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Mixture-of-Experts (MoE) enhances model performance while maintaining computational ef�ciency,

making it well-suited for large-scale applications. In existing MoE paradigms, each expert works as an

individual, leading to inadequate collaboration. Moreover, the MoE framework has not been effectively

extended to attention blocks, which limits further ef�ciency improvements. To tackle these issues, we

propose Union-of-Experts (UoE), which decomposes the transformer model into an equivalent group

of experts and applies selective routing to input data and experts. Our approach advances MoE design

with four key innovations: (1) We conduct equivalent expert decomposition on both MLP blocks and

attention blocks based on matrix partitioning in tensor parallelism. (2) We develop two routing

paradigms: patch-wise data selection and expert selection, to apply routing at different levels. (3) We

design the architecture of the UoE model, including Selective Multi-Head Attention (SMHA) and

Union-of-MLP-Experts (UoME). (4) We develop the parallel implementation of UoE’s routing and

computation operations and optimize the ef�ciency based on hardware processing analysis. The

experiments demonstrate that our UoE model surpasses Full Attention, state-of-the-art MoEs, and

ef�cient transformers (including the recently proposed DeepSeek-V3 architecture) in several tasks

across image and natural language domains. In language modeling tasks, UoE achieves an average

reduction of 2.38 in perplexity compared to the best-performing MoE method with only 76% of its

FLOPs. In the Long Range Arena benchmark, it demonstrates an average score at least 0.68% higher

than all comparison models, including Full Attention, MoEs, and transformer variants, with only 50%

of the FLOPs of the best MoE method. In image classi�cation, our model yields an average accuracy

improvement of 1.75% over the best model while maintaining comparable FLOPs. The source codes are

available at https://github.com/YujiaoYang-work/UoE.
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I. Introduction

Mixture of Experts (MoE)  [1]  is an advanced deep learning framework that effectively enhances model

ef�ciency and strengthens its predictive capabilities. This architecture features a sophisticated gating

mechanism that orchestrates a constellation of �nely tuned expert networks, each excelling with distinct

data subsets. With the dynamic allocation mechanism, it can enhance the model's computational

ef�ciency while maintaining optimal performance.

Existing MoE methods are confronted with certain challenges. In terms of performance, they are

fundamentally grounded in the concept of ensemble learning  [2]. In this manner, a dense model is

essentially isolated into multiple sub-models. Each sub-model contains an independent subspace, which

allows the model to learn multiple different representations in parallel across multiple subspaces  [3].

However, in this approach, the sub-models can only achieve indirect and limited interaction through a

downstream aggregator, resulting in a relatively insuf�cient global information exchange capability.

From an ef�ciency perspective, existing MoE methods are primarily applied to MLP blocks. They have

not been effectively extended to attention blocks, which constrains further ef�ciency improvements.

Moreover, they seldom succeed in achieving parallel computing, nor in optimizing ef�ciency based on

the CUDA computing process.

To address the aforementioned issues, we propose Union-of-Experts (UoE). The idea of UoE is inspired

and in�uenced by Megatron-LM [4], which implements ef�cient intra-layer model parallelism. We apply

this mechanism to the MoE method, to decompose both MLPs and attention blocks into several experts

while maintaining their intrinsic nature. In this paradigm, each expert evolves to become one part of a

whole model rather than an individual. The enhanced collaboration promotes collective intelligence and

knowledge sharing, which in turn enhances model performance. Fig. 1 illustrates a comparison between

model parallelism, MoE, and our proposed UoE.

We also develop a group of routing mechanisms, which contain selection strategies for input data and

experts. In the data selection strategy, we split each input sample into   patches and select no more than 

 patches for each expert as input. In this con�guration, the expert only receives one part of the sample

as an input tensor, thereby effectively exploiting the locality of information while maintaining a �ne-

grained data routing strategy. In the expert selection strategy, we route each input sample to the top   of 
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 experts. This strategy is conducive to enhancing model stability, as activated experts can observe the

input sequence from a comprehensive view. Combining the two mechanisms allows for dynamically and

precisely removing the parts of samples and experts that are not bene�cial to the �nal results, which

helps to optimize computational ef�ciency while preserving and even enhancing model performance.

We applied the proposed routing mechanism to equivalent decomposed attention experts and MLP

experts to build the fundamental architecture of UoE. UoE’s architecture consists of Selective Multi-Head

Attention (SMHA) and Union-of-MLP-Experts (UoME). SMHA maintains the multi-head design of the

Multi-Head Attention mechanism, which achieves a selective routing mechanism while enabling the

model to learn diverse representations across multiple subspaces. UoME incorporates the selective

routing mechanism into a decomposed MLP model, integrating the activated experts into a union similar

to a larger-scale dense model. It’s worth noting that the experts in both components are formulated by

decomposing the MHA and MLP of the transformer model in accordance with the equivalent

decomposition principle. Therefore, they are uni�ed within the UoE architecture.

Figure 1. The comparison between Model Parallelism, Mixture-of-Experts, and our proposed Union-of-

Experts. Model parallelism partitions the model equivalent modules for distributed computation. Mixture-of-

Experts employs multiple independent experts and selectively activates a subset for the output. Union-of-

Experts integrates the equivalent decomposition strategy of model parallelism into the MoE framework,

making the activated experts a union equivalent to a single model of the same scale.

To further improve our model’s ef�ciency, we implement parallel multi-expert computing at the

algorithmic level. This approach completely resolves the issues in the parallelization of classical MoE

methods. We also conduct an in-depth analysis to identify the inef�ciency factors in computation.
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Speci�cally, we visualize the time cost of each operation in the complete training phase and excavate

several potential inef�ciency steps. By adopting the above methods, our method reduces Floating Point

Operations (FLOPs) by at least 30% in comparison with the original version and achieves an average 

 speedup and   memory ef�ciency over the state-of-the-art MoE method. It can be anticipated

that applying our model to larger-scale language models with a more sparser activation setting will lead

to a more than 10x increase in ef�ciency.

We evaluate UoE on three typical tasks: language modeling, long-range sequence modeling, and image

classi�cation. Experimental results demonstrate that our model consistently outperforms several

methods, including the standard transformer [5], state-of-the-art MoE (including the latest DeepSeek-V3

work), and transformer variants. Speci�cally, with signi�cantly reduced computational overhead, it

achieves a 2.87 optimization in perplexity compared to the state-of-the-art MoE models on the WikiText-

103 benchmark and a 1.89 decrease on the One-Billion-Word language modeling benchmark. On the well-

established Long Range Arena (LRA) benchmark, the average precision outperforms the state-of-the-art

MoE model by 0.68%, as well as the advanced ef�cient transformer model by 1.9%. For the ViT-based

image classi�cation task, the average precision shows an improvement of 1.75% over the state-of-the-art

MoE model. These results strongly emphasize our model's robust performance and adaptability in

various domains.

II. Related Work

A. Variants of Transformer

Transformer [5] architecture represents a signi�cant advancement in arti�cial intelligence, bringing forth

unparalleled capabilities alongside the challenge of resource-intensive training and serving processes.

Signi�cant enthusiasm has been ignited for actively enhancing the ef�ciency of transformer

architectures. A preponderance of the works concentrates on reducing memory usage and improving

computational ef�ciency. Sparse Transformer [6]  introduces sparse attention mechanisms to selectively

attend to relevant tokens within a sequence. Linformer [7] and Lightning-Attention [8][9] leverage linear-

complexity self-attention mechanisms, catering to large-scale data and lengthy sequences.

Reformer  [10]  mitigates memory constraints by employing reversible layers and locality-sensitive

hashing techniques. Flash Attention [11] reduces memory access costs through tiling, while its subsequent

version  [12]  further enhances performance by optimizing memory access and computation fusion.

2.26× 2.68×
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DeepSeek-V2  [13]  introduces the Multi-Head Latent Attention (MLA) mechanism, which employs low-

rank joint compression to enhance training ef�ciency and reduce the KV cache size during inference.

Tensor Product Attention (TPA)  [14]  dynamically constructs QKV as context-dependent decomposed

tensors, enabling adaptive adjustments and facilitating seamless integration with effective Rotary

Position Embedding.

The other works aim to enhance the modeling capabilities of long sequences. Transformer-

XL  [15]  introduces segment-level recurrence to enhance sequence modeling beyond the scope of the

original Transformer. Sinkhorn Transformer  [16]  fuses the Sinkhorn algorithm with self-attention

mechanisms to improve sequence modeling accuracy. Long-Short-Term Memory

Transformer  [17]  combines the Transformer with Long Short-Term Memory (LSTM) mechanisms and

thus enhances the modeling capability for long sequences. SeerAttention [18] integrates a learnable gating

mechanism into the standard attention mechanism, enabling adaptive selection of salient blocks within

the attention map. Although these innovations have notably improved the performance of the

transformer frameworks in their respective domains, they are typically model-speci�c and may not be

universally applicable. By comparison, our work provides a model-free method. By simply adding a

selection mechanism to existing model parallel transformers, we can train a model more ef�ciently while

maintaining or even improving its performance.

We also notice that the recent NSA [19] from DeepSeek and the MoBA [20] from Moonshot AI, published on

February 18, 2025, share similarities with the Selective Multi-Head Attention (SMHA) mechanism in

Innovation Point 3 of the abstract. However, this similarity does not diminish the signi�cance of our

work. Firstly, the core innovation of our work, which was developed independently in close temporal

proximity, is characterized by the �rst application of equivalent decomposition to the partition of MoE

experts (Innovation Point 1). This is pivotal in enhancing the overall capability of the expert group and is

distinct from the aforementioned work. Next, the SMHA essentially represents the application of UoE's

equivalent decomposition and selective routing in Multi-Head Attention. Actually, SMHA is a multi-head

condition in UoE. We introduced not only SMHA for the multi-head model but also Union-of-MLP-

Experts (UoME) for the dense model. Moreover, SMHA also exhibits signi�cant differences in routing

mechanism and model architecture compared to the aforementioned work. For example, we developed

two independent selection paradigms (Innovation Point 2), data selection and expert selection, and

designed a parallelized expert computation framework (Innovation Point 4). Refer to sections 3B and 3C

for more implementation details.
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B. Mix of Experts

Mixture-of-Experts (MoE) enhances model capacity while maintaining the computation overhead,

thereby attaining superior performance relative to dense models across various domains. In classical

MoE layers, a group of collaborative experts works in unison to address complex tasks, while each can be

a simple Feed-Forward Network or a fully independent submodel  [21]. To effectively manage this

ensemble of experts, MoE introduces routing layers that decide which experts to activate based on the

input, followed by aggregation layers that combine their outputs into a uni�ed response.

Extensive works have emerged in the development of MoE architecture. The �rst successful deep

learning-based MoE [1] inserted a routing layer between two LSTM layers to select a sparse combination

of activated experts, reaching state-of-the-art performance in machine translation. Despite this success,

however, follow-on research was relatively dormant with greater emphasis on directly studying the

Transformer [5]. This changed with the release of GShard [22] and Switch Transformers [23], both of which

replaced the feed-forward layers in transformer architecture with expert layers. While the experts-as-a-

layer approach has become the dominant paradigm, more recent works revisit the concept of experts as

fully independent models  [24][25], which confers a bene�t of modularity and composability. Skywork-

MoE  [26]  introduces innovative gated logit normalization and adaptive auxiliary loss coef�cients to

enhance expert diversity and training ef�ciency. DeepSeek-MoE  [27]  employs �ne-grained common

experts and shared experts, which enhance expert specialization across different tasks.

Although the existing works have made signi�cant strides, they are constrained by the organizational

form of experts. In MoE frameworks, each expert works as an independent individual. The effectiveness

of this pattern has been empirically validated, showcasing its reliability in practical scenarios. However,

such a design undermines the collaboration ability of experts, which could potentially impair the model's

ability to capture complex patterns. Moreover, it may introduce additional gather layers, leading to

increased computational demands. In contrast, our approach sets one part of a whole model as an expert,

enabling a highly collaborative group of experts from a global perspective, without adding any fusion

structure. It is worth noting that our approach is not aimed at replacing all groups of experts with union

models, but rather at introducing a selection mechanism without damaging the model’s original

organizational form, no matter if it was originally a dense model or a mixture of sub-models or heads

(such as a Multi-Head Attention layer).
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C. Model Parallelism

Model parallelism is a computational strategy designed to distribute the workload of large neural

network models across multiple processing units [28]. There are generally two types of parallelism: tensor

parallelism and pipeline parallelism. Pipeline parallelism offers an alternative by dividing the model into

distinct stages, each handled by a different device. This approach was notably advanced by the GPipe

framework [29], which implemented synchronous mini-batch pipelining to train models with billions of

parameters. On the other hand, tensor parallelism partitions a tensor operation (such as matrix-matrix

multiplication) across multiple devices to accelerate computation or increase model size. In the �eld,

Megatron-LM  [4]  demonstrated the potential of tensor parallelism in scaling transformer models. By

splitting the weight matrices and activations across GPUs, it achieved substantial improvements in

training large language models. We build our approach upon the work of Megatron-LM. Speci�cally, we

apply its lossless weight splitting algorithm to equivalently decompose a whole model into a group of UoE

experts. Compared to Megatron-LM, our approach only needs

to activate a subset of weights, thus can dynamically eliminate unnecessary computation overhead.
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Figure 2. The overall architecture of UoE. We equivalently decompose the MLP block and attention block of

the transformer into   independent computation branches (with   in the �gure), and regard each branch

as an expert, as shown in panels a and b. We selectively route the input batch to each expert for independent

calculation and aggregate the results of experts based on the routing indices. Panels c and d illustrate the

mechanisms of the selection function and the aggregation function, where   can be either a patch or a

sample, corresponding to data selection and expert selection respectively.

III. Implementing Union-of-Experts

A. Lossless Decomposition of Transformer

Fig. 3 illustrates the work�ow of our methods. We �rst detail the implementation of splitting a

transformer model into an equivalent set of experts. A classical transformer can be comprised of two

main components: the Multi-Head Attention block and the Multi-Layer Perceptron (MLP) block. We will

illustrate the decomposition mechanism of both components separately.

1. MLP Block

We start by detailing the MLP block. We referenced the method introduced by Shoeybi et al.  [4]  to

decompose a standard two-layer MLP into   experts. WLOG, let  . A two-layer MLP is a combination

of two linear layers where each layer’s output   is calculated through a multiplication of the input batch 

n n = 2

Xij

n n = 2

Y
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 and the transformation matrix   followed by an activation function  :  . We can make

an equivalent decomposition on a linear layer through two methods. One is to split A along its column

dimension, i.e.,  . In this pattern, the activation function can be applied to the output of each

partitioned matrix multiplication independently. The result   can be calculated as follows:

The equation can be further categorized into a broadcast operation and an element-wise multiplication

with activation:

Where    denotes the Hadamard product. Another method is to split    along its row dimension and 

 along its column dimension, as shown in Equation 4:

With this pattern, we compute the result   as follows:

Similarly, it can be decomposed into an element-wise multiplication and a reduce operation with

activation:

Note that due to the nonlinearity of the activation function  , .

When incorporating the two decomposition procedures into our method, we employ an index select

function in place of the broadcast operation in Equation 2 and replace the sum function in Equation 7

with the index add function. Please refer to sections B and C for more details.

Within one expert, the computation process should operate independently, which means that

synchronization operations such as broadcast and reduce cannot be performed during computation.

Inspired by Shoeybi et al.  [4], we split the MLP’s �rst layer in the column dimension and partition the

second one in the row dimension, as shown in Fig. 2(a). In this way, the synchronizations only occur at

the beginning and ending of the MLP’s calculation; thus, we can take each independent part as an expert.

X A φ(⋅) Y = φ(XA)

A = [ , ]A1 A2

Y

Y = φ(X [ , ]) = [φ(X ),φ(X )]A1 A2 A1 A2 (1)

= [X,X] = [ , ]X
′

X
′

1 X
′

2
(2)

Y = φ([ , ]⊙ [ , ]) = [φ( ) ,φ( )]X
′

1 X
′

2 A1 A2 X
′

1A1 X
′

2A2 (3)

⊙ A

X

X = [ , ],A = [ ]X1 X2
A1

A2

(4)

Y

Y = φ([ , ][ ]) = φ ( + )X1 X2
A1

A2
X1A1 X2A2 (5)

Y ′ = [ , ] ⊙ [ , ]X1 X2 A1 A2

= [ , ] = [ , ]X1A1 X2A2 Y ′
1 Y ′

2

(6)

Y = φ( ) = φ ( + )∑
i=1

2

Y ′
i Y ′

1 Y ′
2 (7)

φ(⋅) φ( + ) ≠ φ( )+ φ( )Y
′

1 Y
′

2 Y
′

1 Y
′

2
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2. MHA Block

Then we turn to a more complex scenario: the attention block. An attention block can be decomposed

into four steps:

Where   and   denote the input and output batch.  ,  and   denote the query, key, and value.   and 

  denote the input and output projection matrices.    represents a nonlinear transformation

function. Similar to the MLP situation, we apply    expert column partition on  , and the

corresponding row partition on  . Thus, we acquire a group of    independent experts, which as a

whole is equivalent to   head Attention block, as shown in Fig. 2(b).

B. Dynamic Routing Strategy of Experts

We then apply a unique routing method to the well-crafted attention and MLP experts. This is facilitated

by applying index selection at the beginning of expert processing and index addition at the end. Fig. 2(c)

and Fig. 2(d) present an overview of the preprocessing and postprocessing procedures. Generally, our

proposed routing method comprises two modes, which perform a division-selection mechanism

separately on samples and models. The two modes can be implemented separately in different blocks, as

well as simultaneously enabled within one block, although the latter may incur additional computation

costs.

1. Data Selection Mode

At each propagation step, the UoE takes an input batch  . We can improve ef�ciency by removing input

fragments that are predicted to have negligible impact on each expert’s computation. Let    denote the

length of the token dimension. For a single sample   within a batch   of   samples, we split them

into   patches with length   along the sequence dimension:

Q,K,V = XW I (8)

S = θ ( K)QT (9)

O = SV (10)

Y = OW O (11)

X Y QK V W I

W O θ(⋅)

n W I

W O n

n

X

d

x ∈ R
l×d X b

m lp

x′ = [ , … ]p0 pm

= [ ], …, …x0 x −1lp

  
lp

, …x(m−1)lp xm −1lp

  
lp

  
×mlp

(12)
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Where . We route each patch to the best determined top-k experts, selected from a set of 

 experts. The gating score   is streamlined by a two-layer feed-forward network (FFN):

We implement a softmax activation to calculate the gating value   of the j-th patch   with respect to

the i-th expert  :

For each expert, we select a portion of patches as the input. The strategy that simply selects the top‑k

patches for each expert is unable to dynamically adjust the amounts of valid patches based on input type

and task complexity, leading to an inappropriate discarding of bene�cial patches. Regarding this matter,

we propose a two-stage routing method to achieve dynamic allocation of input patches. First, we route

each patch to   experts with the highest probabilities. The indexes of experts   with respect to

the j-th patches can be obtained by implementing a topk function:

We then calculate the maximum counts   of patches received by every expert from each sample:

Where   denotes the indicator function.  if   is in  , and 0 otherwise. We select the   patches

with the highest gating value as each expert’s input. The index of the patches   that are routed

to the i-th expert is calculated as follows:

We sort the indices to restore their original relative position. Based on the indices, we extract the patches

each expert requires. This step is implemented through an index selection function  :

Where  . In this manner, each expert receives a copy of a group of patches as input, as

shown in Fig. 2(c). The above processing maintains the relative positions of patches while altering their

absolute positions. However, in our method, the Rotary Position Embedding (RoPE) positional is added at

the beginning of each attention block, so this change of absolute positions will not result in the loss of

location information; see the next section for more details.

∈x
′

R
m× ×dlp

n ∈g′
R
n×m

= FF (FF (x )g
′ NA NB )T (13)

gi,j pj

Ei

=gi,j
exp( )g

′

i,j

exp( )∑n
t=0 g

′

t,j

(14)

k i ∈d
′

R
m×k

i = Topk({ |1 ≤ i ≤ n  },k)d
′

j gi,j (15)

c

c = ( I(i ∈ i ))max
i=1
n

∑
j=1

m

d
′

j
(16)

I = 1I(i∈i )d ′
j

i id
′

j c

id ∈ R
n×c

i = Topk({ |1 ≤ j ≤ m  }, c)di gi,j (17)

fs

= ( , i )x
′′

i fS x
′

di (18)
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′′

R
n×c× ×dlp
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Then we process each input   with the i-th expert  , which is implemented in parallel through batch

matrix operations:

Note that each expert   here refers to one part of a whole union,  . This kind of union can

not only be like a dense model, but also be like a multi-head one. Speci�cally, if    is linear, we get a

union like a dense model; otherwise, the union will be like a multi-head one. In order to derive the �nal

output, we apply an index add function to gather   into the original input sample  . For the j-th output

patch  , the procedure is described as follows:

Where    and    denotes the indicator function. We add outputs of selected

patches to their corresponding location in the input tensor. In other words, we apply a selective residual

connection to form the output tensor. This approach not only realizes �ne-grained routing but also

preserves the locality within patches, thereby effectively improving UoE’s performance.

Figure 3. The processing work�ow of UoE’s routing mechanism. Initially, we split each input sample into 

 patches and decompose a whole model into   experts. In the data selection paradigm, we select no more

than   patches for each expert as input. In the expert selection strategy, we route each original or selected

input to the top   experts. We compute the output of experts in parallel and aggregate the results to the

correct positions of the �nal output.

x
′′

Ei

= ( )y
′

i Ei x
′′

i
(19)

Ei ∈y
′

R
n×c× ×dlp

Ei

y ′ x

yj

= + ⋅ I(i = j)yj xj ∑
i=1

n

∑
t=0

c

y
′

i,t di,t (20)

y ∈ R
m× ×dlp

⟶

reshape
R
l×d Ij∈idi

m n

c

k
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2. Expert Selection Mode

In expert selection mode, we improve ef�ciency by limiting the number of activated experts. Note that

compared to data selection, this method employs the batch rather than the sample as the processing

subject. To initiate this process, we take a batch of samples   as input,  .

The gating value   can be calculated as follows:

We route the j-th sample in the batch    to the optimal    of    experts, and the routing indices 

 of the j-th sample can be obtained through a topk function:

The sample indices tuple   belonging to the i-th expert can be denoted as follows:

With the sample indices, we apply an index selection function   to get the i-th expert’s input samples

from the original input batch  :

We enable experts to process their respective received samples:

Finally, we gather the outputs into the original input   through an index add function to obtain the �nal

output  . For each output sample  , the procedure is described as follows:

Where   denotes the cardinality of the i-th set of   tuple. In comparison with data selection, the input

sample in expert selection mode maintains its integrity and continuity across the sequence dimension,

which contributes to the robustness enhancement.

We claim that UoE’s routing mechanism is essentially a superposition of data selection and expert

selection. Fig. 3 presents this processing work�ow. It is evident that both selection modes are special

cases of this paradigm. If both modes are activated within one block, only the selected patches routed to

the activated experts will be processed, which enables a �ne-grained and �exible routing process.

Although it shows considerable potential, its relatively intricate structure imposes extra time costs under

X X ∈ ∈R
b×l×d

⟶

reshape
X

′
R
b×(l×d)

g ∈ R
b×k

g = softmax(FFN( ))X
′

(21)

X k i

i ∈d′
R
b×k

i = Topk({ |1 ≤ i ≤ n  },k)d
′

j gi,j (22)
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i = {i j ∈ {1, 2, . . .m}, i ∈ i }d(i) d
′

j
∣∣ d

′

j
(23)

fs

Y

= (X, i )X (i)′′
fs d(i) (24)

= ( )Y (i)′
Ei X (i)′′

(25)

X

Y Yj

= + ⋅ I(i = j)Yj Xj ∑
i=1

n

∑
t=0

ci

Y
′ (i)

t d
(i)
t

(26)

ci Y
′

qeios.com doi.org/10.32388/9QH8RX 13

https://www.qeios.com/
https://doi.org/10.32388/9QH8RX


the current parallel framework. In practice, we primarily employ a single data selection or expert

selection mechanism to construct the model. This contributes to a comprehensive optimization of

performance and ef�ciency.

C. Transformer Based UoE Implementation

We apply the aforementioned mechanisms to build our Union-of-Experts transformer. The overall

architecture of the model is depicted in Fig. 2. We will brie�y review the details of UoE’s attention and

MLP blocks in this section. To facilitate explanation without loss of generality, we set the patch length 

 to 1 and apply data selection to both the attention block and the MLP block of the model.

1. Selective Multi-Head Attention

In our UoE transformer, the attention block is developed based on the standard Multi-Head-Attention

(MHA) block. Let    denote the number of attention heads, which is equal to the number of experts, 

 denote the sequence length,   denote the maximum length of processed inputs  , which is equal to the

maximum patch counts multiplied by the number of patches in one head, 𝑑 denote the embedding

dimension,   denote the dimension per head or expert, and   denote the input sample at a UoE

attention block. We apply a data selection function   on the input  . The data processing procedures

can be formulated as follows:

While    represents a series of operations de�ned in Equations 12 to 18.    denotes the

routing indices, . We apply three column parallel linear functions to  , to calculate the

query  , key  , and value  :

Where    denotes the projection matrices,  . To improve the

model's extrapolation ability, we integrated Rotary Position Embedding (RoPE) into the query and key:

lp

na

l la h′

dh h ∈ R
l×d

fDS h

, i = (h)h′ dh fDS (27)

fDS i ∈dh R
×na la

∈h′
R

× ×dna la h′

q k v

[ , , … , ]q1 q2 qn = q = ⊙h′ W q

= [ , , … ]h′
1W

q
1 h′

2W
q

2 h′
nW

q
n

(28)

[ , , . . . , ] = k = ⊙k1 k2 kn h′ W k (29)

[ , , . . . , ] = v = ⊙v1 v2 vn h′ W v (30)

, , ∈W q W k W v
R

×d×na dh q,k, v ∈ R
× ×na la dh

PPL = exp(− logP ( ∣ ))
1

N
∑
i=1

N

wi w1:i−1 (31)

= [ , ] , = [ , RoPE( )]ki kci kri k′
i kci kri (32)
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Where    denotes the constant part in query and key, 

  denotes the part where RoPE will be applied, 

,  . We combine the attention queries    , keys  , and values    to

calculate the attention output:

where   denotes the output projection matrix. Ultimately, we apply the index add function 

 de�ned in Equation 20 on   to yield the �nal output  :

2. Union-of-MLP-Experts

In the design of the UoE style multilayer perceptron block, we incorporated lossless model decomposition

and expert routing methods into a two-layer MLP. Let   denote the number of MLP experts,   denote

the maximum length of processed inputs  ,    denote the project dimension of experts. We start by

applying a preprocess to the input data. Given a sample   in an input batch  , the process can

be formulated as follows:

While   is de�ned in Equations 12 to 18,   denotes the routing indices,  . As

illustrated in section A, we implement column partition on the �rst MLP layer and row partition on the

second one. We can outline the expert processing procedure in the following manner:

Where    denotes the up-projection matrix,    denotes the down-projection

matrix,  denotes the SiLU activation function. Finally, we use the index add function   to add each

element in sequence   to the speci�ed position in the input sequence   to obtain the output  :
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3. Attention Mask

When integrating data selection into the mask attention mechanism, it is necessary to select elements

from the original attention mask to form a new group of masks that match with the group of selected

data. For the padding mask  , we use the indices derived from Equation 17 to perform indexing

along the sequence dimension:

Where   denotes the padding mask corresponding to the i-th expert’s input. With regard to the

causal mask  , it is required to perform indexing operations along the two dimensions for 

 times. Considering that   and the input sample   are comparable in size, this will result in a

non-negligible computational overhead. Here we introduce an ef�cient and equivalent solution. As

illustrated in Fig. 4, because of the symmetry between the two indexing operations, the generated mask

is essentially independent of its position. Thus, we take the   order leading principal submatrix of the

original mask as the shared sequence mask    for all experts’ inputs, enabling the model to

inherit the autoregressive capability of the transformer.

Figure 4. The processing of the causal mask in the data selection paradigm. Each expert requires the

computation of a causal mask based on its corresponding routing indices. In the self-attention mechanism,

we apply the same indices on both queries and keys. As a result, we obtain an easily producible   lower

triangle matrix independent of the indices, which is applicable to all experts.

∈mp
R
l

= ( , i )m
p
i

′

fS mp di (41)
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4. Load Balancing Loss

Prior research indicates that the imbalanced expert load in MoE models may result in routing collapse

and computational inef�ciency in expert parallelism scenarios  [30]. To mitigate excessive imbalance

within the given sequence, we employ an auxiliary sequence-wise load balancing loss similar to that of

Dai et al. [27]:

where    denotes a hyper-parameter named balance factor,    denotes the number of experts in the

attention or MLP block,   denotes the number of activated experts, and   denotes the gating value. The

auxiliary load balancing loss promotes expert load distribution for each sequence to be balanced.

D. Ef�ciency Optimization

UoE’s ef�ciency lies in its capacity to scale up the model size without a proportional increase in

computational expense. For certain reasons, such as non-parallel implementation, they typically

encounter challenges in achieving the expected acceleration. To improve UoE’s ef�ciency, we conducted

an analytical review of the potential inef�ciencies and implemented corresponding re�nements, which

we will discuss phase by phase.

1. Preprocessing & Postprocessing Phase

In the preprocessing phase, we calculate the gating value   to dynamically route data subsets into several

experts. In the postprocessing phase, we use   to route expert outputs to their correct location. Existing

methods ordinarily employ the routing procedure serially through an n-step for loop. With additional

memory copy operations such as Memcpy DtoD, it exacerbates the time complexity. To tackle this issue,

we uniformly encode all data indexes and retrieve all experts’ inputs within one index selection

operation. Similarly, we apply only one scatter add operation to achieve the inverse process of the retrieve

operation. In this way, only one memory copy operation is needed in each phase, leading to a signi�cant

reduction in time costs.

= αLBal ∑
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2. Propagation Phase

In the propagation phase, matrix operation accounts for the majority of the computational overhead.

Existing MoE methods have dif�culties in parallel computing, leading to a signi�cant reduction in

computational ef�ciency. For instance, we observed that the non-parallelized implementation of MoEs

sometimes even exhibited a higher time cost than a dense model with the same con�guration in a

scenario where only 50% of the parameters of MoEs are activated. From another perspective, matrix

operation processes involve three procedures: operand transmission, computation, and result writing

back. Performance pro�les of various MoE implementations indicate that each of these factors has the

potential to become a performance bottleneck.

In light of the aforementioned considerations, we optimized the matrix operation process of UoE.

Speci�cally, we transformed inputs and weights into tensors with matching dimensions and then

performed batch matrix operations. Speci�cally, we conducted this procedure using the baddbmm

function, as it effectively reduces computational overhead through three factors: 1. The function exhibits

reduced time costs when transferring learnable parameters to CUDA cores. 2. The function implements

an operation that integrates matrix multiplication and bias addition, with execution times comparable to

single multiplication. 3. The function performs an in-place operation that directly updates the bias terms

with the computed results, thereby eliminating the computational overhead associated with a secondary

write operation. Overall, by introducing the above optimizations, our model achieves a speedup of over

30% compared to the original version.

IV. Experiments

In this section, we assess the performance of our proposed UoE method through a series of experiments

conducted in both language and vision domains. In detail, we designed three experiments: language

modeling, long-range sequence modeling, and image classi�cation, each focusing on a speci�c challenge.

A. Natural Language Modeling

Benchmark Description. In the natural language modeling experiments, we train and evaluate our

model on two datasets: wikitext-103 and One Billion Word.

WikiText-103 is a large-scale language modeling dataset derived from Wikipedia, consisting of 103M

training tokens from 28K articles, with an average length of 3.6K tokens per article, which allows testing
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the ability of models to capture long-term dependencies and contextual relationships within extended

text sequences.

One Billion Word, on the other hand, is a corpus containing approximately 1 billion words of diverse text

sourced from news articles, serving as a robust benchmark for large-scale language modeling with a

focus on handling diverse and noisy real-world data.

Comparison Baseline. We compare our method with state-of-the-art MoE methods, including DeepSeek-

MoE [27], DeepSeek-V3 [31], Skywork-MoE [26] and XMoE [32]. DeepSeek-MoE employs �ne-grained expert

specialization for task allocation within specialized domains and utilizes shared experts to enhance

knowledge transfer across different tasks. Its successor version, DeepSeek-V2  [13], and DeepSeek-V3

introduce a new Multi-Head Latent Attention (MLA) mechanism, which compresses key-value pairs into

latent representations for ef�ciency optimization. Given that DeepSeek-V2 and V3 only exhibit subtle

differences in routing method (i.e., the V3 replaces the softmax activation with the tanh activation), we

select the latest V3 version as a representative comparison model. Skywork-MoE re�nes expert activation

selection through gating logit normalization and employs adaptive auxiliary loss coef�cients to

dynamically regulate regularization in response to expert load balance. XMoE employs �ne-grained

experts and a threshold-based router to enhance model adaptability and promote sparsity in large-scale

models. We also incorporate Transformer  [5][33]  as a fully activated baseline model to facilitate a more

thorough evaluation of ef�ciency.

Evaluation Metrics. To evaluate the performance of our model on the language modeling task, we adopt

Perplexity (PPL) and Floating Point Operations (FLOPs) as the primary evaluation metrics. Perplexity is a

metric that measures how well a language model predicts a sequence of words：

where   is the total number of words in the dataset,   is the predicted probability of the i-th

word given the previous context  .

The FLOPs provide a hardware-agnostic estimate of computational complexity, which is particularly

relevant for comparing models in terms of ef�ciency. As the FLOPs calculation methods differ across

algorithms, we utilized cal�ops [34] to calculate FLOPs automatically.

Implementation Details. We developed an experimental framework with reference to the code

implementation of Dai et al. [15]. The parameters of each model were con�gured based on the principle of

PPL = exp(− logP ( |  ))
1

N
∑
i=1

N

wi w1:i−1 (45)

N P ( |  )wi w1:i−1

|wi w1:i−1
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approximate model size and �oating-point operations. Speci�cally, we adopted the transformer

con�guration from [15] as the base con�guration, while the remaining baseline models shared the same

common parameters (e.g., Number of Layers, Attention Heads, and dimensions). For the parameters

unique to the baseline model, we referred to the original code implementation for con�guration. With

regard to each MoE model, we activated half of the MLP experts to process each input. This con�guration

ensures suf�cient expert participation while preventing over�tting, which helps to balance loads and

enhance ef�ciency. Similarly, for DeepSeek-V2, which applies the Multi-Head Latent Attention

mechanism, we set its lora rank equal to half of the embedding dimension. All experiments employed the

same training settings, such as batch size, sequence length, and training steps.

In terms of UoE’s con�guration, we applied a data selection mode to attention blocks and an expert

selection mode to MLP blocks. We set the number of MLP experts equal to that in the baselines and

activated half for each input sample. In the Multi-Head Attention block, we set the number of experts

equal to the number of heads and assigned each expert 50% of the input sequence. In this con�guration,

the theoretical FLOPs required by our model is roughly 50% of the count associated with the transformer

baseline. Experimental results are depicted in Table I.

Results. Table I illustrates the comparative results. The performance metrics indicate that our model

noticeably outperforms all state-of-the-art baselines, which highlights the advantages of overall expert

collaboration and �ne-grained collaborative routing. We achieved a test perplexity of 24.09/24.52 in the

wikitext103/One Billion Word datasets, which is superior to that of the Transformer (24.23/24.70) and all

competing MoE-based works (best: 26.96/26.41 from DeepSeek-V3).

Prevalent MoE methods are derivative models that replace the MLP block in the transformer with a

Mixture-of-Experts architecture. Among them, some works focus on introducing �ne-grained routing

(i.e., DeepSeek-MoE and XMoE). Other research efforts emphasize enhancing routing precision and

balance (i.e., Skywork-MoE). By comparison, our approach not only possesses these characteristics but

also enhances expert mixing methods to promote in-depth expert collaboration, leading to signi�cantly

improved performance compared to the above methods. Furthermore, there is a class of MoE methods

that incorporates an optimization scheme particularly for the attention block, e.g., the Multi-Head Latent

Attention mechanism introduced in DeepSeek-V3 and our UoE attention block. Experimental results

demonstrate that under similar FLOPs metrics, our approach achieves superior performance compared to

DeepSeek-V3 (24.09/24.52 vs 26.96/26.41), which underscores the ef�cacy of our approach, especially with

respect to our Union-of-Experts based attention mechanism.
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Model

Wikitext-103 One Billion Word

PPL TFLOPs PPL TFLOPs

Transformer[5] 24.23 2.67 24.70 6.27

XMoE[32] 30.60 2.67 29.01 4.69

DeepSeek-MoE[27] 28.30 2.30 28.83 5.46

Skywork-MoE[26] 29.10 2.42 28.65 5.54

DeepSeek-V3[31] 26.96 2.65 26.41 5.26

Ours 24.09 1.74 24.52 4.53

Table I. Performance Comparison between UoE and Baselines on Wikitext-103 and One Billion Word

Benchmarks.

We also analyzed the FLOPs of experimental models. As shown in Table I, the FLOPs of our model in

Wikitext-103/One Billion Word (1.74/4.53) are better than all competing models, including DeepSeek-V3

(2.65/5.26), Skywork-MoE (2.42/5.54), DeepSeek-MoE (2.30/5.46), XMoE (2.67/4.69), and the dense

transformer (2.67/6.27). The model's FLOPs are dependent on its architectural design and parameter

con�guration. In our experiment, MLP blocks of each MoE method activate only half of their parameters.

With regard to attention blocks, unlike other works (e.g., DeepSeek-MoE) that utilize softmax attention,

our UoE design has a partially activated attention mechanism, while DeepSeek-V3 employs a low-rank

adaptive one; both contribute to FLOPs reduction. On the other hand, in the parallel implementation of

selective activation, the imbalance in expert workloads will result in additional costs, which leads to

higher actual FLOPs than the theoretical value (i.e., 50% FLOPs of the dense transformer). Nonetheless,

our UoE still maintains FLOPs superior to leading methods.

B. Context Modeling on Long Range Arena Benchmark

Benchmark Description. To evaluate UoE’s long text modeling capability, we trained our models on the

widely recognized Long Range Arena (LRA) benchmark  [35]. This benchmark comprises several sub-
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tasks, which evaluate a model's performance from various perspectives, including compositionality,

hierarchical structure, and spatial reasoning.

ListOps. The Long ListOps task tests the model's ability to handle hierarchically structured data within

extended contexts, using sequences of up to 2K in length.

Text. The Byte-Level Text Classi�cation task evaluates the model's capacity to classify documents from

byte-level data, simulating real-world tasks like spam detection.

Retrieval. The Byte-level Document Retrieval task assesses a model’s ability to encode and retrieve

documents based on similarity scores.

Image. The Image Classi�cation on Sequences of Pixels task involves classifying images represented as

1D sequences, requiring models to capture spatial dependencies.

Path�nder. The Path�nder task tests long-range spatial dependencies in visual data, requiring models to

determine whether two points are connected by a path.

Comparison Baseline. Following the same protocol as the previous experiment, we compare our method

with the Transformer and state-of-the-art MoE methods, which include DeepSeek-MoE, DeepSeek-V3,

Skywork-MoE, and XMoE, following the same protocol as in the previous experimental design.

Considering that our model can be regarded as a variant of the transformer architecture, we also select

several ef�cient transformer variants, including Reformer  [10], Linformer  [7], Performer  [36], Linear

Attention [37], Nyströmformer [38] and Flash-Attention [11], as our baseline models. Reformer introduces

locality-sensitive hashing to approximate attention mechanisms, which helps to reduce time complexity

from quadratic to linear. Linformer employs low-rank projections to approximate the full attention

matrix. Performer utilizes kernel methods to approximate softmax attention. Linear Attention replaces

the softmax-based attention mechanism with a linear transformation. Nyströmformer applies Nyström

approximation to the attention mechanism to reduce computation complexity. Flash Attention leverages

optimized memory access, block-wise computation, and ef�cient parallelization, achieving faster

execution and reduced memory usage.

Evaluation Metrics. We adopt widely used Accuracy and FLOPs as evaluation criteria for the classi�cation

task. Accuracy measures the proportion of correctly classi�ed instances in the dataset, providing a

straightforward assessment of the model's performance. The FLOPs is employed to test the

computational ef�ciency of the model by measuring the total number of �oating-point operations

needed. In this experiment, we provide the average ratio of tested model FLOPs to standard transformer
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FLOPs in each subtask of the LRA benchmark. In general, the metrics provide a balanced evaluation of

the model's performance and ef�ciency.

Implementation Details. We designed and trained our models based on the frameworks established by

Tay et al. [35]. For a fair comparison, we follow the experimental setting for ef�cient transformers as used

in Xiong et al. [38] and Zhu et al. [39]. For some works not covered, we provide the best results from Dao et

al. [11]. In terms of the MoE comparison model, we adopted a similar parameter con�guration to that used

in the previous experiment (e.g., set the activate ratio to 0.5 and MLA’s lora rank equal to half of the

embedding dimension). For consistency, the same training parameters are applied in all experiments.

In terms of UoE’s setup, considering that in LRA datasets, the input sequences are notably long, and the

information within these long sequences is distributed sparsely, we apply a data selection mode on both

attention blocks and MLP blocks of our model to effectively extract the valuable information embedded

at various locations within sequences. Similar to the previous con�guration, we set the number of MLP

experts equal to that in the baselines, while in the Multi-Head Attention Block, it is equal to the attention

head count. For all experts in the data selection paradigm, the activation ratio is set to 0.5. Experimental

results are depicted in Table II.
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Task ListOps Text Retrieval Image Path�nder Average FLOPs

Ef�cient Transformers

Transformer [5] 37.13 65.35 82.30 42.44 74.16 60.28

Reformer [10] 36.44 64.88 78.64 43.29 69.36 58.52

Linformer [7] 37.38 56.12 79.37 38.56 76.34 57.55

Performer [36] 36.80 63.60 82.20 42.10 69.90 58.92

Linear Attention [37] 38.80 63.20 80.70 42.60 72.50 59.56

Nyströmformer [38] 37.34 65.75 81.29 41.58 70.94 59.38

Flash Attention [11] 37.60 63.90 81.40 43.50 72.70 59.82

Mix-of-Experts Methods

XMoE [32] 38.00 63.42 81.33 42.10 73.65 59.70

DeepSeek-MoE [27] 37.80 65.12 81.35 43.55 74.08 60.38

SkyworkMoE [26] 37.85 65.18 82.25 45.24 74.11 60.93

DeepSeek-V3 [31] 38.26 65.50 81.77 45.15 74.52 61.04

UoE (ours) 38.91 65.61 82.82 46.09 75.17 61.72

Table II. The Experimental Results on Long Range Arena (LRA) Benchmark

1.00×

0.19×
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The results of Performer, Linear Attention and Flash Attention are from Dao et al. [11].

Results. Comparisons with models on the LRA benchmark are shown in Table II. In the ListOps task,

which models hierarchically structured data, our UoE achieved a signi�cant accuracy of 38.91,

outperforming all competing ef�cient transformer models (best: 38.80 from Linear Attention), as well as

all MoE methods (best: 38.26 from DeepSeek-V3), showing its capacity for understanding recursive

patterns and operating over long-context sequences. In the Retrieval task, which evaluates the model’s

encoding and storage of compressed representations, our model achieved an accuracy of 82.82, ranking

among the top contenders of transformer variants (best: 82.20 from Performer) and MoEs (best: 82.25

from Skywork-MoE). Our model also highlights its pro�ciency in image processing. The performance of

our model in the Image task was measured at 46.09, exceeding the performance of all competing models,

including the previous highest score of 45.24 reported by Skywork-MoE.

The remaining tasks further demonstrate the superiority of our model. Achieving an accuracy of 65.61 on

the Text task and 75.17 on the Path�nder task, our model signi�cantly outperformed all MoE methods,

with the highest MoE accuracy being 65.50/74.52 from DeepSeek-V3. It is also competitive with advanced

ef�cient transformers. In the Text task, the best score is 65.75, achieved by Nyströmformer, while in the

Path�nder task, it is 76.34, attained by Linformer. Overall, our model achieves an average score of 61.72

with 37% of the FLOPs of the standard transformer model. In comparison to the latest state-of-the-art

DeepSeek-V3 method, our model achieves an average score improvement of 0.68% while requiring only

50% of its computational costs. This performance is also on par with the advanced Flash Attention,

which achieves an average score of 59.82 with 17% of the FLOPs. Note that as a variant of MoE, UoE’s

complexity is determined by the application context. When constructed with a linear complexity

attention mechanism such as Flash Attention, it can achieve signi�cantly greater ef�ciency

improvements.

The results presented above demonstrate the superiority of our proposed method. By introducing the

unique Union-of-Experts mechanism in the entire transformer, our model overcomes the inherent

limitations of traditional MoE methods and the transformer architecture, surpassing existing state-of-

the-art MoE methods. Moreover, even without an explicit ef�cient architecture design, our model's

performance is competitive with that of the state-of-the-art ef�cient transformer model. In reality, our

model exhibits a natural advantage in modeling long sequences. On the one hand, each expert in our

model only receives a portion of patches or tokens from the sequence as input. The expert may be
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subjected to a �nite set of inputs that are positioned at relatively distant intervals along the sequence,

which indicates its ef�ciency in handling long-range dependencies. On the other hand, the expert is able

to focus on a speci�c input region, thereby facilitating the effective processing of local information. By

applying this paradigm to the attention block and the MLP block, we have implemented the extraction

and specialization of useful knowledge from the sequence, signi�cantly enhancing the model's ability to

handle long-range dependencies. In addition, the FLOPs of XMoE, DeepSeek-MoE, and Skywork-MoE

show no signi�cant differences from those of the standard transformer. This can be attributed to the

quadratic complexity of Multi-Head Attention. For long sequence inputs, the computational overhead of

Multi-Head Attention constitutes the major portion. As these models primarily optimize the MLP, their

ef�ciency remains largely unaffected.

C. Image Classi�cation

Dataset Description. We perform the image classi�cation experiments on the CIFAR-10 and CIFAR-100

datasets.

CIFAR-10 consists of 60,000 32x32 color images categorized into 10 classes, with 6,000 images per class,

split into 50,000 training images and 10,000 test images. Each image in CIFAR-10 is labeled with a single

class, representing common objects such as airplanes, automobiles, etc.

CIFAR-100 is an extension of CIFAR-10, containing 60,000 32x32 color images divided into 100 �ne-

grained classes, which are grouped into 20 coarser super-classes. Each class in CIFAR-100 contains 600

images, with 500 used for training and 100 for testing. This dataset is more challenging due to its larger

number of classes, hierarchical labeling with �ne-grained and coarse labels, and a smaller amount of

training data.

Comparison Baseline. Analogous to language modeling experiments, we compare our method with the

Transformer and state-of-the-art MoE methods, which include DeepSeek-MoE, DeepSeek-V2, Skywork-

MoE, and XMoE.

Evaluation Metrics. We use Accuracy and FLOPs as evaluation criteria for the classi�cation task.

Implementation Details. We construct the experimental models based on the Vision Transformer

(ViT)  [40]. We follow most of the setup and training con�gurations of ViT, with speci�c modi�cations

such as integrating our UoE mechanism into transformer blocks, or replacing them with baseline MoE

models. We apply the data selection mode to attention blocks and the expert selection mode to MLP
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blocks with similar expert number and activation ratio settings. We designate this experimental group as

UoE or UoE-DE. To further explore the in�uence of the selection mechanism on model performance, we

also provide a control group in which data selection is applied to both the attention block and the MLP

block, which we denote as UoE-DD.

Results. The experimental results are illustrated in Table III. Since the two tasks share the same model,

they exhibit the same FLOPs values. The results show that our model signi�cantly surpasses all state-of-

the-art baselines. By introducing Rotary Position Embedding (RoPE) to transformer model design, our

UoE achieves a signi�cant accuracy improvement of 8.25% in CIFAR-10 and 12.87% in CIFAR-100

compared to the standard transformer, while maintaining the same parameter count and only 64.77% of

the FLOPs. In comparison with MoE methods, our model surpasses the well-performing DeepSeek-

V3/Skywork-MoE model by 1.19%/1.83% in CIFAR-10 and 1.93%/6.22% in CIFAR-100, which can be

attributed to our in-depth expert collaboration and �ne-grained dynamic selection on both the attention

block and the MLP block.

On the other hand, Skywork-MoE, DeepSeek-MoE, and XMoE primarily concentrate on improving the

routing algorithm of MLP experts. However, Skywork-MoE applies the RoPE to effectively capture relative

positional information in sequences, while the remaining two models do not conduct signi�cant

re�nement on the attention block. With RoPE and selective attention optimization, our model

outperforms DeepSeek-MoE/XMoE by 10.39%/11.80% on CIFAR-10 and 14.65%/14.20% on CIFAR-100. In

terms of computational ef�ciency, our model achieves 220.34 GFLOPs, matching the ef�ciency of the

most ef�cient DeepSeek model (210.38 GFLOPs), while signi�cantly surpassing other competitors (best:

245.08 GFLOPs from DeepSeek-MoE). This clearly demonstrates the ef�ciency-enhancing effect of the

selective mechanism on our model.
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Model

Accuracy

GFLOPs

Cifar-10 Cifar-100

Transformer [5] 74.45 42.60 340.21

XMoE [32] 70.90 41.27 264.99

DeepSeek-MoE [27] 72.31 40.82 245.08

SkyworkMoE [26] 80.87 49.25 281.83

DeepSeek-V3 [31] 81.51 53.16 210.38

UoE-DD (ours) 81.81 55.09 220.99

UoE (ours) 82.70 55.47 220.34

Table III. Experimental Results on ViT-based Image Classi�cation Task

We also provide the results of the control group UoE-DD. The control group attained accuracies of 81.81

and 55.09 for Cifar-10 and Cifar-100, respectively, which is slightly lower than that of the experimental

group but remained signi�cantly superior to all MoE comparison models. We posit that this may be

attributed to the complementary effects of the two mechanisms at local and global levels: In the data

selection paradigm, attention experts take a subset of the input sequences and provide a lower-level,

localized analysis. While in the expert selection paradigm, MLP experts integrate all local results from

attention experts and provide the �nal outcome from a global perspective. In this process, the

information within inputs was thoroughly integrated and comprehensively reviewed, leading to

enhanced performance.

D. Ablation experiments

In this section, we conduct an ablation study with two parts: 1) an internal ablation study that

investigates how variations in the model’s con�guration affect its performance, and 2) an external

ablation study that compares each UoE’s component with advanced competing counterparts.
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Internal Ablation Study. We �rst implement an ablation study on the model con�guration, which

depends on two additional parameters introduced in UoE: the number of experts    and the activation

ratio of data or experts  . The experiments are performed on the Listops dataset, following the

experimental design used in section 4B. We conduct experiments with various parameter combinations

to evaluate their impact on the two basic components: the Selective Multi-Head Attention (SMHA) block,

which symbolizes UoE in a dense condition, and the Union-of-MLP-Experts (UoME) block, which

represents that in a multi-head condition. Speci�cally, we con�gure two experimental models: the model

that adopts the SMHA block and a standard two-layer MLP block, denoted as SMHA, and the model that

uses a standard Multi-Head Attention block and a UoME block, denoted as UoME. Fig. 5 illustrates the

results of our experiment.

Figure 5. Ablation study on the number of experts   and the activation ratio  .

n

r

n r
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To evaluate the effects of the activation ratio, we set   and regulated the parameter  . As shown

in Fig. 5, the variations in activation ratio have no regular pattern of impact on accuracy, which

comprehensively showcases the characteristics of MoE-based methods. In MoE frameworks, expert roles

are highly differentiated, which means that only a few experts are typically required to effectively process

an individual instance taken from a wide-ranging distribution. In our experiments, when  , the

model exhibits suboptimal performance in some conditions. When  , both types of SMHA and

UoME models exhibited suf�cient �tting capability. Therefore, additional increments in the activation

ratio may introduce redundancy and contribute little to enhancing performance. Actually, when

increasing the expert count or the number of patches processed by each expert (i.e., increasing ), an

improvement in training accuracy was observed, indicating slight over�tting in the models. By

increasing the dataset size, redundant experts can be transformed into useful experts, which may in turn

enhance model performance.

Then we explore the effects of the number of experts  . UoE’s attention block integrates the outputs of

activated individual attention heads into a comprehensive �nal outcome. Empirical studies have

demonstrated that increasing the number of attention heads facilitates the simultaneous learning of

input sequences within distinct subspaces. On the other hand, it may limit the size of the heads,

potentially undermining the ability of individual heads to discern subtle details. As illustrated in Table IV,

when  , the data selection version achieves an average accuracy of 38.44/38.30, re�ecting the

balance between two interacting factors. However, when increasing head counts to 8, the average

accuracy decreases to 37.89, indicating that the limited expert scale has led to a considerable degradation

in performance. By contrast, the expert selection version achieved a more stable average score of

37.65/37.80/37.56, indicating that it is less affected by the number and size of attention experts, thus

demonstrating better robustness.

n = 2, 4, 8 r

r = 0.25

r ≥ 0.5

r

n

n = 2, 4
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Expert Counts

SMHA UoME

DS. ES. DS. ES.

n=2 38.44 37.65 38.37 38.21

n=4 38.30 37.80 38.23 37.88

n=8 37.89 37.56 38.13 37.94

Avg. 38.21 37.67 38.24 38.01

Table IV. The Average Performance of UoE’s Components Under Different Activation Ratios for n=2, 4, and 8

In a UoE-style MLP block, activated experts function as an integral part of a dense MLP model, which

ensures the model’s robustness against the reduction in expert size. As presented in Table IV, when   is

varied to 2, 4, and 8, the performance of the data/expert selection UoME model under different activation

ratios remains relatively stable, with average values of 38.37/38.21, 38.23/37.88, and 38.13/37.94. When 

, increasing expert counts leads to �ne-grained and highly specialized expert operation, which is

potentially bene�cial to performance improvement. However, as illustrated in section 3D, it may induce

an increase in computation and memory cost because the expert is too small to load in a CUDA core,

thereby wasting unused computation space. In general, we recommend a setting of MLP expert counts

that is larger while keeping the expert dimension larger than the size of a CUDA core.

External Ablation Study. Our previous experiments indicate that UoE surpasses state-of-the-art

competing models in a variety of tasks. To further verify the positive contribution of UoE’s attention and

MLP components to our model’s state-of-the-art performance, we conducted comparative experiments

on both of them with the corresponding components in advanced competing models. The experiments

are performed on the Listops and Wikitext-103 datasets, following the experimental design in sections 4A

and 4B. For model setup, we adopt the SMHA and UoME in the data selection paradigm with the

con�guration of  , and utilize the MHA block and the two-layer MLP block in the standard

transformer as the basic con�guration. For the attention block, we select the MLA block, as implemented

in DeepSeek-V2/V3, to serve as our comparison model. For the MLP block, we choose the MoE

components of Skywork-MoE, DeepSeek-MoE, and XMoE as the comparison model. The computational

n

r < 1

n = 4, r = 0.5
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complexity of the comparison model is on par with that of the corresponding UoE components. The

remaining components of the experimental models are con�gured as the matching components of the

standard transformer. The experimental results are shown in Table V.

Our results demonstrate that UoE’s attention and MLP blocks signi�cantly outperform the corresponding

components of existing state-of-the-art models. With minimal computational expenses, SMHA achieved

an accuracy of 38.41 in the Listops task, which is higher than MLA's 38.16. In the Wikitext-103 task, it

takes the best-performing perplexity of 22.68. We posit that a signi�cant reason for MLA's effectiveness

lies in the indirect increase of model depth facilitated by the introduction of the LoRA mechanism. In

UoE, by incorporating a selection and routing mechanism into attention heads, we are able to take

advantage of task-related experts while mitigating the impact of unhelpful experts, thereby achieving

competitive performance in an alternative manner.

Model

Listops Wikitext-103

Acc. GFLOPs PPL TFLOPs

MLA [31] 38.16 5.48 24.29 3.01

SMHA (ours) 38.41 2.99 22.68 2.55

XMoE [32] 38.00 7.31 30.60 2.67

DeepSeek-MoE [27] 37.80 7.21 28.30 2.31

Skywork-MoE [26] 37.85 7.25 29.10 2.42

UoME (ours) 38.56 7.10 24.26 1.95

Table V. Comparative Experiments of UoE’s SMHA Block and UoME Block with Corresponding Components in

Comparison Models

The remaining results further demonstrate the superiority of the UoE architecture. Compared to

Skywork-MoE, DeepSeek-MoE, and XMoE, our UoME model only exhibits a signi�cant difference in MLP

components. Given the reduced computational cost, the accuracy/perplexity of UoME in the

Listops/Wikitext-103 tasks, at 38.56/24.26, is markedly superior to that of Skywork-MoE (37.85/29.10),
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DeepSeek-MoE (37.80/28.30), and XMoE (38.00/32.60). Within the MLP block of UoE or UoME, the

activated experts function as a cohesive whole. The enhanced interaction in experts contributes to

additional performance bene�ts, which emerges as a critical factor in surpassing existing MoE methods.

Finally, we vary the sequence length and measure the runtime and memory usage of UoE against various

comparison models on one A100 GPU with 80 GB HBM. To facilitate a consistent comparison, we

maintain the con�guration of the context modeling experiment in section 4B, with the only modi�cation

being the substitution of the input tensor with randomly generated tensors of varying sequence lengths,

similar in format to the original data. We utilize the PyTorch pro�ler to measure the total time cost of

both forward and backward propagation, and the nvtop visualization tool to monitor the peak GPU

memory usage during model execution. The maximum sequence length was con�gured to 4096, as

further increases to 8192 would cause a memory over�ow in all models except for UoE.

Runtime. Fig. 6 (left) illustrates the runtime in milliseconds of the forward + backward pass of UoE

compared to DeepSeek-V3, Skywork-MoE, DeepSeek-MoE, and XMoE. The runtime exhibits a quadratic

growth with respect to the sequence length. Bene�ting from a more ef�cient implementation, our UoE

model runs signi�cantly faster than all comparison models, except in cases where the input sequence

length is less than 1024; the speed is marginally slower than XMoE. We posit that XMoE naturally inherits

the optimization strategies from Megatron-LM, thereby reducing the additional overhead caused by non-

matrix operations. These optimizations are also applicable to other models, including ours. As the

sequence length increases, matrix operations gradually become the dominant factor in the total time

cost. In this scenario, our model outperforms all others by virtue of its lower computational complexity.

Especially, when increasing the length to 4096, we achieve an average    speedup relative to the

comparison models.

2.26×
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Figure 6. Runtime and memory usage of the experimental model.

We also note that the models' actual runtime does not strictly correlate with the theoretical FLOPs.

Speci�cally, DeepSeek-V3 and Skywork-MoE perform rather mediocrely in this experiment. Note that our

focus is limited to the algorithm itself and does not extend to hardware optimizations. In terms of

algorithm implementation, the MoE mechanism in the DeepSeek Series, Skywork-MoE, and XMoE is

serial, leading to lower computational ef�ciency than our parallel-optimized UoE model. On the other

hand, the speci�c structures of these comparison models may potentially impact their ef�ciency. The

Multi-Head Latent Attention in DeepSeek-V3 employs the compression mechanism from LoRA, which

potentially increases the number of matrix operations. Moreover, when the LoRA rank is relatively small,

ef�cient parallel computation may be compromised. The MoE component of Skywork-MoE conducts

serial indexing operations on expert weights, resulting in additional time overhead. By comparison, our

model does not exhibit these issues, thereby achieving superior runtime performance.

Memory Footprint. Fig. 6 (right) shows the memory footprint of UoE compared to DeepSeek-V3,

Skywork-MoE, DeepSeek-MoE, and XMoE. In general, the memory footprint grows quadratically with the

sequence length. In comparison with competing models, our UoE achieves an average    memory

ef�ciency improvement. We declare that UoE is inherently superior in terms of memory ef�ciency. When

the attention block and MLP block both activate 50% of the parameters, the theoretical memory

ef�ciency can reach up to    greater than that of the fully activated condition, showing a signi�cant

advantage over comparison models.

In the experiment, the comparison model employed MoE components with a con�guration similar to

UoE’s MLP block. The MLP experts in DeepSeek Series models consist of three linear layers, which entails

2.68×

4×

qeios.com doi.org/10.32388/9QH8RX 34

https://www.qeios.com/
https://doi.org/10.32388/9QH8RX


higher computational complexity. Moreover, XMoE has a relatively complex overall structure. As a result,

DeepSeek-MoE and XMoE exhibit the highest memory usage in the �gure. The memory usage of

Skywork-MoE’s attention block is comparable to that of standard Multi-Head Attention. DeepSeek-V3

adopts an ef�cient Multi-Head Latent Attention mechanism, which helps to mitigate the memory

ef�ciency loss from the complex MLP expert. As a result, it demonstrates a memory footprint analogous

to Skywork-MoE. It is worth mentioning that in this experiment, the attention block has a greater impact

on memory ef�ciency than the MLP block. With the Selective Multi-Head Attention mechanism, our UoE

achieves a more remarkable ef�ciency improvement.

In summary, we conducted comprehensive and meticulous experiments across multiple representative

datasets from both the image and natural language domains. The experimental results have

demonstrated that our UoE model surpasses Full Attention models and a group of state-of-the-art MoEs

and ef�cient transformers in several tasks while attaining computational complexity that matches or

surpasses that of state-of-the-art models. In addition, the recent experimental results in the released

works NSA  [19]  and MoBA  [20]  partially and indirectly validate the effectiveness of UoE’s SMHA

mechanism. Overall, this experiment has provided valuable insights into the effectiveness and ef�ciency

of our UoE model. Further research could focus on the application of UoE in the training and inference of

large language models.

V. Conclusion

We propose the Union-of-Experts, a novel and effective MoE-type framework. We leverage a lossless

decomposition to convert an entire transformer model into a group of experts. In this manner, our

method retains the fundamental architecture of dense models, preventing the performance degradation

resulting from architectural adjustments. Based on the architecture of the decomposed transformer, we

devise a �ne-grained data-expert dual selection mechanism that dynamically selects useful input parts

and allocates them to the activated attention or MLP experts. Our experiments on the challenging

benchmarks demonstrate that our UoE surpasses state-of-the-art MoE and transformer variants at a

lower computational cost, indicating its superior ef�ciency and effectiveness in various tasks across

image and language domains. Considering the extensive applications of MoE and transformers within

large language models, our work has promising development and application prospects. For research

purposes, we release all the source code of UoE to the public. We aspire for this work to provide valuable
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insights into the performance and ef�ciency enhancement of large-scale language models and hope that

it will facilitate further research and development.
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