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Integrating multiple functionalities into a system poses a fascinating challenge to the �eld of deep

learning. While the precise mechanisms by which the brain encodes and decodes information, and

learns diverse skills, remain elusive, memorization undoubtedly plays a pivotal role in this process. In

this article, we delve into the implementation and application of an autoencoder-inspired

hippocampus network in a multi-functional system. We propose an autoencoder-based memorization

method for policy function’s parameters. Speci�cally, the encoder of the autoencoder maps policy

function’s parameters to a skill vector, while the decoder retrieves the parameters via this skill vector.

The policy function is dynamically adjusted tailored to corresponding tasks. Henceforth, a skill vector

graph neural network is employed to represent the homeomorphic topological structure of subtasks

and manage subtasks execution.
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1. Introduction

Recently, deep learning models, designed and optimized to excel at a particular problem, are task-

speci�c. Multi-functionality capability is a fascinating topic and memorization plays an important role in

this integration and incorporation process.

The crucial structure hippocampus locates in the medial temporal lobe of the brain, speci�cally within

the limbic system[1]. Named for its resemblance to the shape of a seahorse, the hippocampus plays a vital

role in various cognitive functions, particularly memory. The hippocampus is composed of several

distinct regions, including the dentate gyrus, the cornu ammonis �elds, and the subiculum. These

regions work together to facilitate the encoding, consolidation, and retrieval of memories. The

hippocampus is integral to this process, helping to encode and store these memories for later retrieval. In
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addition to its role in declarative memory, the hippocampus also plays a signi�cant role in spatial

navigation and orientation. It is involved in the formation of cognitive maps, which help us navigate our

environment and understand spatial relationships. The hippocampus is highly interconnected with other

brain regions, including the cortex, amygdala, and thalamus. These connections allow it to integrate

information from various sources and coordinate cognitive processes. The hippocampus is a vital brain

structure that plays a crucial role in memory, spatial navigation, and orientation.

The neuroimaging technique Functional magnetic resonance imaging (fMRI) measures changes in blood

�ow and oxygen consumption in the brain associated with neuronal activity[2]. This technology utilizes

magnetic �elds and radio waves to produce images of the brain that highlight regions of activation

during various cognitive tasks or in response to external stimuli. When neurons are active, they consume

more oxygen and nutrients, leading to increased blood �ow in the local region to meet the metabolic

demands. Speci�cally, fMRI relies on the blood oxygen level-dependent (BOLD) contrast[3].

Dynamical Hierarchical Reinforcement Learning (DHRL) is an active and advanced �eld within

reinforcement learning that incorporates hierarchical structures to tackle complex and dynamic

environments[4][5]. The essential idea of DHRL is decompose task into subtasks, solving the task in

divide-and-conquer manner, aiming to reduce the complexity of task and enhance learning ef�ciency

that subject to long-term dependencies and sparse reward signal in reinforcement learning. Hierarchical

task graph decompose task into subtasks, every vertice in graph represents a subtask and corresponding

edge between subtasks indicates calling relationship. The dependencies and priorities among subtasks

are concerned by DHRL and guarantee the accomplishment of a task. Maxq method decomposes the

value function of a complex task into the sum of value functions of several subtasks. By doing so, it

signi�cantly reduces the number of state-action pairs to be considered, thereby improving learning

ef�ciency[6]. FeUdal Networks[7]  adopt a manager-worker architecture, where high-level managers set

goals and low-level workers execute the speci�c actions to achieve these goals. This architecture enables

the model to effectively handle long-term dependencies.

Meta-learning is an advanced paradigm in deep learning where models acquire the ability to generalize

across different tasks by learning from past experiences. Instead of training a model from scratch for

each new task, meta-learning enables rapid adaptation to new tasks with minimal data and

computational resources[8].
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The primary function of memory is to trade space for time while coordinating modules involved in

cognitive processes and behavior. Although DHRL and meta-learning demonstrate advantages and

potential in the self-adaptive learning process, the practice suggests that we shall better separate

memorization from task management and decision-making as a middleware bridging them. The very

observation is: �rst, a speci�c region in the brain is in charge of memory and plays a crucial role in this

procedure of coordination and execution; second, the brain doesn’t change the structure during the

procedure but consume different amount of resources. To mimic this process, this paper introduces a

design that integrate functionalities to a single system architecture via autoencoder memorization

mechanism and tasks graph management. The main contributions of this article are summarized as

below: 1) memorization mechanism is implemented via Autoencoder Hippocampus network; 2)

motivation mechanism is implemented and embedded into the system via graph neural network.

2. Supervised learning based on classical control theory

Reinforcement learning techniques enables agent to learn optimal behavior strategies through

interactions with environment[9]  without the need for explicit human supervision or labeling

observation-action pair datasets. This reduces the amount of human effort required for training and

makes the process more scalable. Signi�cant progress has been made in terms of algorithmic

advancements, simulation environments, and computing power. Advantage Actor-Critic(A2C)[10],

Asynchronous Advantage Actor-Critic(A3C)[11], and Proximal Policy Optimization(PPO)[12]  are

reinforcement learning algorithms that utilize different techniques to learn optimal policies for

sequential decision-making problems. A2C and A3C utilize the Actor-Critic framework with an

advantage function, while PPO focuses on achieving stable and ef�cient policy updates through a clipped

surrogate objective function and an adaptive KL penalty term. The availability of high-quality simulation

environments, such as OpenAI Gym[13], Isaac Gym[14], etc., has greatly accelerated reinforcement learning

research. These environments provide a testbed for reinforcement learning algorithms, allowing

researchers to quickly iterate and evaluate novel ideas. The increasing availability of powerful computing

hardware, including GPUs and distributed computing clusters[15], has enabled researchers to train large-

scale reinforcement learning models ef�ciently. In reinforcement learning, a policy function 

  is a mapping from states to actions, where    is a state,    is an action and    is

parameters of policy neural network. It speci�es the behavior of an agent within an environment. Given a

state, the policy function determines which action the agent should take to maximize the cumulative

π(s|W) : s → a s a W
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reward over time. The policy function serves as the agent’s decision-making mechanism. The essence

idea of reinforcement learning generally, is the use of value functions to organize and structure the search

for good policies[16].

Reinforcement learning often faces dif�culties in grasping long-term dependencies and managing

sparse reward signals. One effective strategy to boost learning ef�ciency, when feasible, is to incorporate

knowledge of classical control. Many OpenAI classical control environments can be solved by classical

control theory. Take the Lunar Lander environment, a classic environment that simulates the task of

landing a spacecraft on the lunar surface, as an example. This problem can be solved by Proportional-

Integral-Differential(PID) control[17]. Classical control theory provides a framework for designing and

analyzing systems to achieve desired performance objectives through the use of feedback and advanced

functional. Classical controller, such as PID controller, is a mapping  , calculates action vector

from the observation or current state of the agent, which provides a set of ground truth for controlling

the agent accomplish its task. Then, deep learning neural network can learn PID control through the

objective function measuring the Euclidean distance between the output of policy function and PID

controller, optimization algorithms attain the optimal policy function parameters   :

The policy function approximates the PID controller after training:

Figure 1. Available classical control can serve as the ground truth for actions and assist in training the policy

function through supervised learning.

P (s) : s → a

W

W = argmin(MSE(π(s|W), P (s)))

π(s|W) ≈ P (s)
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Moreover, the nonlinearity of neural network can represent mapping from state to action obtained from

classical control approach such as Bellman optimality equation[18][19][20] or Linear Quadratic Regulator. In

summary, classical control if available can be provided as ground truth of actions and help train policy

function in supervised learning manner.

3. Autoencoder Hippocampus Network

For different tasks, a same structured policy function but with different sets of parameters values can be

trained. Saving and loading corresponding parameters values according to different tasks is a feasible but

trivial solution. If we learn a wealth of skills, such as reading, cooking, riding, etc., then save isolated

countable �les in the brain will make the �le system hardly manageable, which is very unlikely the case.

Thus, abstract memorization, effective and ef�cient encoding and decoding procedure, plays a very

essential role in learning, inference and execution.

Many neural networks are capable of memorization, including recurrent neural network, Long Short-

Term Memory[21], gate recurrent unit[22], Hop�eld network[23], autoencoder[24]  and so forth.

Memorization module concerns two key questions what information in what format shall be restored in

memory and how to retrieve information from memory. An autoencoder is a type of neural network

trained to learn ef�cient data encoding and decoding[25], consisting of an encoder that compresses the

input data into a latent layer vector and a decoder that decompresses the vector back into a

representation similar to the original input. The autoencoder is more suitable and preferable for the

memorization module compared to other neural networks, as its encoder-decoder architecture makes

retrieving stored information more convenient and straightforward.

In this design, parameters of policy function   are memorized by autoencoder hippocampus network.

The encoder maps learned parameters value to a reduced dimensional latent layer vector called skill

vector(or task vector) and the decoder maps latent layer vector, i.e. skill vector, to original parameters

tensor. The latent layer of autoencoder provides an interface for retrieving restored information.

The memorization autoencoder is a mapping consisting of an encoder    and a decoder 

. Policy function’s parameters   memorized by the autoencoder is

For a well-trained autoencoder,    should closely resemble  , and the degree of similarity between

them can be quanti�ed by the Euclidean distance metric. The essence of this design lies in utilizing the

W

E : →Rm Rn

D : →Rn Rm
W

= D(E(W))W
′

W
′

W
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autoencoder hippocampus network to derive a �xed-structure policy function, parameterized by a set 

, that is capable of executing actions tailored to various corresponding tasks.

The autoencoder hippocampus network memorizes the learned parameters tensor. Importantly,

memorization process discussed here doesn’t remember anything related to state, action, reward, etc, but

the policy function’s optimal parameters only. Given a skill vector, decoder of autoencoder recall (or

generate) parameters tensor and assigned them to policy function. The policy function plays a role of

capacitor, what parameters tensors are �lled in is task oriented.

The skill vector   is encoded policy function parameters via the encoder:

The process of decoder recalling parameters   from the skill vector   can be written as:

Then, the action of policy function upon state s reads:

Figure 2. The parameters of the policy function can be encoded, stored, and retrieved via an autoencoder

hippocampus network.

It is impossible in real world to enumerate endless tasks or skills, that is, the learning and execution

process shall be extensible and inferable. A person who has learned how to speak does not necessarily

know how to ride a bicycle. Conversely, someone who knows how to ride a bicycle is quite likely to

{ }Wi

S

S = E(W)

W S

W = D(S)

a = π(s|W) = π(s|D(S)) = π(s|D(E(W)))
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possess the skills to ride a motorcycle as well. The skill vectors within the latent layer of an autoencoder

embody the concept of Euclidean distance, where a shorter distance signi�es a higher degree of skill

relevance and, consequently, a greater similarity in parameter values. The memorization module of an

autoencoder is capable of inference, including zero-knowledge inference. Provided a skill vector, no

matter whether it learned before, as an input for decoder of autoencoder, it will map to or generate a set of

corresponding parameters value. Then, for execution phase of a task, the policy function loads

corresponding parameters value and behaves accordingly.

The design of the memory-embedded policy function involves maintaining a �xed architecture for the

policy function while utilizing a memory module to store the parameter values of the policy function

during the learning process. During the exploitation procedure, the memory module is used to recall and

assign the appropriate parameter values to the policy function. This approach allows the policy function

neural network to maintain a consistent architecture but also to possess dynamic parameters that are

tailored to speci�c tasks.

4. Execution via traversing skill vector graph

The brain has the capability to divide a task to a set of subtasks based on common sense, knowledge,

inference and so forth. Some subtasks may have higher priority than the others and form a graph

structure in nature. The homeomorphic relationship between subtasks and skill vectors exhibits a one-

to-one, bijective mapping. Equivalently, breaking down a task into a graph of subtasks is akin to

constructing a graph for skill vectors. Let   be a task graph with subtask vertices   and edges e.

Graph Neural Networks(GNNs)[26][27]  capture the dependencies and structures within skill vector

graph[28]. With the autoencoder, encoded skill vector help recall and deploy parameters tensor to policy

function, providing an interface for tasks graph management module. When a complicated task can be

divided to a topological structure of vector skills set  , the accomplishment of the task can be

executed according to skill vector graph traversal:

Putting an elephant into a refrigerator requires three steps: 1) Open the refrigerator; 2) Put the elephant

inside; 3) Close the refrigerator. Nodes in skill vector graph are embedded in a Euclidean space, and edges

can be represented by vector between connected skill vectors as well. Skill vector graph occupies both

Euclidean properties and graph connections typically combines the characteristics of geometric space

G = (S, e) S

{ }Si

= π(s| ) = π(s|D( ))ai Wi Si
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and topological representations. The spectrum of skill vector graph on Euclidean data refers to the

analysis of graph structures and their corresponding eigenvalues derived from key matrices such as the

Laplacian matrix when working with data embedded in Euclidean space[29].

Figure 3. The latent layer of an autoencoder hippocampus network provides an interface for retrieving the

parameters of the policy function. By traversing the graph of skill vectors, a complex task can be completed,

and a corresponding sequence of behaviors can be generated.

The dynamics of traversing skill vector graph requires to know subtask at hand and determine the phase

of task. The cognitive function neural network, a mapping  , can be trained to determine

subtask confronted, select the very skill vector and drive the dynamics of traversing skill vector graph:

Cognitive function recognizes if the refrigerator is open or not and whether elephant is inside

refrigerator to decide the skill vector. The state, the input of policy function, undergoes a bifurcation of

computing procedure and ultimately determines the parameters of policy function as well. Variable

parameterized policy function assigned by decoder of autoencoder hippocampus network    and

managed by cognitive function  , enhance the capability of control procedure.

C : s → Si

= C(s)Si

D

C

= π(s| ) = π(s|D( )) = π(s|D(C(s)))ai Wi Si
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Figure 4. How to put an elephant into a refrigerator
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In summary, the minimal prerequisites for generating a sequence of control encompass: 1) an

autoencoder hippocampus mechanism capable of memorizing and recalling parameters of the policy

function; 2) construct skill vector topological graph for the task; and 3) dynamics related to traversing the

skill vector graph.

5. Conclusion

Dynamically integrating an autoencoder hippocampus network and tasks graph neural network

management into the system, parameters tensors can be assigned to the policy function through the

autoencoder hippocampus network. This separation of memorization and task execution from decision-

making fosters a more interpretable system tailored for diverse tasks. With the incorporation of the

autoencoder hippocampus network, the system can demonstrate rich and diverse dynamic behaviors.

Statements and Declarations
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