 does not change the outcome, except that it delays the �nal curve saturation time and the saturation

level, as discussed above. We conclude that for these parameter values, the LRN regime shows reasonable

Λ(t)
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ergodic thermalization with an accompanying slowing down upon approaching the integrable limit. More data

for intermediate values of   are shown in Appendix C.

Figure 6. Same as Fig. 5 for the SRN case with   and   (a)

and   (b).

The SRN regime shows a qualitatively di�erent result in Fig. 6. We �x the nonlinearity parameter at   and

show the time evolution of the largest Lyapunov exponent   for the SRN system for ( ), each

for 100 di�erent trajectories with random initial conditions. For   the outcome is qualitatively similar

to the LRN plots in Fig.  5 (a), with reasonable thermalization and ergodicity. However, the plot for 

  exhibits an extraordinary behavior. Di�erent trajectories for di�erent initial conditions appear to

saturate, but at di�erent values of the Lyapunov exponent. This clearly indicates that the system is not yet

g

g = 1 θ = 0.001

θ = 0.01

g = 1

Λ(t) θ = 0.001, 0.01

θ = 0.01

θ = 0.001
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thermalized and ergodic within these time scales. We observe pre-thermalization, i.e. the system shows

practically saturated Lyapunov exponents and �nite-strength chaos, but the quantitative characteristics

depend on the initial conditions. The only possibility is then that the seemingly saturated curves will

ultimately merge into one proper asymptotic horizontal line for much larger times. More data for

intermediate values of   are shown in Appendix C and con�rm this expectation.θ
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Figure 7. The unscaled (a) and scaled (b) average values of the mean

and standard deviation of   on a log  scale for the LRN case with 

 for di�erent values of   (see main text for more

information). The colors red, green, blue, black, magenta, and

brown, corresponding to  ,

respectively. Averaging is performed over 100 trajectories at each

time step. In (b), the cyan dashed line indicates the temporal decay 

. The time evolution is plotted on a log  scale, extending

up to  . The number of unit cells is  .

In order to further quantify our �ndings, we compute the temporal evolution of the statistical properties of 

. After each iteration, we determine the values of   for each of the 100 trajectories, and compute their
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σ ∼ t−1/2
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mean and standard deviation. We start with the LRN regime illustrated in Fig.  7 (a) for 

. The mean deviations show proper saturation, while the standard

deviations are decaying with increasing time, indicating asymptotic convergence to proper thermalization and

ergodicity. Since the saturation (ergodization) time for each curve is di�erent and roughly inversely

proportional to the saturated mean value, we use the saturated values of    and perform an

additional rescaling  ,   and  . The resulting plot in Fig. 7(b) shows very good

merging of the curves for all except the smallest values of    and the standard deviation    as

expected and predicted for asymptotic thermalization and ergodicity.

Figure 8. Same as Fig. 7 for the SRN case with   for di�erent

values of  . The colors red, green, blue, black, magenta, brown

correspond to  , respectively.
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z := (t = )μ̄ 1010

= ztt
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In contrast, the SRN case, shown in Fig. 8, exhibits a clearly di�erent behavior. In the unscaled data shown in

Fig. 8(a), smaller values of   (e.g.,  ) display a nearly constant   which is almost not decaying

with time after    stabilizes into a horizontal line. This behavior indicates the presence of a prethermalized

state, where �uctuations around the mean persist over long periods, delaying full thermalization. For larger 

 values (e.g.,  ),   begins to decay after   stabilizes, suggesting faster convergence to thermalization

as the coupling strength increases. Indeed, the rescaled data in Fig. 8(b) show an increasingly weaker decay of

the rescaled standard deviation when approaching the integrable limit. The decay is much slower than the

expected   law shown by the dashed line.

These results highlight a stark contrast between the LRN and SRN cases. The LRN regime shows consistent

thermalization dynamics across all   values, with   steadily decaying and no evidence of prethermalization.

Conversely, the SRN system strongly depends on coupling strength, with smaller    values leading to

prolonged prethermalization and delayed thermalization.

Figure 9. Average scaled mean ( , dashed lines) and standard deviation ( , solid lines) of 

, calculated from 100 trajectories at each time step, for the LRN model with  .

Panels (a)–(f) correspond to  , respectively. The

black dashed line shows the expected temporal decay,  . Green, red, and blue

curves indicate system sizes  , respectively. All data are plotted on a log

 scale.
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Figure 10. Same as Fig. 9 for the SRN model with  . Panels (a)–(f) correspond to 

, respectively.

To investigate the role of system size in the thermalization dynamics, we analyzed the time evolution of 

  for the LRN and SRN regimes and di�erent system sizes, as shown in Fig.  9 and Fig.  10. The analysis

includes various system sizes ( ) for di�erent values of   (LRN) and   (SRN). The black dashed

line represents the theoretical temporal decay  , a hallmark of complete thermalization.

For the LRN regime, shown in Fig. 9, the results indicate a deviation from fast thermalization and the slowing

down of the   decay as compared to the predicted   law, for the smallest size   and close proximity

to its integrable limit, albeit the e�ect appears to be rather weak. Likewise the SRN regime shows persistent

signatures of prethermalization and anomalously slow decay of  , yet no speed-up is either observed for

larger system sizes.

6. Discussion

We have investigated the thermalization dynamics of weakly nonintegrable unitary circuit maps, focusing on

the statistical properties of Lyapunov observables and the time evolution of the largest Lyapunov exponent.

Our analysis reveals distinct thermalization behavior in the SRN and LRN regimes as the systems approach

integrable limits.

In the LRN regime, the mean and standard deviation of the Lyapunov observables rapidly converge to zero as

the system approaches integrability. This behavior re�ects strong ergodicity, and stable thermalization.

g = 1

θ = 0.001, 0.002, 0.004, 0.006, 0.008, 0.01

Λ(t)

N = 50, 100, 200 g θ

σ ∼ t−1/2

σ~ 1/ t√ N = 50
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Meanwhile, the largest Lyapunov exponent quickly stabilizes to a trajectory-independent value, exhibiting

typical ergodic thermalization behavior.

In contrast, the SRN regime exhibits pronounced prethermalization phenomena. The statistical properties of

the Lyapunov observables demonstrate anomalous �uctuations, with their mean and standard deviation

remaining stable over long time scales, forming prethermalization plateaus. Furthermore, the time evolution

of the largest Lyapunov exponent shows trajectory-dependent behavior, delaying the system convergence to

complete thermalization. These �ndings highlight the complex dynamics of the SRN regime near integrability

and emphasize the signi�cant role of network connectivity in shaping thermalization processes.

Our results demonstrate that the statistical properties of Lyapunov observables and the largest Lyapunov

exponent play a crucial role in characterizing prethermalization and thermalization dynamics in many-body

systems. The comparison between the LRN and SRN regimes underscores the profound in�uence of network

topology on the slowing down of thermalization in nonintegrable systems.

Appendix A. On the derivation of short and long range network regimes

In the short range network, the integrable limit is reached for  . The system turns integrable and the

equations of motion preserve the local norm (action)  . For small values of the parameter  , 

 and  , and neglecting higher-order terms like  , the equations can be approximated up to

�rst order in   as

The equations of motion connect the actions through nearest-neighbor interactions and can be categorized as

a short-range network.

For the long range network case we switch to the notations from Ref.[8][9]  for clarity, that is, replace 

  with odd    by  . For the linear case  , we use the standard ansatz 

, where    and    represent the odd and even parts of  ,

respectively. The eigenfrequencies   obey the dispersion relation, 

  with two dispersive bands      and corresponding normal modes  ,

which form a complete set. Generally, a state vector   may be decomposed in terms of normal modes of the

linear system, 

θ = 0

| , |ψn|2
ψn+1 |2
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sin θ ≈ θ cos θ ≈ 1 θ2
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In the linear case  , the evolution of the coe�cients   only involves a phase rotation  ; the absolute

values    are conserved in time, since they are the actions of the integrable limit. Introducing a small

nonzero value of   results in a coupling between all these actions. Approximating Eq.(4) for small values

of  , we obtain:

All   are coupled due to the second term in Eq.(A4). For each action  , the number of terms in the sum is

proportional to    due to the constraints enforced by the overlap integrals in Eq.(A5), resulting in a long-

range network.

Appendix B. Further insights into the Lyapunov observable statistics

To provide further details on the behavior of the Lyapunov observable  , we present additional numerical

results exploring both the SRN and LRN cases with extended parameter ranges closer to the integrable limits,

and smaller system sizes to cope with the additional CPU time e�orts.
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Figure 11. The average value ( ) and standard deviation ( ) of the Lyapunov

observable for the SRN and LRN cases, with both axes in   scale. The red solid line

and blue solid line represent the mean ( ) and standard deviation ( ) of SRN with 

 and varying   (  to  ). The green solid line and black solid line represent

the mean ( ) and standard deviation ( ) of LRN with   and varying   (

 to  ). The system size is  , and the evolution time is  . Similar to

Fig. 4, the averages and standard deviations are calculated using   points.

Figure 11 shows the average values ( ) and standard deviation ( ) of the Lyapunov observable distributions. In

the SRN case ( ), as    decreases from    to  , both the average and standard deviation appear to

gradually saturate to nonzero values, with the standard deviation remaining signi�cantly larger than the

mean. This saturation highlights the persistence of nonzero �uctuations near the integrable limit. However,

further reducing the value of   and approaching the corresponding integrable limit, we observe diminishing of

both the mean and standard deviation, as expected. Yet this decay appears to be very slow. Further studies for

larger system sizes and closer distance to the integrable limit are needed in future studies.

For the LRN case ( ), where    decreases from    to  , both the average ( ) and standard

deviation ( ) rapidly decrease and appear to converge towards zero. This trend contrasts sharply with the SRN

case, where �uctuations persist at smaller values of  . At the same time, we note a systematic relative increase

of the standard deviation over the mean for  . This might be due to �nite size e�ects. Further

studies for larger system sizes and closer distance to the integrable limit are needed in future studies.
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Figure 12. The coe�cient of variation ( ) for the Lyapunov observable in the SRN

and LRN cases, where   is the ratio of the standard deviation ( ) to the mean

value ( ). The blue solid line represents the SRN case with   and varying   (

 to  ), while the red solid line corresponds to the LRN case with 

 and varying   (  to  ). The system size is  , and the evolution

time is  .

Figure 12 shows the coe�cient of variation   (de�ned as  ), which measures the relative �uctuation

of the standard deviation to the mean value. For the LRN case (red line), as   decreases from   to  , 

  appears to increase monotonically, especially for  . This indicates that while both the mean and

standard deviation approach zero, the relative �uctuations become increasingly signi�cant as the system

nears the integrable limit. For the SRN case (blue line),    is much larger to start with, and also increases

when  , showing a stronger trend but similar to the LRN case. For  , noticeable �uctuations in 

 emerge. We can only speculate about their origins, and repeat again that detailed future studies are needed

to clear the fog.

Cv

= σ/μCv σ

μ g = 1 θ

10−4 10−1

θ = 0.33π g 10−4 10−1 N = 50

109

Cv = σ/μCv

g 10−1 10−4

Cv g < 10−3

Cv

θ > 10−3 θ < 10−3

Cv

qeios.com doi.org/10.32388/9AD7WH 22

https://www.qeios.com/
https://doi.org/10.32388/9AD7WH


Appendix C. Further insights into the time-dependent Lyapunov

exponent for both LRN and SRN

We provide more details on the time evolution of the largest Lyapunov exponent    in the LRN and SRN

regimes as they approach their integrable limits.

Figure 13. The time evolution of the largest Lyapunov exponent   up to   for

di�erent values of   for the LRN case ( ) within the unitary circuits map.

Panels (a) through (f) correspond to  ,

respectively. Each panel shows 100 trajectories resulting from 100 di�erent initial

conditions, displaying the   values on a log  scale. The system consists of 

 unit cells.

Figure 13 shows results for the LRN case with �xed coupling   and varying nonlinearity  . Panels (a)-

(f) correspond to  , displaying 100 trajectories with di�erent initial

conditions. For large  ,   quickly converges to a single value, indicating fast thermalization. As   decreases,

convergence slows down, and �uctuations persist longer, but all trajectories eventually stabilize to the same 

. This suggests that prethermalization is absent in LRN systems, and thermalization proceeds robustly

even near the integrable limit.
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Figure 14. Same as Fig. 13 for di�erent values of   for the SRN case with  . Panels

(a) through (f) correspond to  , respectively.

The system consists of   unit cells.

In contrast, Fig.  14 presents results for the SRN case with �xed nonlinearity    and varying coupling  .

Panels (a)-(f) correspond to  . For large  ,    behaves similarly to

the LRN case, stabilizing quickly. However, at small  , trajectories appear to saturate at distinct values of  ,

forming long-lived prethermalization plateaus. These plateaus persist over extended timescales (   to 

), indicating a breakdown of delayed thermalization.

Comparing Figs.  13 and  14, the LRN system shows smooth and rapid thermalization, while the SRN system

exhibits prolonged prethermalization with strong dependence on initial conditions. This highlights the role of

network structure in thermalization dynamics and establishes prethermalization as a key feature of SRN

systems.
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