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The frequent migration of large-scale users leads to the load imbalance of mobile communication networks,

which causes resource waste and decreases user experience. To address the load balancing problem, this paper

proposes a dynamic optimization framework for mobile communication networks inspired by the average

consensus in multi-agent systems. In this framework, all antennas cooperatively optimize their CPICH (Common

Pilot Channel) transmit power in real-time to balance their busy-degrees. Then, the coverage area of each

antenna would change accordingly, and we call this framework a “breathing” mobile communication network. To

solve this optimization problem, two algorithms named BDBA (Busy-degree Dynamic Balancing Algorithm) and

BFDBA (Busy-degree Fast Dynamic Balancing Algorithm) are proposed. Moreover, a fast network coverage

calculation method is introduced, by which each antenna’s minimum CPICH transmit power is determined under

the premise of meeting the network coverage requirements. Besides, we present the theoretical analysis of the

two proposed algorithms’ performance, which prove that all antennas’ busy-degrees will reach consensus under

certain assumptions. Furthermore, simulations carried out on three large datasets demonstrate that our

cooperative optimization can significantly reduce the unbalance among antennas as well as the proportion of

over-busy antennas.
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1. Introduction

Over the recent decades, emerging communication technologies generate a significant increase in communication

traffic as well as the use of related devices such as cellular BSs. An accompanying challenge consists of addressing

the “tidal effect" of communication networks, which presents the huge fluctuation in traffic requirements caused by

the frequent migration of large-scale users. Especially in large cities, due to the dense and frequently migrating

population, the tidal effect of mobile communication network traffic is more obvious[1][2][3]. People gather in

commercial or business areas during working hours, and collectively migrate to residential areas after work hours

which leads to the flow of network traffic. To illustrate the “tidal effect" phenomenon and its potential
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consequences, we consider Beijing as an example to intuitively show the real situation of mobile communication

network. We select a general area in Beijing, including both commercial and residential cells, which is shown in Fig.1

(a).

Figure 1. (a) The satellite map (left) and GPS map (right) of a selected area in Beijing, where

the red icons denote the antennas; (b) the comparison of network traffic hotspots at different

times on the satellite map (left) and the GPS map (right), where the red circles represent the

hotspots during 10:00-11:00 period and the blue circles correspond to 22:00-23:00 period. The

map data is provided by National Geographic Information Public Service Platform of China,

and the antenna data is provided by Beijing Mobile Company.

Moreover, Fig.1 (b) presents the comparison of network traffic hotspots at different times. It can be observed that

there is little overlap between hotspots between these two time periods. Due to the large variation of network traffic,

the utilizations of antenna resources also have huge spatiotemporal fluctuations and are seriously unbalanced.
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According to[4][5][6], the PRB (physical resource block) utilization data can reflect the dynamic traffic load and

resource utilization status in real mobile communication networks. Hence, we measure the busy-degree of each

antenna by its average utilization rate of PRBs at different periods. To more vividly illustrate the imbalance and huge

fluctuations in the busy-degrees among antennas, we calculate the busy-degrees of all antennas in Fig.1 with the MR

(measurement report) data from Beijing Mobile Company. The detailed data information and calculation process are

introduced in Section 7. Fig. 2 (a) shows the standard deviations of the busy-degrees of all antennas, which illustrates

the imbalance of antennas’ busy-degrees. Also, we randomly select four antennas in this area to observe the daily

changes in their busy-degrees, which are shown in Fig. 2 (b).

Figure 2. (a) The standard deviations of busy-degrees of all antennas in Fig.1 from 9:00 to 20:00. (b) The daily changes of

randomly selected four antennas’ busy-degrees. The MR and antenna data is provided by the Beijing Mobile Company, and

the detailed calculation process is introduced in Section 7.

It can be observed that the busy-degrees of these antennas have large fluctuations over time, and there are also large

differences among them at the same time. However, the PRB resources are deployed according to the peak user

demand, most PRBs are not efficiently utilized during most of the time, which will cause resource wastes and reduce

the efficiency of the network[2][3][7][8]. Besides, the peak user demand affected by emergencies also has large

fluctuation, which may cause some antennas are very busy or even congested at certain times, and the user

experience is reduced greatly. Currently, the tidal effect and the issues it engenders are major concerns of network

operators[9][10]. In particular, toward the upcoming 6G, the research scope needs to be extended to more complicated

scenarios of integrating with satellite systems[11], dynamic optimization algorithms are in urgent need.
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1.1. Review of Related Literature

Since the BS energy consumption accounts for most of the total network energy consumption, BS sleeping strategies

have been widely studied, in which a BS should be turned off when the traffic it handles is low and the surrounding

BSs have enough resources to serve the users[12][13][14][15][16]. Liu et al. further design four different BS sleep modes

and propose the optimization strategies[12]. Guo et al. develop delay-constrained BS sleeping policies to optimize BS

sleeping time and wake-up period[13]. These BS sleeping strategies can improve the network balance by sleeping idle

antennas, however cannot solve the overload problem of busy antennas.

To address the overload problem caused by the traffic imbalance, various research focuses on self-tuning handover

parameters, such as the cell individual offset (CIO)  [17][18][19][20][21][22][23]. Sheng et al. propose a game-theoretic

solution to solve the asymmetry traffic distribution among multiple cells[17]. The deep reinforcement learning

framework is exploited to optimize CIO values to better balance the traffic between different cells[18][19][20][22][23].

Further, Alsuhli et al. jointly optimize the transmission power and CIO values using reinforcement learning[21].

Besides, the daily network traffic distribution during different periods is essential for load-aware dynamic network

operations. Hence, another major research focus is to analyze and predict the temporal and spatial characteristics of

network traffic. Dawoud et al. introduce a hybrid traffic prediction model, based on linear regression, which

forecasts the workload of the BSs by utilizing historic traffic traces[16]. Moreover, some machine learning techniques

are applied to predict the traffic load pattern over time[24][25]. Xu et al. propose a scalable Gaussian process

framework to achieve traffic prediction in a cost-efficient manner[26].

In fact, the load balancing in mobile communication networks can be treated as an average-consensus problem in

multi-agent systems. The average-consensus implies that a group of distinct nodes reach consensus by averaging

the state of their neighbours at each time step. This protocol has been extensively studied in computer science, such

as the distributed coordination of mobile autonomous agents[27][28]  and networked systems[29][30], as well as the

load balancing in parallel computers[31]. Inspired by the research of average-consensus protocols, we consider the

antennas of BSs as optimization units and aim to reach the balance (or consensus) of antennas’ busy-degrees, and

thus settle the load balancing problem.

1.2. Statement of Our Main Contributions

First, a dynamic cooperative optimization framework for mobile communication networks is innovatively proposed,

where the CPICH transmit power of antennas is adjusted in real time to achieve the balance of antennas’ busy-

degrees. As the coverage area of each antenna changes with the variation of its CPICH transmit power[32][33], this

optimization framework is called a “breathing” mobile communication network. Under this framework, two

dynamic optimization algorithms, BDBA (Busy-degree Dynamic Balancing Algorithm) and BFDBA (Busy-degree

Fast Dynamic Balancing Algorithm), are proposed. Compared to traditional optimization algorithms mostly based
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on prediction, our algorithms use the dynamic cooperation of antennas to balance their busy-degrees according to

the actual network traffic, which brings better real-time performance. Moreover, our algorithms avoid long-time

traffic prediction, and then they can significantly reduce the impact of the prediction errors over the optimization

results.

Second, we introduce a fast network coverage calculation and optimization method based on MR data and the multi-

layer perceptron (MLP). The traditional methods for coverage calculation in mobile communication networks[34]

[35] are mainly based on various wireless propagation models, which suffer from the large computational complexity

and low accuracy drawbacks. As a result, the existing optimization algorithms have difficulties in calculating the

network coverage in real-time, thus the QoS is hard to guarantee. Since MR data records the historical states of the

users in the whole network, it can be used to train the MLP. With the well trained MLP, a fast computation can be

provided for the coverage rate of the mobile communication network in real time.

Third, we give the theoretical analysis of the two proposed dynamic optimization algorithms’ performance. First, we

study the property of the Jacobian matrix composed of the partial derivative of antennas’ busy-degrees with respect

to their CPICH transmit power and prove that it is a Laplacian matrix. Using this property, we give the theoretical

upper bound for the gap between BDBA’s performance and global equilibrium. Based on these findings, we specify

the traffic distribution variation conditions for the busy-degrees of all antennas to reach global equilibrium (or

consensus). In addition, we propose a fast-solving algorithm BFDBA; estimate its theoretical upper bound for the

gap, and show its consensus conditions.

Finally, we conducted extensive simulations in three general areas in Beijing with actual datasets from Beijing

Mobile Company, which consist of one-day MR and antenna data. The datasets correspond to the network state

under static optimization. The dataset-A includes  1956  antennas and  112, 629, 717  pieces of MR data. Carrying out

BDBA and BFDBA on dataset-A, the means of the standard deviations of all antennas’ busy-degrees are reduced by 

55.97%  and  51.02%  respectively, provided that the coverage rate reaches  99.9%. Meanwhile, the mean of the

proportions of over-busy antennas are declined by 68.27% and 65.03% respectively under BDBA and BFDBA. Moreover,

our algorithms have similar performance as dataset-A on dataset-B and dataset-C, which contain  1658  and  6120

 antennas, and 129, 183, 183 and 266, 485, 384 pieces of MR data respectively.

In order to highlight the significance of our work, we give a comparison between our work and previous load

balancing methods in Table I. From this table, it can be seen that our work has comprehensive advantages in terms

of computational cost, theoretical analysis, interpretability, and scalability compared to previous studies.
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Computational Cost1 Theoretical Analysis Interpre -tability2 Scalabi -lity3

Zone-based mobility load balancing[17] Uncertain Yes White-box -4

DRL-based mobility load balancing[18] High Yes Black-box High

RL-based CIO optimization[19] High No Black-box -

DRL-based CIO and energy control[20] High No Black-box -

RL-based CIO and power optimization[21] High No Black-box -

Adaptive mobility load balancing[22] Low No White-box -

DRL-based CIO optimization[23] High No Black-box -

Our work Low Yes White-box High

Table 1. Comparisons between our work and previous load balancing methods.

1 We demonstrate the computational costs of algorithms by the time complexities. Given that the number of

antennas is n, the algorithm in[17] needs to solve Nash equilibrium solutions of a non-cooperative and non-zero-sum

game, which may have a complexity of PPAD (Polynomial Parity Argument on Directed graphs). The algorithm

in[22] primarily involves a series of computational and comparison operations based on current network conditions.

Let nu be the number of users; the complexity is approximately O(nnu). As for the RL-based methods, the complexity

generally depend on the size of the state space ( | S | ), action space ( | A | ), and the number of iterations required to

converge (T). The time complexities are typically O( | S | | A | T), which often require many training episodes to achieve

satisfactory performance. For the DRL-based methods, the time complexity can become more complicated due to the

training of neural networks. Hence, the methods in[18][19][20][21][23]  often come with high computational costs. As

discussed in the following Remark 4.1 and Subsection 4.3, the complexity of our work is O(nsnan), where ns  is the

sampling volume and na is all antennas’ average number of neighbours.

2 Following[36][37], we measure the algorithms’ scalability from the perspective of model transparency. According to

the transparency of an algorithm’s internal logic or workings, the interpretability can be classified into white-box

and black-box categories. The game-theoretic framework[17], event-driven adaptive control[22], and our dynamic

optimization framework are supported by well-defined models; therefore, these algorithms are classified as “white-

box". Different from model-based algorithms, machine learning methods[18][19][20][21][23]  remain opaque or hidden

from comprehension; therefore, they are classified as “black-box".
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3 According to[38], scalability is the ability of a system to handle an increasing number of elements, manage larger

workloads smoothly, and adapt to expansion. The authors in[18] emphasize the scalability of the proposed method

due to the two-layer architecture. By performing random sampling on the MR data, our algorithms are also capable

of rapid processing when scaled to large-scale scenarios, as demonstrated in the simulations.

4 “-” denotes a lack of relevant analysis.

1.3. Paper Organization

In Section 2, we present the preliminaries of our study. We formulate our optimization problem and provide the

solution scheme in Section 3. The detailed dynamic optimization algorithms, BDBA and BFDBA, and their theoretical

analysis are proposed in Section 4 and Section 5. The calculation method of the network coverage based on MR data

and MLPs is then presented in Section 6. In Section 7, we present simulations to test the capabilities of our

algorithms. Finally, conclusion and future work are given in Section 8.

2. Preliminaries

To better model the optimization problem and introduce our algorithms, we present the preliminaries of our study

which include the general mobile communication network model and introductions of busy-degree and network

coverage rate in this section. For convenience of understanding, the notations used in this paper are summarized in

the following Table II.
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Notation Description

N Set of all antennas, N = {1, …, n}

Ni Set of neighbours of antenna i

Mi Set of MR data that antenna i is the main service antenna

pi( ⋅ ) CPICH transmit power of antenna i, →p( ⋅ ) = p1( ⋅ ), …, pn( ⋅ ) ⊤

ui( ⋅ ) Theoretical adjustment of antenna i’s CPICH transmit power, 
→u( ⋅ ) = u1( ⋅ ), …, un( ⋅ ) ⊤

pmax
i Rated CPICH transmit power of antenna i

pmin
i ( ⋅ ) Minimum CPICH transmit power of antenna i which can satisfy the coverage requirement

ri Total of PRBs that allocated to antenna i

li( ⋅ ) PRB utilization rate of antenna i

fi( ⋅ ) Busy-degree of antenna i

¯
f i( ⋅ ) Target busy-degree of antenna i

freli ( ⋅ ) Relative busy-degree of antenna i, 
→
f rel( ⋅ ) = frel1 ( ⋅ ), …, freln ( ⋅ ) ⊤

F( ⋅ ) Network coverage rate

Fcon Minimum requirement of network coverage rate

G = (N, E(k)) Directed graph of all antennas with 
1

¯
fi ( k )

∂fi
∂pj

(k) being the weight of edge (i, j)

Gf Graph of antennas failing to satisfy the coverage requirement

A( ⋅ ) Jacobian matrix of linearization technique

g
⋅
( ⋅ ) : Rn

↦ R Average traffic density function

z( ⋅ ) Total of all antennas’ average traffic

ϵ An adjustable constant used in A(k) ’s approximation

γ An adjustable constant controlling the magnitude of CPICH transmit power adjustment

τ An adjustable constant used in →u ( 2 ) (k) ’s calculation of FDOA

Δp A minor adjustable constant

Table 2. List of main notations.

( )

( )

( )
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2.1. General Mobile Communication Network Model

This paper considers a general model of the mobile communication network. Let R be a servant region, which could

be a city or a specific region. This region can be divided into several cells and each cell is corresponding to a BS

antenna. This antenna is responsible for the mobile communication network control of its cell. In the classic MIMO

BC (broadcast channel), each BS is equipped with multiple antennas[39].

In practical planning, instead of making major variations in network topology and layout, operators tend to change

some configuration parameters of antennas to optimize the network usability. The key adjustable parameters are at

different difficulty levels, which can be divided into the hard or soft network parameters. The hard parameters

mainly include network structure, base station deployment, and antenna’s azimuth and tilt[40][41][42], which require

some mechanical operation and cost highly in real-world scenarios. In contrast, soft parameters are more suitable

for highly frequent adjustment, mainly including CPICH transmit power, and CIO value[17][18][19][20][21][22][23]. Due to

the easy transition from the CPICH transmit power adjustment to CIO adjustment, and the former is more easily

extended to antenna sleep strategy by adjusting the CPICH transmission power of idle antennas to zero, we employ

the CPICH transmit power as the operation parameter to address the load balancing while ensuring network

coverage.

We denote the set of all antennas in R by N = {1, …, n}, where n is the total of antennas. Each antenna i has a set of

neighbours  Ni. We consider that the neighbour relationship is symmetric, that is, if antenna  i  is a neighbour of

antenna j, then antenna j must be a neighbour of antenna i. Cells are neighbours if their corresponding antennas are

neighbours. Let pi( ⋅ ) denote antenna i’s CPICH transmit power. Following[43], the received signal strength is one of

the most widely used parameters for network selection. It is assumed, through this paper, that each user accesses the

antenna with the highest received CPICH signal strength. Hence, we can change the antennas’ CPICH transmit power

to adjust their CPICH signal strength received by the users. Then, the antennas accessed by the users are changed.

We set the sampling period to be T and the time of each antenna is synchronized. To better construct the model, we

introduce the following indexes.

2.2. Busy-degree

To achieve the balance of the antennas’ busy-degrees, we need to introduce an index that can describe the busy-

degree of each antenna. Inspired by[4][44], the PRB utilization can reflect traffic flow changes and we can use the

average PRB utilization rate to measure the busy-degree of each antenna in each sampling period. To be more

practical, we assume that the real-time statistics of the PRB utilization are measured in the timescale H (typically in

milliseconds). Let  li(t)  be the PRB number used by antenna  i  at time  t, and 
¯
l i[(k − 1)T, kT)  be the average number of

PRBs used by antenna i in the k − th sampling period [(k − 1)T, kT), k ∈ Z + , i.e.,

¯
l i[(k − 1)T, kT) =

H
T

T /H

∑
j= 1

li((k − 1)T + (j − 1)H).
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Let  ri  denote the total of PRBs that allocated to antenna  i. Then, the busy-degree of antenna  i  in the k − th period 

[(k − 1)T, kT) is calculated by

fi(k) =
¯
l i[(k − 1)T, kT) /ri, i ∈ N.

The calculation of each antenna’s busy-degree can be carried out using clusters (such as an operator’s cloud) in a

centralized way or through the digital signal processors of each antenna in a distributed way.

Moreover, the CPICH transmit power of each antenna can affect its coverage area. The greater the CPICH transmit

power is, the larger the antenna’s coverage area will be. Then, the busy-degree of each antenna can be regulated by

adjusting its coverage area. Therefore, we can consider fi(k) as a multivariate function of all antennas’ CPICH transmit

power, that is

fi(k) = fi(p1(k), p2(k), . . . , pn(k), k), i ∈ N.

2.3. Network Coverage Rate

Providing a high level of QoS to the users is the primary goal of mobile network operators. The network coverage

rate is one of the main evaluation index of the QoS requirements[45][46]. The received CPICH signal strength is a

crucial factor to determine whether an area is covered or not. To calculate the network coverage rate, various

propagation models are proposed to calculate the path loss and the received signal strength[34][35]. However, the

propagation of the wireless signals is affected by the reflection, the scattering, the diffraction, the transmission, as

well as other factors, especially in the urban environment. Therefore, these propagation models are complex in

calculation and low in accuracy; thus, they are not suitable for the real-time optimization algorithms of mobile

communication networks. To overcome these difficulties, we make use of the MR Data. The MR data refers to the

signal strength measurement report sent by users and reported to BSs. Each piece of the MR data corresponds to a

user in the network and contains several sets of received CPICH signal strength values and corresponding antenna

IDs. For example, 
→s = ((I1, s1), (I2, s2), . . . , (Im, sm))  is a piece of MR data sent by a user who received m  CPICH signal

strength values, where  s1, . . . , sm  are CPICH signal strength values and  I1, . . . , Im  are corresponding antenna IDs.

Obviously,  {I1, I2, . . . , Im} ⊆ N. The MR data can monitor the whole network in real-time, allowing for more

comprehensive and accurate evaluation of the mobile communication network[47].

By[32][33], we remark that the network coverage rate is positively correlated with antennas CPICH transmit power of

antennas. We denote the network coverage rate of R in the k-th sampling period by F(p1(k), p2(k), . . . , pn(k), k), and F is

a monotone increasing function of antennas’ CPICH transmit power. Based on this insight, we introduce a novel fast

calculation and optimization method of network coverage rate with MR data and MLPs. The detailed algorithm is

presented in Section 6. The network coverage rate  F  has a minimum requirement  Fcon. If  F < Fcon, the coverage

requirement is not satisfied and we need to increase the CPICH transmit power of some antennas until F ⩾ Fcon.
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3. Problem Formulation

Our goal is to dynamically adjust the CPICH transmit power of antennas, and then make their real-time busy-

degrees reach their targets. At the same time, the network coverage rate needs to meet the requirement of QoS. In

this section, we formally state the problem we are addressing in Subsection 3.1, then analyze the scheme of solving

the problem in Subsection 3.2 and Subsection 3.3.

3.1. Original Optimization Problem

Let  f̄ i(k)  denote the target busy-degree of antenna  i  in the  k-th sampling period and  u1(k), . . . , un(k)  denote the

adjustments of all antennas’ CPICH transmit power in the k-th sampling period. We aim to solve the u1(k), . . . , un(k)

 that can make

fi(p1(k) + u1(k), . . . , pn(k) + un(k), k) = f̄ i(k), i ∈ N.

Meanwhile, antennas’ CPICH transmit power is limited by a maximal value, and the network coverage needs to be

ensured. We denote the maximal CPICH transmit power of antenna i by pmax
i . Therefore, u1(k), …, un(k) need to satisfy

pi(k) + ui(k) ⩽ pmax
i , i ∈ N

F(p1(k) + u1(k), …, pn(k) + un(k), k) ⩾ Fcon.

Recall that Fcon
∈ (0, 1]  is a constant denoting the minimum requirement of network coverage rate. Our dynamic

optimization problem is formulated by (4) and (5).

3.2. Approximation of Optimization Objective (4)

Since fi(k) is a complex nonlinear function without explicit expression that depends on the real-time network traffic

and the CPICH transmit power p1(k), …, pn(k), it is very difficult to directly solve the equation (4). We try to solve (4) by

linearization techniques. By (3) and (4), we have

f̄ i(k) − fi(k) =
∂fi
∂p1

(k)u1(k) + . . . +
∂fi
∂pn

(k)un(k), i ∈ N.

Since the network traffic volume remains unchanged, we only consider the case when

n

∑
i= 1

(f̄ i(k) − fi(k)) = 0,

and the target busy-degree f̄ i(k) > 0 for any i ∈ N, k ∈ Z + . Then, we have

1 −
fi(k)

f̄ i(k)
=

1

f̄ i(k)

∂fi
∂p1

(k)u1(k) + . . . +
∂fi
∂pn

(k)un(k) .

Let

( )
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→u(k) :=

u1(k)

u2(k)

⋮

un(k)

,
→
d(k) :=

1 −
f1 ( k )

f̄1 ( k )

⋮

1 −
fn ( k )

f̄n ( k )

,

and

A(k) :=

1

f̄1 ( k )

∂f1

∂p1
(k)

1

f̄1 ( k )

∂f1

∂p2
(k) ⋯

1

f̄1 ( k )

∂f1

∂pn
(k)

1

f̄2 ( k )

∂f2

∂p1
(k)

1

f̄2 ( k )

∂f2

∂p2
(k) ⋯

1

f̄2 ( k )

∂f2

∂pn
(k)

⋮ ⋮ ⋱ ⋮

1

f̄n ( k )

∂fn

∂p1
(k)

1

f̄n ( k )

∂fn

∂p2
(k) ⋯

1

f̄n ( k )

∂fn

∂pn
(k)

be the Jacobian matrix. By (7) and (8), it should be

A(k)→u(k) =
→
d(k).

3.3. One Approximate Solution of Optimization Objective (4)

Let G := G(k) = (N, E(k)) be the directed graph of all antennas, where E(k) is the edge set. For i, j ∈ N, if  |
∂fi

∂pj
(k) | > 0, the

ordered pair  (i, j)  is in the  E(k), which implies that antenna  j’s CPICH transmit power can affect antenna  i’s busy-

degree. Assume that G is strongly connected, according to the following Lemma 5.1 in Section 5, the Jacobian matrix 

A(k)  is a Laplacian matrix with rank n − 1. Hence,  rank(A(k),
→
d(k)) ≥ n − 1. On the other hand, by (6), we have for any 

i ∈ N,

n

∑
j= 1

∂fj
∂pi

(p̃, k) =
∂∑n

j= 1fj
∂pi

(p̃, k) = −
∂∑n

j= 1f̄ j
∂pi

(p̃, k) = 0.

We note that

[ ] [ ]

[ ]
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rank(A(k),
→
d(k)) = rank

1

f̄1 ( k )

∂f1

∂p1
(k) ⋯

1

f̄1 ( k )

∂f1

∂pn
(k) 1 −

f1 ( k )

f̄1 ( k )

⋮ ⋮ ⋮ ⋮

1

f̄n ( k )

∂fn

∂p1
(k) ⋯

1

f̄n ( k )

∂fn

∂pn
(k) 1 −

fn ( k )

f̄n ( k )

= rank

∂f1
∂p1

(k) ⋯

∂f1
∂pn

(k) f̄1(k) − f1(k)

⋮ ⋮ ⋮ ⋮

∂fn

∂p1
(k) ⋯

∂fn

∂pn
(k) f̄n(k) − fn(k)

.

By applying elementary row operation of adding all rows to the last row, we have

rank(A(k),
→
d(k)) = rank

∂f1

∂p1
(k) ⋯

∂f1

∂pn
(k) f̄1(k) − f1(k)

⋮ ⋮ ⋮ ⋮

0 ⋯ 0 0

≤ n − 1.

Therefore, rank(A(k),
→
d(k)) = n − 1. According to the Section 2.2 of[48], the equation (9) is solvable. By Lemma 6.5 of[49],

the non-zero eigenvalues of  A(k)  have strictly-positive real part. Combining the Appendix C of[48],  A(k)  has the

singular value decomposition form

A(k) = U(k)Λ(k)V(k)⊤,

where

Λ(k) =

σ1(k) ⋯ 0 0

⋮ ⋱ ⋮ ⋮

0 ⋯ σn− 1(k) 0

0 ⋯ 0 0

:=
Λ1(k) 0

0 0
,

and σs(k) = λs(A(k)⊤A(k)) = λs(A(k)A(k)⊤) > 0, s = 1, . . . , n − 1,  are ranged in descending order. The orthogonal matrix 

U(k) ∈ Rn× n  has corresponding orthonormal eigenvectors of A(k)A(k)⊤  and the orthogonal matrix V(k) ∈ Rn× n  has

corresponding orthonormal eigenvectors of  A(k)⊤A(k). Let  U(k) := (U1(k), U2(k))  and  V(k) := (V1(k), V2(k)), where 

U1(k), V1(k) ∈ Rn× ( n− 1 ) . We note that

A(k)1n = 0n,

where 1n ∈ Rn = (1, . . . , 1)⊤ and 0n ∈ Rn = (0, . . . , 0)⊤. Hence, the nullspace of A(k) is {c1n, c ∈ R} and

U2(k) = V2(k) =
1
n
1n.

Then, we have

[ ]
[ ]
[ ]

[ ] [ ]

√ √
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A(k) = U1(k)Λ1(k)V1(k)⊤.

By the Appendix C of[48], the pseudoinverse of A(k) can be denoted by

A + (k) = V1(k)Λ − 1
1 (k)U1(k)⊤.

Then,

→u ∗ (k) = A + (k)
→
d(k) = V1(k)Λ − 1

1 (k)U1(k)⊤
→
d(k)

is a solution of (9). By (10), {→u ∗ (k) + c1n, c ∈ R} are the solutions of (9). To ensure the uniqueness of the solution and

minimize adjustments as much as possible, we solve the following equation system

A(k)→u(k) =
→
d(k)

1⊤n
→u(k) = 0

.

By (11) and (13), 1⊤n
→u ∗ (k) = 0. Therefore, →u ∗ (k) is the desired unique solution of (14), and also an approximate solution

of the original optimization objective (4) by the discussion in Subsection 3.2.

4. Algorithms for Solving Optimization Problem

This section provides the approximation algorithms to solve our optimization problem (4) and (5). We note that the

solution of (4) is the theoretical adjustment of antennas’ CPICH transmit power which can settle the unbalanced

busy-degrees among antennas. Therefore, we consider solving (4) first and then correcting the theoretical

adjustments of antennas’ CPICH transmit power according to the constraints (5).

By Subsection 3.3, if we get A(k) then the approximate solution of optimization objective (4) is obtained. However, as

stated in Subsection 3.2, fi(k) is a complex nonlinear function and the partial derivatives 
∂fi

∂pj
(k), i, j ∈ N, are difficult to

solve directly. To overcome this problem, we propose a novel method with MR data to get the approximations of the

partial derivatives. On this basis, we propose two methods to solve our optimization problem approximately by the

formula (13) and the constraints (5). Our two dynamic optimization algorithms are referred to as BDBA (Busy-degree

Dynamic Balancing Algorithm) and BFDBA (Busy-degree Fast Dynamic Balancing Algorithm). The flow chart of

these two algorithms are presented in the following Fig. 3, while the detailed algorithm processes are introduced in

Subsections 4.1 and 4.2.

{
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Figure 3. The flow chart of BDBA and BFDBA.

4.1. Busy-degree Dynamic Balancing Algorithm

First, we figure out the target busy-degree of each antenna. The target busy-degree 
¯
fi(k)  has different calculation

methods according to different algorithmic requirements. For example, if we aim at global optimization, 
¯
fi(k) ( 1 )  can

be represented by

¯
fi(k) ( 1 ) =

∑n
j= 1rjfj(k)

∑n
j= 1rj

.

If we consider local optimization, 
¯
fi(k) ( 2 )  can be represented by

¯
fi(k) ( 2 ) =

rifi(k) + ∑j∈Ni
rjfj(k)

ri + ∑j∈Ni
rj

.

For each sampling period k = 1, 2, …, we perform the following steps in turn.

Step 1: Calculate antenna i’s busy-degree fi(k) with (2).
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Step 2: Approximate the partial derivative of fi with respect to pj with MR data of the k-th sampling period.

In practice, for →s = (I1, s1), (I2, s2), …, (Im, sm) , the first antenna I1 in →s  is its main service antenna. First, we filter out

the MR data in which its main service antenna’s CPICH signal strength is lower than other antennas’. Then, we select

those pieces of MR data that antenna i is the main service antenna and denote them by Mi(k). For each piece of MR

data in Mi(k), we note that the received CPICH signal strength corresponding to antenna i is greater than or equal to

other antennas’. Let ϵ > 0 be a constant. After reducing antenna i’s CPICH signal strength by ϵpi(k), we let δ −
i , j(k) denote

the number of MR data in which antenna j’s CPICH signal strength becomes the maximum. Similarly, δ +
i , j(k) denotes

the number of MR data in which antenna j’s CPICH signal strength becomes the maximum after increasing antenna j

’s CPICH signal strength by ϵpj(k). Then, we approximate ∂fi /∂pj(k) by

∂fi
∂pi

(k) ≈

fi ( k )

Mi ( k )
× ∑j≠ iδ

−
i , j(k) + ∑j≠ i

δ +
j , i ( k ) × fj ( k ) × rj

Mj ( k ) × ri

2ϵpi(k)
=:

¯
f i(k)

∼

A ii(k),

∂fi
∂pj

(k) ≈

−
δ +
i , j ( k )

Mi ( k )
−

δ −
j , i ( k ) × fj ( k ) × rj

Mj ( k ) × ri

2ϵpj(k)
=:

¯
f i(k)

∼

A ij(k),

where  | ⋅ |  denotes the cardinality for a set. Therefore, we can obtain the approximated matrix 
∼

A(k) := [
∼

A ij(k)] ∈ Rn× n.

Step 3: Calculate the theoretical adjustments of all antennas’ CPICH transmit power. With the approximation 
∼

A(k), we

can calculate 
∼

A
+

(k) by (12) and let →u ( 1 ) (k) =
∼

A
+

(k)
→
d(k);  or we can get the solution →u ( 1 ) (k) by solving (14), i.e.,

∼

A(k)→u ( 1 ) (k) =
→
d(k)

1⊤n
→u ( 1 ) (k) = 0

.

Step 4: Correct the theoretical adjustments of antennas’ CPICH transmit power according to the constraints (5).

For antenna i, let

p∗i (k) := pi(k) + γu ( 1 )
i (k),

where  0 < γ ≤ 1  is a smoothing factor which controls the magnitude of the adjustment. We denote the minimum

CPICH transmit power of antenna  i  in the  k-th sampling period which can satisfy the coverage requirement by 

pmin
i (k). The calculation of pmin

i (k) is then presented in Section 6. Then, the CPICH transmit power of antenna i in the 

(k + 1)-th sampling period is updated by

pi(k + 1) =

pmax
i , p∗i (k) > pmax

i

p∗i (k), pmin
i (k) ⩽ p∗i (k) ⩽ pmax

i

pmin
i (k), p∗i (k) < pmin

i (k)

.

These steps can be carried out by clusters (such as an operator’s cloud) in a centralized way or by the digital signal

processors of each antenna in a distributed way.

( )

| | | |

| | | |

{

{
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Remark 4.1. Because the MR datasets Mi(k), i = 1, . . . , n,  are usually very large, the most computationally intensive part in

Step 2 is the calculation of  δ −
i , j(k) / | Mi(k) |   and  δ +

i , j(k) / | Mi(k) | , whose computational complexities are both  O( | Mi(k) | ).

However, we can use the sampling method to approximate these calculations. In other words, we can randomly choose ns

 pieces of MR data from each Mi(k)  to approximatively calculate δ −
i , j(k) / | Mi(k) |  and δ +

i , j(k) / | Mi(k) | , whose computational

complexities are both O(ns). It is valuable to remark that these computations are highly parallelizable.

Remark 4.2. To avoid drastic transitions of the access network that could affect user experience, we add the smoothing

factor  γ  in Step 4 to control the transition magnitude. The smaller the value of  γ, the smaller the transition magnitude,

however the balancing effect of our algorithm will also deteriorate. The smoothing factor γ can serve as a tunable parameter

for characterizing this tradeoff.

4.2. Busy-degree Fast Dynamic Balancing Algorithm

We note that the approximation of  A(k)  is time-consuming, therefore we present a fast dynamic optimization

algorithm that only uses the approximation of 
∂fi

∂pi
(k). BFDBA makes a small change to the calculation methods for 

→u(k) in Step 3.

Let 

→
d ( 2 ) (k) :=

1 −
f1 ( k )

¯
f1 ( k )

− τp1(k)

⋮

1 −
fn ( k )

¯
fn ( k )

− τpn(k)

,

where τ > 0 is an adjustable parameter. Let D(k) be the diagonal matrix of A(k), and choose 

→u ( 2 ) (k) = D − 1(k)
→
d ( 2 ) (k).

Let D̃(k) be the diagonal matrix of Ã(k), then 

→u ( 2 ) (k) = D̃ − 1(k)
→
d ( 2 ) (k).

The remaining steps are the same as BDBA.

4.3. Analysis of Computational Complexity for BDBA and BFDBA

We first provide a brief analysis for the computational complexity of BDBA. The computational complexity of Step 1

is very small and can be omitted. For Step 2, we assume that the average number of neighbours for all antennas is na,

and adopt the sampling strategy outlined in Remark 4.1. Then, the computational complexity of Step 2 is O(nsnan).

For Step 3, because the matrix  Ã(k)  is a sparse matrix, we can use the relaxation method to solve (16), whose

computational complexity is O(T3nan), where T3 is the number of iterations. For Step 4, the calculation is dominated

[ ]
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by determining pmin
i , whose computational complexity is approximately equivalent to that of F ⋆i . According to the

following Remark 6.1, the computational complexity of F ⋆i  by the MLP is O(∑m
l= 0NlNl+ 1), where Nl  is the number of

neurons in hidden layer l, and m is the number of hidden layers. Because the values of T3, Nl and m are generally not

big, the dominant term of the overall computational complexity is O(nsnan).

As for BFDBA, the difference compared to BDBA lies in Step 3, where the complexity of inverting a diagonal matrix is 

O(n). Hence, the overall computational complexity of BFDBA remains O(nsnan).

5. Theoretical Analysis

To prove the effectiveness of the proposed dynamic optimization algorithms, this section gives the theoretical

analysis. We first give the upper bound of the difference between the control effect of our algorithms and the global

equilibrium state. Also, we prove that under the control of our algorithms, all antennas’ busy-degrees can achieve

global equilibrium or approximately equilibrium based on some conditions concerning the traffic distribution

variation.

A core issue of the analysis is the spatial distribution of network traffic, which has been modeled by various

methods[50][51][52]. These models are generally based on some assumptions, such as the traffic distribution is

continuous and follows some spatial stochastic distribution[50][51][52]. Following previous works, we assume the

average traffic distribution during each sampling period is continuous. However, we don’t have to assume any

specific traffic distribution.

At any point x on the map, the received CPICH transmit power of antenna i equals antenna i’s CPICH transmit power

minus the attenuation value during propagation in decibel; therefore, we assume that the average traffic distribution

is a function with respect to the attenuation vector of x, whose elements are the attenuation values of CPICH signals

from all antennas to x. Set →a = (a1, a2, …, an)
⊤
∈ Rn to be the attenuation vector corresponding to all antennas. As we

mentioned in Section 2, we assume that each user accesses the antenna corresponding to the highest received CPICH

signal strength. Let  gk(
→a) : Rn → R  denote the average traffic density function regarding the point with attenuation

vector →a during the k-th sampling period [(k − 1)T, kT), which satisfies

∫Rngk(
→a)1 {pi ( k ) − ai≥pj ( k ) − aj ,∀j }

d→a =
¯
l i[(k − 1)T, kT).

Following the assumption of the continuous distribution, we assume gk(
→a) is a continuous function with respect to →a.

Combining (19) with (2) we have

fi(k) =
1
ri

∫Rngk(
→a)1 {pi ( k ) − ai≥pj ( k ) − aj ,∀j }

d→a,

where 1 { ⋅ }  is the characteristic function.

Let z(k) be the total of all antennas’ average traffic during the k-th sampling period. Then, by the definition of gk(
→a),

we have
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z(k) = ∫Rngk(
→a)d→a.

We denote the weight of edge  (i, j)  in graph  G(k)  by 
1

¯
fi ( k )

∂fi

∂pj
(k). First, we give the property of A(k)  in the following

Lemma 5.1. The proof is involved and is deferred to the Appendix in the supplementary file.

Lemma 5.1. Suppose that antenna  i’s busy-degree takes the value by (20), and the average traffic density function gk(
→a)  is

continuous on Rn, k ∈ Z + , if the graph G  is strongly connected and the elements of its out-degree matrix are positive, then 

A(k) defined in (8) is a Laplacian matrix and rank(A(k)) = n − 1.

Based on Lemma 5.1, we give the theoretical analysis for the proposed BDBA and BFDBA. By (17), the CPICH transmit

power of antenna  i  is limited by pmax
i  and pmin

i (k). To simplify the analysis, we assume that {p∗i (k), i ∈ N}  is always

not bigger than pmax
i  and not smaller than pmin

i (k). Therefore, the equation (17) can be rewritten as

→p(k + 1) = →p(k) + γ→u(k).

Besides, we consider the global optimization and let the target busy-degree 

f̄ i(k) = f̄ i(k) ( 1 ) =
z(k)

∑n
j= 1rj

,

which is also the consensus state of all antennas’ busy-degrees. Then, by (4) we have 

→
d(k) =

→
d(→p(k), k) =

1 −
f1 ( →p ( k ) , k )

z ( k )

∑n
j= 1rj

⋮

1 −
fn ( →p ( k ) , k )

z ( k )

∑n
j= 1rj

,

and 

A(k) = A(→p(k), k) =

∂f1

∂p1
( →p ( k ) , k )

z ( k )

∑n
j= 1rj

⋯

∂f1

∂pn
( →p ( k ) , k )

z ( k )

∑n
j= 1rj

⋮ ⋱ ⋮

∂fn

∂p1
( →p ( k ) , k )

z ( k )

∑n
j= 1rj

⋯

∂fn

∂pn
( →p ( k ) , k )

z ( k )

∑n
j= 1rj

.

The global equilibrium state is that 

[ ]

[ ]
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→
d(k) = 0n ⟺ f1(k) = ⋯ = fn(k) =

z(k)

∑n
j= 1rj

.

However, the global equilibrium state is hard to reach because we do not know the traffic distribution next time. For 

k ∈ Z +  and i ∈ N, set 

→g ik(
→a) :=

gk(
→a)

ri
/

z(k)

∑n
j= 1rj

=
∑n
j= 1rj
ri

⋅

gk(
→a)

z(k)
,

and for any CPICH transmit power →p, define the relative busy-degree of antenna i by 

freli (→p, k) := fi(
→p, k) /

z(k)

∑n
j= 1rj

=

1

ri
∫Rngk(

→a)1 {pi− ai≥pj− aj ,∀j }
d→a

z ( k )

∑n
j= 1rj

= ∫Rng̃ik(
→a)1 {pi− ai≥pj− aj ,∀j }

d→a.

Set 

frel(→p, k) := (frel1 (→p, k), …, freln (→p, k))⊤.

In Lemma 5.2, we first give an estimation for the upper bound of 
→
d(k). The proof is deferred to the Appendix in the

supplementary file.

Lemma 5.2. Suppose the traffic density function gk(
→a) is continuous on Rn, k ∈ Z + , the graph G is strongly connected and the

elements of its out-degree matrix are positive. The CPICH transmit power of antennas are updated by (13) and (21). Then, for

any initial state and any constant ε > 0, there exists a constant 0 < γ ≤ 1 and an integer k0 ≥ 2 such that for any k ≥ k0,

‖
→
d(k)‖∞ ≤ ε +

k− 1

∑
t= k− k0 + 1

1 −
n2 − n + 2

n2 γ
k− t− 1

‖
→
f

rel
(→p(t + 1), t) −

→
f

rel
(→p(t + 1), t + 1)‖∞.

From (25), we note that the upper bound of  ‖
→
d(k)‖∞  is affected by  ‖

→
f rel(→p(t + 1), t) −

→
f rel(→p(t + 1), t + 1)‖∞, 

t = k − k0 + 1, . . . , k − 1. The result of Lemma 5.2 can be improved if the temporal and spatial variations of network

traffic distribution have well properties; therefore, we present the following Theorem 5.1 and Proposition 5.1. The

proof of Theorem 5.1 is involved and is deferred to the Appendix in the supplementary file.

Theorem 5.1. Assume that the conditions in Lemma 5.2 still hold. If there exist a time  k∗ ∈ Z +   such that the traffic

distribution satisfying

gk(
→a) = βkgk∗(→a), ∀

→a ∈ Rn, k ≥ k∗ ,

where {βk}k≥ k∗   is a sequence of positive real numbers, and there exists a constant 0 < γ < 1  such that all antennas’ busy-

degrees will reach consensus, that is, for any i ∈ N, fi(k) →
z ( k )

∑n
j= 1rj

 as k → ∞.

( )
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Since the assumption that gk(
→a) = βkgk∗(→a)  for any  →a ∈ Rn,  and k ≥ k∗ , is strong, we propose a weaker assumption.

Set

Ωi(k) := →a : pi(k) − ai ≥ pj(k) − aj,  ∀j ∈ N

to be the coverage area of antenna i at sampling period k. Then, we can obtain the following Proposition 5.1 and the

Appendix in the supplementary file involves the proof.

Proposition 5.1. Assume that the conditions in Lemma 5.2 still hold. Suppose that for any k ∈ Z +  and i ∈ N,

∫Ωi ( k+ 1 ) g̃ik(
→a) − g̃ik+ 1(→a) d→a < δ,

where δ > 0 is a constant. Then, for any initial state and any constant ε > 0, and an integer k0, there exists a constant 0 < γ ≤ 1,

such that for any k ≥ k0, i ∈ N,

| di(k) | < ε +
n2δ

(n2 − n + 2)γ
.

Remark 5.1. By the definition of (23), we note that

∫Rn
→g ik(

→a) − →g ik+ 1(→a) d→a =
∑n
j= 1rj
ri

∫gk(
→a)d→a

z(k)
−

∫gk+ 1(→a)d→a

z(k + 1)
= 0.

In fact, 

→g ik(
→a) − →g ik+ 1(→a) =

∑n
j= 1rj
ri

gk(
→a)

z(k)
−
gk+ 1(→a)

z(k + 1)
,

where  gk(
→a) /z(k)  is the relative average traffic density function. When the sampling interval is small enough, the

difference between the relative average traffic density function gk(
→a) /z(k) − gk+ 1(→a) /z(k + 1)  is also minor. Therefore,

the condition (26) can be satisfied under certain situations.

As stated in Step 3 of Section 4, we introduce another algorithm BFDBA that only uses the approximation of 

∂fi

∂pi
(→p(k), k). There followed the convergence analysis of BFDBA.

Lemma 5.3. Suppose the traffic density function gk(
→a) is continuous on Rn, k ∈ Z + . the graph G is strongly connected and the

elements of its out-degree matrix are positive. The CPICH transmit power of antennas are updated by (18) and (21). For any

initial state and any constant ε > 0, there exists an integer k0 ≥ 2, a constant τ > 0 and a constant 0 < γ ≤ 1 such that for any 

k ≥ k0,

‖
→
d ( 2 ) (k)‖1 < ε +

k− 1

∑
t= k− k0 + 1

νk− t− 1‖
→
f rel(→p(t + 1), t) −

→
f rel(→p(t + 1), t + 1)‖1,

{ }

| [ ] |

[ ] [ ]

( )
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where ν := maxi , k 1 −
γτz ( k )

∂fi

∂pi
( →p ( k ) , k ) ∑n

j= 1rj

.

The proof of Lemma 5.3 is shown in the Appendix in the supplementary file.

Similar to Theorem 5.1 and Proposition 5.1, we can obtain the following Theorem 5.2 and Proposition 5.2. Their

proofs are involved in the Appendices in the supplementary file.

Theorem 5.2. Assume that the conditions in Lemma 5.3 still hold. If there exist a time  k∗ ∈ Z +   such that the traffic

distribution satisfying

gk(
→a) = βkgk∗(→a), ∀→a, k ≥ k∗ ,

where {βk}k≥ k∗  is a sequence of positive real numbers, there exists a constant 0 < γ ≤ 1 and a constant τ > 0 such that for any 

i ∈ N,

fi(k) → 1 − τpi(k)
z(k)

∑n
j= 1rj

, k → ∞.

Remark 5.2. We note that τ > 0 should be a small constant and τpi(k)
z ( k )

∑n
j= 1rj

  is minor. Therefore, all antennas’ busy-degrees

will reach approximately consensus.

Proposition 5.2. Assume that the conditions in Lemma 5.3 and the condition (26) still hold. Then, there exists a constant 

0 < γ ≤ 1 and a constant τ > 0, for any initial state and any constant ε > 0, and an integer k0 such that for any k ≥ k0, i ∈ N,

‖
→
d ( 2 ) (k)‖1 < ε +

nδ
1 − ν

.

6. Calculation of network coverage based on MR data and MLPs

To ensure the coverage of mobile communication network, we need to calculate the minimum CPICH transmit

power of each antenna in (17) for each sampling period. As stated in Subsection 2.3, traditional propagation models

suffer from the drawbacks of complex calculation and low accuracy. To achieve dynamic optimization, we need a fast

and more accurate method to calculate the real-time network coverage rate. In this section, we propose a novel

calculation method of network coverage rate based on MR data and MLPs. The detailed algorithm is presented as

follows.

6.1. Calculation of network coverage based on MR data

First, we obtain the data of the CPICH transmit power p1, …, pn, and corresponding MR data at a certain period (such

as one day) in advance. Let  →s 1, →s 2, …, →sK  denote the collected  K  pieces of MR data. For  ℓ = 1, . . . , K, 

→s ℓ = ((Iℓ1, sℓ1), (Iℓ2, sℓ2), . . . , (Iℓmℓ
, sℓmℓ

))  contains  mℓ  received CPICH signal strength values and  Iℓmℓ
  is  sℓmℓ

’s corresponding

antenna ID. MR data is preprocessed before coverage calculation as follows.

( )

( )

qeios.com doi.org/10.32388/9NQ09V 22

https://www.qeios.com/
https://doi.org/10.32388/9NQ09V


Step 1 of preprocessing:

For each received CPICH signal strength value sℓj  of →s ℓ, we calculate the attenuation value by 

aℓj := pIℓj
− sℓj , j = 1, . . . , mℓ,

where pIℓj
 is the CPICH transmit power of antenna Iℓj

[33]. Then, we can obtain the Table III.

IDs of MR data Corresponding cells and attenuation values

→s 1 (I1
1, a1

1), . . . , (I1
m1

, a1
m1

)

→s 2 (I2
1, a2

1), . . . , (I2
m1

, a2
m1

)

⋮ ⋮

Table 3. The calculation results of Step 1 of preprocessing.

Step 2 of preprocessing:

If two rows of MR data →s k and →s ℓ in Table III satisfy:

1. {Ik1, Ik2, . . . , Ikmk
} ⊆ {Iℓ1, Iℓ2, . . . , Iℓmℓ

},

2. if Iki = Iℓj , then aki ⩾ aℓj ,

then we regard  →s ℓ  as a piece of redundant data and we delete the whole row of  →s ℓ  from Table III. We repeat this

process until there is no redundant data. Let →s 1, →s 2, . . . , →sK
′
 be the processed MR data and K ′  is the total.

Step 3 of preprocessing:

If a piece of MR data contains antenna  i, we say it is antenna  i’s relevant MR data. We extract all antennas relevant

MR data separately. Let {→s 1
i ,

→s 2
i , . . . , →s kii } ⊆ {→s 1, →s 2, . . . , →sK

′
} be the set of antenna i’s relevant MR data and ki is its total.

We rank →s 1
i ,

→s 2
i , . . . , →s kii  according to their attenuation values with respect to antenna i: 

a(→s 1
i , i) ⩽ a(→s 2

i , i) ⩽ . . . ⩽ a(→s kii , i),

where a(→s ki , i) = pi − s(→s ki , i), and s(→s ki , i)  is antenna  i’s corresponding received CPICH signal strength in  →s ki , k = 1, . . . , ki.

Therefore, we can obtain Table IV for antenna i.
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Attenuation values MR data IDs

a(→s 1
i , i)

→s 1
i

a(→s 2
i , i)

→s 2
i

⋯ ⋯

Table 4. The ranked attenuation values of antenna i

It is worth noting that the preprocessing of MR data can be done off-line. With the preprocessed MR data, we

introduce the detailed calculation algorithm.

Step 1: Assign an initial value “0" to each MR data like Table V.

IDs of MR data Assigned Values

→s 1 0

→s 2 0

⋯ ⋯

Table 5. MR data IDs and their assigned values.

Step 2: For antenna  i, calculate its threshold of the attenuation value which satisfies the coverage requirement.

Specifically, we denote the threshold by aic and calculate aic by

aic := pi − rc,

where rc is the threshold of received CPICH signal strength value for users. For example, the value of rc can be chosen

as −90 dbm. If the attenuation value in Table V is less than or equal to the threshold aic, that is, a(→s ki , i) ⩽ aic, we update

the assigned value of 
→s ki  to “1". Then, we denote the set of MR data whose assigned values are “0" by Sf.

Step 3: Calculate F(p1, p2, . . . , pn) by

F(p1, p2, . . . , pn) := 1 −
| Sf |

K ′ .
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Following these steps, we can calculate the network coverage rate with MR data more accurately. However, this

method may be time-consuming with large volume of MR data. We analyze the computational complexity of the

method. For Step 1, the assignment is operated over all processed MR data and its complexity is O(K ′ ). Similarly, the

complexity for Step 2 is O(K ′ ). The computation time of Step 3 can be omitted. Therefore, the complexity of the total

algorithm is O(K ′ ), which could be very demanding for large K ′ , as K ′   is on the order of  108  in the simulations.

Further, we design a faster calculation method in Subsection 6.2.

6.2. Fast coverage calculation with MR data and MLPs

The MLPs (multi-layer perceptrons) are commonly used for function approximation[53][54]. Since we can obtain large

sets of the CPICH transmit power  p1, p2, . . . , pn  and calculate the network coverage rate  F(p1, p2, . . . , pn)  with the

method presented in Subsection 6.1, we can pre-model the complex relationship between input (the CPICH transmit

power) and output (the network coverage rate) with a MLP. Then, we can calculate the network coverage rate faster

using only the CPICH transmit power.

Here, we assume that antenna i and antenna j are neighbours if they appear in the same piece of MR data. We denote

the set of antenna  i’s neighbours by  Ni = {Ai
1, . . . , Ai

ni
}, where  ni = | Ni | . To simplify the expression, we denote

antenna  i by Ai
0. Let Ri be the cells of antenna  i and Ni, and we call Ri the neighbourhood of antenna  i. Besides, we

assume that neighbours can communicate directly. We denote the network coverage rate of Ri by Fi(pAi
0
, . . . , pAi

ni
) and

we can calculate Fi with the method in Section 6.1. Then, we use pAi
j
, j = 0, . . . , ni as the inputs and Fi(pAi

0
, . . . , pAi

ni
) as

the output to train a MLP. As we mentioned in Section 2, when the CPICH transmit power of any antenna is

increased, the network coverage rate of its neighbourhood will increase, that is, Fi is a monotone increasing function

with respect to  pAi
0
, . . . , pAi

ni
. Therefore, we make some minor adjustments to the parameters of the classic MLP,

transforming it into a monotone increasing model. The detailed steps for building and training the MLP are

presented as follows.

Step 1: Normalize the CPICH transmit power pAi
j
, j = 0, . . . , ni by 

p∗Ai
j

=
pAi

j
− pmin (Ai

j)

pmax (Ai
j) − pmin (Ai

j)
,

where pmax (Ai
j) and pmin (Ai

j) denote the maximum and minimum CPICH transmit power of Ai
j respectively. Then, p∗Ai

j
 is

the normalized CPICH transmit power of Ai
j.

Step 2: Establish the MLP and set parameters. In our application scenario, the number of the input neurons is ni + 1

  and the number of the output neuron is  1. Following the common form[53][54], the structure and corresponding

parameters of the MLP are shown in Fig. 4.
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Figure 4. The structure of the multi-layer perceptrons.

To make the MLP be a monotone increasing network, we set the weight between the p-th neuron of the  (ℓ − 1)-th

layer and the q-th neuron of the ℓ-th layer as (ωℓ
qp)

2, and the bias of the q-th neuron of the ℓ-th layer as bℓq. We choose

the sigmoid function  σ(x) =
1

1 + exp ( − x )   as the activation function of hidden layers. Then, the monotonicity can be

guaranteed. We initialize all parameters to small random values.

Step 3: We use the mean squared error (MSE) as the cost function to train the parameters with error propagation

technique. Let W ( i )  and 
→
b ( i )  denote the well-trained parameters with respect to antenna i. These parameters can be

stored in the memory of antenna i.

It is worth noting that the building and training of MLP can be done off-line. With the communication between

neighbours, antenna i can obtain the CPICH transmit power pAi
1
, . . . , pAi

ni
. With well-trained W ( i )  and 

→
b ( i )  we denote

the output by F∗i . Therefore, each antenna can calculate the network coverage rate of its neighbourhood fast and

accurately in its digital signal processor.

Remark 6.1. It is clear that the computational complexity of F ⋆i   by the MLP is O(∑m
l= 0NlNl+ 1), where Nl  is the number of

neurons in hidden layer  l, and m  is the number of hidden layers. In our simulations we choose m = 3 and the value of Nl  is

between 75 and 3000, and the computational complexity of F ⋆i  is lower than that of the method presented in Subsection 6.1.

Thus, our simulations adopt the MLP method to reduce computation time.

Based on this fast network coverage rate calculation method, we can further calculate the minimum CPICH transmit

power of antenna i in (17). The calculation process is presented as follows.

Step 1. We say that antenna i fails to satisfy the coverage requirement if F ⋆i < Fcon. Then, we label such antenna i as Âi.

Let Î be the set of labeled antennas’ IDs and V = {Âi}i∈ Î be a vertex set. If Âi and Âj are neighbours, they are regarded
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as connected and there is an edge between them. Let  E  be the edge set, then  Gf := (V, Ef)  is the graph of antennas

failing to satisfy the coverage requirement. Let {Xh}h= 1 , . . . , r be the connected components of graph Gf, where r is the

cardinality. We denote the antenna with the minimum coverage rate in Xh  by AXh
  and increase its CPICH transmit

power by Δp, where Δp > 0 is a minor adjustable constant.

Step 2. Calculate the new network coverage rate with the well-trained MLP and repeat Step 1 until all antennas

satisfy the coverage requirement. At this point, the corresponding CPICH transmit power is the minimum CPICH

transmit power in (17).

With the above steps, all antennas can adjust their CPICH transmit power in the k + 1-th sampling period with (17).

7. Simulation Results

In this section, we present three sets of simulations based on actual MR and antenna data to verify the effectiveness

of our algorithms. The simulations compare the performance of our algorithms with the current network state,

which is the result of the static optimization by base station deployment, and antenna’s azimuth and tilt. The

simulation results show that our algorithms perform much better. In Subsection VII-A, we provide a statement of the

datasets. Then, we set up our simulations and present the detailed results and analysis in Subsection VII-B.

7.1. Dataset Statement

The datasets used in our simulations are obtained from Beijing Mobile Company. We select three general areas with

different antenna densities in Beijing containing both commercial and residential areas, then collect their

corresponding one day MR and antenna data, which are referred to as dataset-A, dataset-B, and dataset-C,

respectively.

Set the sampling period as one hour and MR data to be classified by hour. Therefore, the sampling period is  24, 

k = 0, . . . , 23. As we stated in Sections 2 and 6, each piece of MR data corresponds to a user in the network and this

user accesses the antenna with the highest received strength value. The dataset-A corresponds to the area shown in

Fig. 1. This area includes  1956  antennas and dataset-A includes the statistics of these antennas’ CPICH transmit

power and corresponding 112, 629, 717 pieces of MR data during the sampling periods. The dataset-B corresponds to

an area with a higher antenna density and includes the statistics of  1658  antennas’ CPICH transmit power and 

129, 183, 183 pieces of MR data during the sampling periods. The dataset-C corresponds to a larger area and includes

the statistics of  6120  antennas’ CPICH transmit power and  266, 485, 384  pieces of MR data during the sampling

periods.

7.2. Simulation setup

We perform our simulations on a computer platform with Intel i7 CPU (2.9 GHz). The simulation platform is Octave-

6.1.0 and we mainly use the svd() built-in function to calculate (12). In the k − th sampling period, let M(k) be the set
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of MR data of all antennas, and Mi(k) be the set of MR data accessing to antenna i, k = 0, . . . , 23, i = 1, . . . , n. Due to the

lack of data from the traffic channels, we calculate the busy-degrees based on the number of MR data as a substitute

for (2). According to the Law of Large Numbers and the self-similar nature of network traffic[55], the average traffic

of each antenna is approximately proportional to its accessing user number. Hence, the average PRB utilization rate

of each antenna is approximately proportional to its accessing user number, and our simplification should be

rational. Also, we assume all antennas have the same total of PRBs, i.e., r1 = r2 = . . . = rn. Therefore, the busy-degree

can be calculated by

fi(k) ≈
| Mi(k) |

M
, k = 0, . . . , 23,  i = 1, . . . , n,

where M  is the maximum access user number of antennas. We say an antenna is over-busy if its busy-degree is

greater than or equal to  0.7. We calculate the standard deviations of all antennas’ busy-degrees by 

1

n ∑n
i= 1(fi(k) −

¯
f i(k))2. Moreover, the volumes of MR data are exceedingly large, making the processing time-

consuming. According to the Large Deviation Principle[56], we perform random sampling on the MR data. Let 

V = 30, 000, 000 be the sampling scale which can balance computational efficiency and data representativeness.

The simulation parameters of our algorithms are summarized as follows. In simulations of dataset-A, the adjustable

constant used in A(k)’s approximation is set to be ϵ = 0.1. For simplification, we do not focus on the tradeoff between

network balance and user handover here; this analysis will be addressed in our future research. Hence, the

smoothing factor γ is set to be γ = 1. The adjustable constant used in 
→u ( 2 ) (k)’s calculation of BFDBA is set to be τ = 0.01.

The minor adjustable constant is set to be Δp = 1. The maximum access user number of antennas is set to be M = 4000

. In simulations of dataset-B, the parameters ϵ, γ, τ and Δ remain unchanged and the maximum access user number of

antennas is set to be M = 5000. In simulations of dataset-C, the parameters ϵ, γ,  τ and Δ  remain unchanged and the

maximum access user number of antennas is set to be M = 3500. From the perspective of global optimization, the

target busy-degree of antenna i is calculated by

¯
fi(k) =

1
n

n

∑
j= 1

fj(k), i = 1, . . . , n.

The minimum requirement of network coverage rate Fcon is set as 99.9% and the maximum CPICH transmit power 

pmax
i   is set as 80W  for all antennas. For the setup of the MLPs corresponding to three areas, the number of hidden

layers is set to be 3. For the MLP corresponding to dataset-A, the numbers of neurons in hidden layers are set to be 

900, 460, and 96 respectively. For the MLP corresponding to dataset-B, the numbers of neurons in hidden layers are set

to be 750, 290, and 75 respectively. For the MLP corresponding to dataset-C, the numbers of neurons in hidden layers

are set to be 2700, 1000, and 150 respectively. The performances of the three MLPs are shown in Fig. 5.

√
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Figure 5. The performances of the MLP corresponding to dataset-A (a); dataset-B (b); and dataset-C (c).

The training time of each MLP is less than 13 hours on our computer platform with Intel i7 CPU.

7.3. Simulation results and analysis

With dataset-A, Fig. 6 shows the standard deviations of all antennas’ busy-degrees and the proportions of over-busy

antennas. In Fig. 6, the blue bars on the left side of the sampling periods correspond to the current network status,

the red bars in the middle correspond to the network status with BFDBA, and the yellow bars on the right side

correspond to the network status with BDBA. From Fig. 6 (a), we can intuitively observe that both BDBA and BFDBA

perform well in balancing all antennas’ busy-degrees. To be more specific, compared with the current network

status, the mean of the standard deviations of all antennas’ busy-degrees is declined by 55.97% with BDBA; the mean

of the standard deviation of all antennas’ busy-degrees is declined by  51.02%  with BFDBA. From Fig. 6 (b), we can

obtain that both BDBA and BFDBA effectively reduce the proportions of over-busy antennas. Compared with the

current network status, the mean of the proportions of over-busy antennas is declined by  68.27%  with BDBA; the

mean of the proportions of over-busy antennas is declined by 65.03% with BFDBA.

Figure 6. (a) The standard deviations of all antennas’ busy-degrees with dataset-A; (b) the proportions of over-busy

antennas with dataset-A.
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Moreover, we specifically compare the busy-degrees of the randomly selected four antennas under our algorithms

with the current status. In the current mobile communication network, the daily changes of selected antennas’

busy-degrees are shown in Fig. 2. With BDBA and BFDBA, Fig. 7 depicts the changes of selected antennas’ busy-

degrees. The blue lines with ‘+’ correspond to the current network status; the red lines with ‘ △ ’ correspond to the

network status with BDBA; the yellow lines with ‘o’ correspond to the network status with BFDBA; the smooth solid

purple lines correspond to the mean busy-degree of all antennas.

Figure 7. The busy-degrees of the randomly selected four antennas under our algorithms. (a) Antenna 149. (b) Antenna 677.

(c) Antenna 1016. (d) Antenna 1877.

Illustrated by Fig. 7, the busy-degrees of the selected antennas get closer to the mean busy-degree of all antennas,

indicating that the unbalance of antennas’ busy-degrees has been reduced. Also, the antennas are significantly less
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busy during their peak periods, since under-utilized antennas can share responsibility for the traffic. Hence, the

number of antennas required for deployment can be reduced, which will help to lower costs of operators.

Figure 8. (a) The standard deviations of all antennas’ busy-degrees with dataset-B; (b) the proportions of over-busy

antennas with dataset-B.

Figure 9. (a) The standard deviations of all antennas’ busy-degrees with dataset-C; (b) the proportions of over-busy

antennas with dataset-C.

Fig. 8 and Fig. 9 show the simulation results corresponding to the dataset-B and dataset-C, respectively. Due to the

high randomness of user traffic, the performance of our algorithms also exhibit certain fluctuations. Thus, from Fig.

6, 8 and 9, it can be observed that in some sampling periods BFDBA performs better. However, the overall

performance of BDBA is better. In fact, the mean of the standard deviations of all antennas’ busy-degrees is lower

under the control of BDBA. To be more specific, with dataset-B, compared with the current network status, the mean

of the standard deviations of all antennas’ busy-degrees is declined by 53.78% with BDBA; the mean of the standard

deviation of all antennas’ busy-degrees is declined by 50.21% with BFDBA; the mean of the proportions of over-busy

antennas is declined by 64.74% with BDBA; the mean of the proportions of over-busy antennas is declined by 62.35%

 with BFDBA. With dataset-C, compared with the current network status, the mean of the standard deviations of all
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antennas’ busy-degrees is declined by 54.09% with BDBA; the mean of the standard deviation of all antennas’ busy-

degrees is declined by 50.42% with BFDBA; the mean of the proportions of over-busy antennas is declined by 58.71%

 with BDBA; the mean of the proportions of over-busy antennas is declined by 56.49% with BFDBA. The simulations

with dataset-B and dataset-C further prove the effectiveness of our algorithms.

Figure 10. The running time comparisons with dataset-A (a); dataset-B (b); and dataset-C (c).

As shown in Fig. 10, we also compare the running time of BDBA and BFDBA. We can observe that BFDBA has an

advantage over BDBA as it significantly reduces the running time in all three sets of simulations. To be more specific,

the mean running time of BFDBA is reduced by 52.72% with dataset-A; the mean running time of BFDBA is reduced

by 50.59% with dataset-B; the mean running time of BFDBA is reduced by 50.39% with dataset-C. Therefore, BFDBA

can obtain good tradeoff between performance and running time.

8. Conclusion and Future Work

To optimize the mobile communication network, it is necessary to settle the problem of “tidal effect”. However, the

dynamic optimization algorithms are still insufficient. This paper aims to balance the network traffic and proposes

two types of dynamic optimization algorithms, BDBA and BFDBA, under the framework of a “breathing” mobile

communication network. The busy-degree of each antenna is treated as a multivariate function of all antennas’

CPICH transmit power and its Jacobian matrix is approximated with the MR data. Then, the theoretical adjustments

of all antennas’ CPICH transmit power can be calculated by solving a linear equation. Furthermore, the fast

calculation method of network coverage in Section 6 can modify the theoretical adjustments to meet the coverage

requirement. Moreover, the theoretical analysis in Section 5 proves that the busy-degrees of all antennas can reach

the balance (or consensus) under certain assumptions. As for the simulation results, we observe that the unbalance

among antennas is greatly reduced by applying BDBA and BFDBA. The proportions of over-busy antennas are also

decreased dramatically.
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Since the consensus of all antennas’ busy-degrees is affected by traffic distribution, the global equilibrium state is

hard to reach. Therefore, more improvements are needed to enhance the performance of the proposed algorithms.

On one hand, combining the short-term traffic prediction with our algorithms may reduce the impact of variations

between sampling periods, which might lead to a more efficient solution. On the other hand, the proposed

algorithms can be combined with the BS sleeping strategies[12][13][14][15]  and on-demand coverage strategies[57],

which can further reduce energy consumption. In our following work, we will consider this combination and design

more refined algorithms.

Appendix

A. Proof of Lemma 5.1

We can rewrite (18) as

fi(k) =
1
ri

∫ + ∞
− ∞∫ + ∞

ai− pi ( k ) + p1 ( k )⋯∫ + ∞
ai− pi ( k ) + pn ( k )gk(

→a)dan⋯da1dai, ∀i ∈ N.

Since gk(
→a) is continuous on Rn, k ∈ Z + , we can exchange the integration order of the repeated integrals. According to

the Leibniz Rule for variable limit integral [36], for any  j ≠ i, the variable limit integral  ∫ + ∞
ai− pi ( k ) + pj ( k )gk(

→a)daj  is

differentiable with respect to pj. Hence, 

fi(k) =
1
ri

∫ + ∞
− ∞∫ + ∞

ai− pi ( k ) + p1 ( k )⋯∫ + ∞
ai− pi ( k ) + pn ( k ) ∫ + ∞

ai− pi ( k ) + pj ( k )gk(
→a)daj dan⋯da1dai

is differentiable with respect to pj(k). In the same way, for any j ≠ i, ∫ + ∞
ai− pi ( k ) + pj ( k )gk(

→a)daj is differentiable with respect

to  pi. Then, the repeated integral  ∫ + ∞
ai− pi ( k ) + pn− 1 ( k ) ∫ + ∞

ai− pi ( k ) + pn ( k )gk(
→a)dandan− 1  is differentiable with respect to  pi(k).

Hence, 

fi(k) =
1
ri

∫
+ ∞
− ∞ ∫

+ ∞
ai− pi ( k ) + p1 ( k )⋯∫

+ ∞
ai− pi ( k ) + pn ( k )gk(

→a)dan⋯da1 dai

is differentiable with respect to pi(k). Let →p(k) := (p1(k), …, pn(k)). By (18), we have 

A(k) = A(→p(k), k)

=

1

f̄1 ( k )

∂f1

∂p1

→p(k), k ⋯

1

f̄1 ( k )

∂f1

∂pn

→p(k), k

⋮ ⋱ ⋮

1

f̄n ( k )

∂fn

∂p1

→p(k), k ⋯
1

f̄n ( k )

∂fn

∂pn
→p(k), k

.

By the definition of gk(
→a), we have gk(

→a) ≥ 0 for any →a ∈ Rn. On one hand, for all i ∈ N and l ≠ i, we can obtain 

( )

( )

[ ( ) ( )

( ) ( ) ]
qeios.com doi.org/10.32388/9NQ09V 33

https://www.qeios.com/
https://doi.org/10.32388/9NQ09V


∂fi
∂pi

→p(k), k = lim
Δp→ 0

fi …, pi(k) + Δp, …, k − fi …, pi(k), …, k

Δp

= lim
Δp→ 0

1

ri
∫Rngk(

→a) ⋅ Γi , i(k)d→a

Δp
≥ 0,

and 

∂fi
∂pl

→p(k), k = lim
Δp→ 0

fi …, pl(k) − Δp, …, k − fi …, pl(k), …, k

−Δp

= lim
Δp→ 0

1

ri
∫Rngk(

→a) ⋅ Γi , l(k)d→a

−Δp
≤ 0,

where

Γi , i(k) := 1 {pi ( k ) + Δp− ai≥pj ( k ) − aj ,∀j≠ i }
− 1 {pi ( k ) − ai≥pj ( k ) − aj ,∀j≠ i }

,

Γi , l(k) := 1 {pi ( k ) − ai≥pj ( k ) − aj ,∀j∉ { i , l } } ⋅ 1 {pi ( k ) − ai≥pl ( k ) − Δp− al }
− 1 {pi ( k ) − ai≥pj ( k ) − aj ,∀j≠ i }

.

On the other hand, we note that fi(
→p(k) + Δp1n, k) = fi(

→p(k), k) for all i ∈ N. Hence,

fi(
→p(k) + Δp1n, k) − fi(

→p(k), k) =
∂fi
∂p1

→p(k), k + ⋯ +
∂fi
∂pn

→p(k), k Δp = 0.

Therefore, we have

n

∑
j= 1

∂fi
∂pj

→p(k), k = 0, i ∈ N.

According to the Definition 6.3 of [32], by (29)-(31), A(k) is a Laplacian matrix. With the assumption that the elements

of A(k)’s out-degree matrix are positive, we have

∂fi
∂pi

→p(k), k > 0.

By the Theorem 6.6 of [32], rank(A(k)) = n − 1 when G is strongly connected. ◼

B. Proof of Lemma 5.2

First, we calculate the decrease of di(k), that is,

di(k + 1) − di(k) = di(
→p(k + 1), k + 1) − di(

→p(k), k) = di(
→p(k + 1), k + 1) − di(

→p(k + 1), k) + di(
→p(k + 1), k) − di(

→p(k), k).

By (20), we have

di(
→p(k + 1), k + 1) − di(

→p(k + 1), k) =
fi(

→p(k + 1), k)

z(k) / ∑n
j= 1rj

−
fi(

→p(k + 1), k + 1)

z(k + 1) / ∑n
j= 1rj

= freli (→p(k + 1), k) − freli (→p(k + 1), k + 1).

With the Lagrange mean value theorem [36], (20) and (21), for any  i ∈ N  and  k ∈ Z + , there exists a constant 

p̃i = cipi(k) + (1 − ci)pi(k + 1) with ci ∈ [0, 1],  such that

( )
( ) ( )

( )
( ) ( )

( ( ) ( ))

( )

( )

qeios.com doi.org/10.32388/9NQ09V 34

https://www.qeios.com/
https://doi.org/10.32388/9NQ09V


di(
→p(k + 1), k) − di(

→p(k), k) =
∂di
∂p1

(p̃, k), …,
∂di
∂pn

(p̃, k) γ→u(k) = − γAi , : (p̃, k)→u(k),

where p̃ = (p̃1, . . . , p̃n)
⊤, and Ai , : (p̃, k) is the i-th row of A(p̃, k). Let Σ(k) = A(p̃, k) − A(k). We note that Σ(k) → 0n× n as γ → 0,

where 0n× n is a null matrix. By (12), we have ‖A + (k)‖∞ ≤ ‖Λ − 1
1 (k)‖∞ ≤ maxs

1

σs ( k ) . Hence, by (19), we can obtain

−γAi , : (p̃, k)→u(k) = − γ (Σ(k) + A(k))A + (k) i , :
→
d(k) = − γU1(k)U⊤1 (k)

→
d(k) − γ Σ(k)A + (k) i , :

→
d(k) = − γU1(k)U⊤1 (k)

→
d(k) + o(γ),

where o(γ) is said to be infinitesimal compared with γ. Together with (11) and (32)-(35), we have

→
d(k + 1) = In − γU1(k)U⊤1 (k)

→
d(k) + o(γ)1n +

→
f rel(→p(k + 1), k) −

→
f rel(→p(k + 1), k + 1),

where

In − γU1(k)U⊤1 (k) = (1 − γ)In + γU2(k)U⊤2 (k) =

1 − γ + γ
1

n2 ⋯ γ
1

n2

⋮ ⋱ ⋮

γ
1

n2 ⋯ 1 − γ + γ
1

n2

,

and In is the n-dimensional identity matrix. By (36), we can obtain

‖
→
d(k + 1)‖∞ ≤ (1 −

n2 − n + 2

n2 γ)‖
→
d(k)‖∞ + o(γ) + ‖‖

→
f rel(→p(k + 1), k) − ‖

→
f rel(‖→p(k + 1), k + 1)‖∞.

Hence, 

‖
→
d(k)‖∞ ≤ (1 −

n2 − n + 2

n2 γ)k− 1‖
→
d(1)‖∞ +

n2

n2 − n + 2

| o(γ) |
γ

+
k− 1

∑
t= 1

(1 −
n2 − n + 2

n2 γ)k− t− 1‖‖
→
f rel(‖→p(t + 1), t) − ‖

→
f rel(‖→p(t + 1), t + 1)‖∞.

Since for any i ∈ N, k ∈ Z + ,

freli (→p(k + 1), k) − freli (→p(k + 1), k + 1) <
∑n
j= 1rj

ri
,

we have that for any ε > 0 and di(1), there exists a constant 0 < γ ≤ 1 and an integer k0 ≥ 2 such that for any k > k0,

(1 −
n2 − n+ 2

n2 γ)k− 1‖
→
d(1)‖∞ +

n2

n2 − n+ 2

|o ( γ ) |

γ

+
k− 1

∑
t= 1

(1 −
n2 − n + 2

n2 γ)k− t− 1‖
→
f rel(→p(t + 1), t) −

→
f rel(→p(t + 1), t + 1)‖∞ < ε.

Combining (37) and (38) yields (23). ◼

C. Proof of Theorem 5.1

With the condition gk(
→a) = βkgk∗(→a), we can obtain

g̃ik(
→a) =

βkgk∗(→a)

ri
/
βkz(k

∗ )

∑n
j= 1rj

= g̃ik∗(→a), ∀
→a ∈ Rn, k ≥ k∗ .

( )

[ ] [ ]

( )

[ ]

| |
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Therefore, by (22), we have

freli (→p(k + 1), k) − freli (→p(k + 1), k + 1) = ∫Rn g̃ik(
→a) − g̃ik+ 1(→a) 1 {pi ( k+ 1 ) − ai≥pj ( k+ 1 ) − aj ,∀j }

d→a = 0.

Together with (32)-(35) and (39),

→
d(k + 1) −

→
d(k) = − γA(p̃, k)→u(k) = − γ(Σ(k) + A(k))A + (k)

→
d(k).

By (40), we can obtain

→
d(k + 1) = In − γU1(k)U⊤1 (k) − γΣ(k)A + (k)

→
d(k),

Since Σ(k) → 0n× n as γ → 0 and ‖A + (k)‖∞ ≤ maxs
1

σs ( k )
, there exists 0 < γ ≤ 1 such that

‖In − γU1(k)U⊤1 (k) − γΣ(k)A + (k)‖∞ ≤ ‖In − γU1(k)U⊤1 (k)‖∞ + γ‖Σ(k)‖∞‖A + (k)‖∞

= 1 −
n2 − n + 2

n2 γ + o(γ) < 1.

Together with (41) and (42), for k ≥ k∗

‖
→
d(k + 1)‖∞ ≤ ‖In − γU1(k)U⊤1 (k) − γΣ(k)A + (k)‖∞‖

→
d(k)‖∞

≤ 1 −
n2 − n + 2

n2 γ + o(γ) ‖
→
d(k)‖∞.

Therefore, we have

‖
→
d(k)‖∞ ≤ 1 −

n2 − n + 2

n2 γ + o(γ)
k− k∗

‖
→
d(k∗ )‖∞.

Hence,

lim
k→ ∞

‖
→
d(k)‖∞ = 0,

that is, for any i ∈ N, fi(k) →
z ( k )

∑n
j= 1rj

 as k → ∞. ◼

D. Proof of Proposition 5.1

By (22), we have

freli (→p(k + 1), k) − freli (→p(k + 1), k + 1) = ∫Ωi ( k+ 1 ) g̃ik(
→a) − g̃ik+ 1(→a) d→a.

Together with (24), we can obtain

freli (→p(k + 1), k) − freli (→p(k + 1), k + 1) < δ.

By (43), we have

[ ]

[ ]

( )

( )

[ ]

| |
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k− 1

∑
t= k− k0 + 1

(1 −
n2 − n + 2

n2 γ)k− t− 1‖
→
f
rel

(→p(t + 1), t) −
→
f
rel

(→p(t + 1), t + 1)‖∞

≤
k− 1

∑
t= 1

(1 −
n2 − n + 2

n2 γ)k− t− 1δ =
1 − (1 −

n2 − n+ 2

n2 γ)k− 1

n2 − n+ 2

n2 γ
δ ≤

n2

n2 − n + 2

δ
γ

.

Together with (37) and (44), we have

‖
→
d(k)‖∞ ≤ (1 −

n2 − n + 2

n2 γ)k− 1‖
→
d(1)‖∞ +

n2

n2 − n + 2

| o(γ) |
γ

+
n2

n2 − n + 2

δ
γ

.

Then, for any initial state and any constant ε > 0, there exists an integer k0 such that for any k ≥ k0, i ∈ N,

(1 −
n2 − n + 2

n2 γ)k− 1‖
→
d(1)‖∞ +

n2

n2 − n + 2

| o(γ) |
γ

< ε.

Combining (45) and (46) yields (25). ◼

E. Proof of Lemma 5.3

Same as the proof of Lemma 5.2, we have

→
d ( 2 ) (k + 1) −

→
d ( 2 ) (k) =

→
d ( 2 ) (→p(k + 1), k + 1) −

→
d ( 2 ) (→p(k + 1), k) +

→
d ( 2 ) (→p(k + 1), k) −

→
d ( 2 ) (→p(k), k),

where

→
d ( 2 ) (→p(k + 1), k + 1) −

→
d ( 2 ) (→p(k + 1), k) =

→
f rel(→p(k + 1), k) −

→
f rel(→p(k + 1), k + 1).

By (34) and (17),

→
d ( 2 ) (→p(k + 1), k) −

→
d ( 2 ) (→p(k), k) = − γ(A(→p, k) + τIn)

→u ( 2 ) (k)

= − γ(A(→p, k) + τIn)D
− 1(k)

→
d ( 2 ) (k),

Together with (47), we have

→
d ( 2 ) (k + 1) = (In − γ(A(→p, k) + τIn)D

− 1(k))
→
d ( 2 ) (k) +

→
f rel(→p(k + 1), k) −

→
f rel(→p(k + 1), k + 1),

where
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In − γ A(p̃, k) + τIn D − 1(k) =

1 − γ

∂f1

∂p1
( p̃ , k ) + τ

z ( k )

∑n
j= 1rj

∂f1

∂p1

→p ( k ) , k
⋯ −γ

∂f1

∂pn
( p̃ , k )

∂fn

∂pn

→p ( k ) , k

⋮ ⋱ ⋮

−γ

∂fn

∂p1
( p̃ , k )

∂f1

∂p1

→p ( k ) , k
⋯ 1 − γ

∂fn

∂pn
( p̃ , k ) + τ

z ( k )

∑n
j= 1rj

∂fn

∂pn

→p ( k ) , k

.

By (6), we have for any i ∈ N,

n

∑
j= 1

∂fj
∂pi

(p̃, k) =
∂∑n

j= 1fj

∂pi
(p̃, k) =

∂
nz ( k )

∑n
j= 1rj

∂pi
(p̃, k) = 0.

Hence, there exists 0 < γ ≤ 1 and τ > 0 such that

‖In − γ A(p̃, k) + τIn D − 1(k)‖1 = max
i

1 − γτ

z ( k )

∑n
j= 1rj

∂fi

∂pi
→p(k), k

< 1.

By (48), we can obtain that

‖
→
d ( 2 ) (k + 1)‖1 ≤ ‖In − γ A(p̃, k) + τIn D − 1(k)‖1 ⋅ ‖

→
d ( 2 ) (k)‖1 + ‖

→
f rel →p(k + 1), k −

→
f rel →p(k + 1), k + 1 ‖1

≤ ν‖
→
d ( 2 ) (k)‖1 + ‖

→
f rel →p(k + 1), k −

→
f rel →p(k + 1), k + 1 ‖1.

Hence, we have

‖
→
d ( 2 ) (k)‖1 ≤ νk− 1‖

→
d ( 2 ) (1)‖1 +

k− 1

∑
t= 1

νk− t− 1 × ‖
→
f rel →p(t + 1), t −

→
f rel →p(t + 1), t + 1 ‖1.

Similar to the proof of Theorem 5.1, by (49), for any ε, there exists an integer k0 ≥ 2, for any k > k0, such that

νk− 1‖
→
d ( 2 ) (1)‖1 +

k− k0

∑
t= 1

νk− t− 1‖
→
f rel →p(t + 1), t −

→
f rel →p(t + 1), t + 1 ‖1 < ε.

Therefore, we can obtain (26). ◼

F. Proof of Theorem 5.2

Same as the proof of Theorem 5.1, (39) still holds. Combining (47) and (48), we have

→
d ( 2 ) (k + 1) = In − γ A(p̃, k) + τIn D − 1(k)

→
d ( 2 ) (k).

( ) [ ( ) ( )

( ) ( ) ]
( ) ( ( ) )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ( ) )
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Hence,

‖
→
d ( 2 ) (k + 1)‖1 ≤ ν‖

→
d ( 2 ) (k)‖1.

Therefore, we have

‖
→
d ( 2 ) (k)‖1 < νk− k∗

∥
→
d ( 2 ) (k∗ ) ∥1.

Similar to Theorem 5.1, we have

lim
k→ ∞

‖
→
d ( 2 ) (k)‖1 = 0,

that is,

lim
k→ ∞

‖
→
d(k) − τ→p(k)‖1 = 0.

Hence, fi(k) → 1 − τpi(k)
z ( k )

∑n
j= 1rj

 as k → ∞. ◼

G. Proof of Proposition 5.2

Similar to (44) of Proposition 5.1, we have

k− 1

∑
t= 1

νk− t− 1‖
→
f rel(→p(t + 1), t) −

→
f rel(→p(t + 1), t + 1)‖1

=
k− 1

∑
t= 1

νk− t− 1
n

∑
i= 1

| frel
i (→p(t + 1), t) − frel

i (→p(t + 1), t + 1) |

≤
k− 1

∑
t= 1

νk− t− 1n∫Rnδ1 {pi ( k+ 1 ) − ai≥pj ( k+ 1 ) − aj ,∀j }
d→a

≤ nδ
k− 1

∑
t= 1

νk− t− 1 =
nδ(1 − νk− 1)

1 − ν
<

nδ
1 − ν

.

By (50) and (51), we have

‖
→
d ( 2 ) (k)‖1 ≤ νk− 1‖

→
d ( 2 ) (1)‖1 +

nδ
1 − ν

.

Then, for any initial state and any constant ε > 0, there exists a constant γ and an integer k0 such that for any k ≥ k0, 

i ∈ N,

νk− 1‖
→
d ( 2 ) (1)‖1 < ε.

Combining (52) and (53) yields (27). ◼

Notes

This material is a preprint version of the following paper: IEEE Transactions on Mobile Computing,

https://doi.org/10.1109/TMC.2024.3487213

( )
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