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Abstract

Two statistical ensembles of chocolates are constructed to mimic two quantum entangled states,

the spin singlet state and the GHZ state. Despite great efforts to achieve the closest possible

resemblance in terms of probability distribution and correlation, subtle differences remain. The

differences reveal and illustrate a fundamental characteristic that distinguishes quantum entangle-

ment from classical correlation. Analysis shows that the cause of this correlation discrepancy can

be traced to the non-commutativity of quantum single-particle operators.
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I. Introduction with Schrödinger

Although quantum mechanics was fully established by 1926, it was not until 1935 that

physicists began to notice quantum entanglement. Inspired by the famous EPR thought

experiment [1], Schrödinger first defined and discussed quantum entanglement[2] in a paper

published in 1935. Schrödinger began his paper with the following,

When two systems, of which we know the states by their respective represen-

tatives, enter into temporary physical interaction due to known forces between

them, and when after a time of mutual influence the systems separate again,

then they can no longer be described in the same way as before, viz. by en-

dowing each of them with a representative of its own. I would not call that one

but rather the characteristic trait of quantum mechanics, the one that enforces

its entire departure from classical lines of thought. By the interaction the two

representatives (or ψ-functions) have become entangled.

The “representative” or ψ-function used by Schrödinger refers to pure quantum state or

wave function in modern terminology. Here Schrödinger pointed out a fundamental feature

of quantum entanglement: any of the subsystems in an entangled state does not have a

definite pure quantum state. He asserted that this feature marks the complete departure of

quantum mechanics from classical mechanics.

Schrödinger was very insightful and his view is profound. For a classical system, to know

the system as a whole, we have to know each of its components. For example, for a system

with n classical particles, only after we know the position xi and momentum pi of each

particle, we can claim that we know exactly what the state of the whole system is. This is

consistent with our everyday experience. If you say that you know everything about a box

of chocolates, everyone expects you to know the type, the shape, and other properties of

each piece of chocolate in the box. But for quantum entangled states, the situation becomes

completely different: it is possible know the system as a whole without knowing its parts.

Any quantum entangled state is sufficient to demonstrate this quite striking feature. I
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choose the spin singlet state,

|ψ⟩ = 1√
2
(|↑↓⟩ − |↓↑⟩) . (1)

Here the spin-up state |↑⟩ and spin-down state |↓⟩ are two eigenstates of σ̂z. Each spin lives

in a two-dimensional Hilbert space H2; the two spins live in the composite Hilbert space

H = H2 ⊗ H2. |ψ⟩ is a vector in Hilbert space H that gives a complete description of the

state of the two spins. They are in a superposition of two states: in the first state spin 1

is up and spin 2 is down; in the second state spin 1 is down and spin 2 is up. But what

are the states of spin 1 and spin 2, respectively? They no longer have their “respective

representatives” according to Schrödinger or pure quantum states in modern terminology.

According to quantum mechanics[3], the state of spin 1 is found by tracing out spin 2 in

|ψ⟩, giving us the following mixed state,

ρ =
1

2
|↑⟩ ⟨↑|+ 1

2
|↓⟩ ⟨↓| . (2)

Mathematically the state ρ is not a vector in Hilbert space H2. Physically, it differs from

any pure single-spin state. One may argue that ρ is physically the same as

|φ⟩ = 1√
2
(|↑⟩+ |↓⟩) , (3)

because when the spin is measured along the z direction, both ρ and |φ⟩ have a 50%

chance of getting spin up or down. However, z is a special direction; the results are dif-

ferent for other directions. For example, for the x direction, ρ still has a 50% chance of

getting either positive or negative outcome; in contrast, |φ⟩ has a 100% chance of finding

the spin in the positive x direction. If we could prepare two pieces of chocolate to similar

quantum entangled states, then each chocolate would no longer have a definite type or shape.

Schrödinger at the time also noticed another feature of quantum entanglement, correlation

at distance. He continued in his 1935 paper[2],

Of either system, taken separately, all previous knowledge may be entirely lost,

leaving us but one privilege: to restrict the experiments to one only of the two

systems. After re-establishing one representative by observation, the other one

can be inferred simultaneously.

It shows that Schrödinger not only noticed the correlation between two entangled systems

but also clearly indicated with “simultaneously” that it is independent of distance between
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the two subsystems. It is a correlation at distance. This is clearly the case for the singlet

state (1), which contains no information about the distance between the two spins. However,

besides the above short passage, Schrödinger had little discussion of this correlation in the

paper. It is now impossible to know exactly why Schrödinger did not pay much attention

to this property. One possible reason is that Schrödinger did not find it as striking since

correlation at distance is quite common in everyday life. Mike is on a business trip. After

checking into his hotel, Mike opens his suitcase and finds that he has only the left-handed

(right-handed) glove. Then no matter how far away from home he is, he knows instantly that

the glove left at home must be right-handed (left-handed). Schrödinger may have thought

that the correlation in quantum entanglement was similar to the correlation between the

gloves. We now know that there is a very subtle but fundamental difference between them,

which was revealed by Bell in 1964 with an inequality [4]. I will discuss this distinction in

detail in this work.

Beside the spin singlet state (1), I will discuss another well known entangled state, the

GHZ state,[5, 6]

|Φ⟩ = 1√
2

(
|↑↑↑⟩ − |↓↓↓⟩

)
. (4)

I will construct two statistical ensembles of chocolates to resemble these two quantum entan-

gled states as much as possible in terms of probability distribution and correlation. Despite

great efforts, there always remain some crucial differences, which mark the fundamental

departure of quantum mechanics from classical mechanics as Schrödinger asserted.

II. The spin singlet and the classical ensemble

The spin singlet state has a very important property - rotational symmetry. Eq. (1)

is its expression in terms of the eigenstates of σ̂z. The expression remains unchanged if it

is instead written in terms of the eigenstates of the spin operator n⃗ · σ̂ along an arbitrary

direction n⃗. That is Eq. (1) can be re-written as

|ψ⟩ = 1√
2
(|n+n−⟩ − |n−n+⟩) , (5)

where |n+⟩ and |n−⟩ are two eigenstates of n⃗ · σ̂ and they are given by

|n+⟩ =

e−iφ/2 cos θ
2

eiφ/2 sin θ
2

 , |n−⟩ =

−e−iφ/2 sin θ
2

eiφ/2 cos θ
2

 . (6)
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This means that measuring the spin along any direction n⃗, if the measurement result for

spin 1 is positive, then spin 2 must point in the negative direction of n⃗. Conversely, if the

measurement result for spin 1 is negative, then spin 2 must point in the positive direction

of n⃗. Similarly, the corresponding mixed state (2) becomes

ρ =
1

2
|n+⟩ ⟨n+|+

1

2
|n−⟩ ⟨n−| . (7)

This means that measuring either spin 1 or spin 2 along an arbitrary direction n⃗, the result

is 50% of positive and 50% of negative.

I try to construct an ensemble of chocolates that has similar statistical properties as the

spin singlet. It consists of 2N chocolates, of which N chocolates are dark, N chocolates

are round, and N chocolates are Swiss. Note that some of the chocolates may be milk,

square-shaped, and made in Belgium. In addition, there are N identical boxes, each with

two compartments. We put the chocolates into the boxes in pairs. The boxing rule is: the

two chocolates in the same box can NOT be both dark, round, and Swiss. According to

this rule, there are eight ways of pairing chocolates in a box as shown in Figure 1. A pair of

chocolates is put in a box randomly in one of the eight ways. Let us compare the statistical

properties of this chocolate ensemble with those of the spin singlet.
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FIG. 1. Eight ways of boxing chocolates in the singlet ensemble. d is for dark, d̄ for non-dark (or

milk); r is for round, r̄ for non-round; s is for Swiss, s̄ for non-Swiss. Note that the chocolate in

compartment 1 of the first box may be milk, sea-shell-shaped, and made in Denmark.

Single-body probability - For the spin singlet (1), measuring spin 1 along any direction

n⃗, there are two possible outcomes: a 50% chance of being positive and a 50% chance of

being negative. In the chocolate ensemble, there is a 50% chance that the chocolate in

compartment 1 is dark and a 50% chance that it is not; a 50% chance that it is round and

a 50% chance that it is not; and a 50% chance that it is Swiss and a 50% chance that it
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is not. It is obvious that the spin singlet and the chocolate ensemble are identical in terms

of the single-body probability. Comparison of spin 2 and chocolates in compartment 2 has

similar results.

Correlation at distance - As the chocolates in the ensemble are boxed according to a

given rule as illustrated in Figure 1, there is correlation between the chocolates in the same

box. If the chocolate in compartment 1 is dark, then the chocolate in compartment 2 of

the same box must not be dark. Conversely, if the chocolate in compartment 1 is not dark,

then the other chocolate must be dark. Although the two compartments are next to each

other, the correlation between the chocolates is distance-independent: imagine that the two

chocolates in the box are put into two identical small boxes, covered, and separated. No

matter how far apart, when you find the chocolate in one of the small boxes is not dark, the

chocolate in the other small box far away from you must be dark.

Obviously, the conclusion is the same for the other two properties of chocolate, shape and

production place. If the chocolate in compartment1 is triangular and made in Switzerland,

then the chocolate in compartment 2 must be round and produced in a country other than

Switzerland.

Similar correlation exists between spin 1 and spin 2 in the singlet state (1) as already

discussed above: if the measurement finds spin 1 up, then spin 2 must be down; if the

measurement finds spin 1 down, then spin 2 must be up.

The above analysis seems to indicate that there is no difference between the spin singlet

and the corresponding chocolate ensemble not only in terms of single-body probability but

also from the point of view of correlation. This is not true. The difference does exist, but it

is more subtle and must be carefully analyzed. One has to resort to Bell’s inequality that I

will discuss below. Note that a similar ensemble of coins is constructed by Holbrow et al. [7].

Bell’s Inequality - Discovered by Bell in 1964[4], this inequality can demonstrate a subtle

but profound difference between the spin singlet and the chocolate ensemble. Bell’s inequal-

ity is concerned with the correlation between the different properties of two chocolates, such

as the probability that one chocolate is dark and the other in the same box is round. For
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simplicity and convenience, we let dark be property A, round be property B, and Swiss

be property C. At the same time, we introduce three correlation probabilities: p(A,B),

p(B,C), and p(A,C). p(A,B) is the probability that the chocolate in compartment 1 is

dark and the chocolate in compartment 2 in the same box is round; p(B,C) is the proba-

bility of finding a box where the chocolate in compartment 1 is round and the chocolate in

compartment 2 is Swiss; p(A,C) is the probability that the chocolate in compartment 1 is

dark and the chocolate in the other compartment of the same box is Swiss. Bell shows that

these three probabilities must satisfy the following inequality,

p(A,B) + p(B,C) ≥ p(A,C) . (8)

The proof of this inequality is not difficult and will be given below.

B C

A
K1

K2
K3

K4

K5
K6

K7

K8

FIG. 2. The large square represents all the elements in a set. The upper circle is the subset of all

elements with property A; the lower left circle is the subset of elements with property B; the lower

right circle is the subset of elements with property C. For chocolates, the large square represents

the entire chocolate ensemble: A for dark, B for round, and C for Swiss. For spins, the large

square represents all the measurement results: A denotes positive measurement results along the

n⃗1 direction, B denotes positive along n⃗2, and C denotes positive along n⃗3.

We notice that if the chocolates in compartment 2 are round, then according to the boxing

rule the chocolate in compartment 1 in the same box must not be round. So, if we define

p̃(A,¬B) as the probability that the chocolate in compartment 1 is dark but not round,

then it is clear that p̃(A,¬B) is the same as p(A,B), i.e., p̃(A,¬B) = p(A,B). Similarly, we
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have p̃(B,¬C) = p(B,C) and p̃(A,¬C) = p(A,C). Thus the inequality (8) is equivalent to

p̃(A,¬B) + p̃(B,¬C) ≥ p̃(A,¬C) . (9)

Note that p(A,B) is the probability of correlation between two chocolates, while p̃(A,¬B)

is the probability of a single chocolate. These two probabilities are equal because of the

correlation between two chocolates in the same box. If the chocolates were boxed without

any rule, we would not have p̃(A,¬B) = p(A,B).

We prove the inequality (9) with the help of Figure 2 [7, 8]. The large square in Figure

2 represents all the N chocolates in compartment 1. This large square is divided into eight

parts by the three properties of chocolates: K1, K2, K3, K4, K5, K6, K7, and K8. Each

part is a subset of chocolates that have certain shared properties. For example, K1 includes

all dark chocolates that are not round and not made in Switzerland, K3 is all dark Swiss

chocolates that are round, K8 contains all the chocolates that are not dark, not round, and

non-Swiss. According to Figure 2, we have

p̃(A,¬B) =
K1 +K4

2N
, (10)

p̃(B,¬C) = K2 +K5

2N
, (11)

p̃(A,¬C) = K1 +K2

2N
. (12)

Therefore, we obtain

p̃(A,¬B) + p̃(B,¬C) = K1 +K2 +K4 +K5

2N
≥ p̃(A,¬C) . (13)

This proves the inequality (9), and consequently Bell’s inequality (8). To illustrate, we use

the chocolates in the eight boxes of Figure 1 as an example. For the particular case, we have

p(A,B) =
1

4
, p(B,C) =

1

4
, p(A,C) =

1

4
. (14)

They clearly satisfy Bell’s inequality (8).

Surprisingly, the quantum correlation in the spin singlet (1) may violate Bell’s inequality

(8). To show this, we consider three directions in the xz-plane: n⃗1, n⃗2, and n⃗3 as shown in

Fig. 3, and measure the spin along these three directions. For comparison with chocolates,
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we label the positive result of measuring spin along the direction of n⃗1 as property A.

Similarly, the positive result of the spin along the direction of n⃗2 is labeled property B; the

positive result of the spin along the n⃗3 direction is labeled as property C.
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FIG. 3. Three directions: n⃗1, n⃗2, and n⃗3.

We measure spin 1 along the n⃗1 direction, and spin 2 along the n⃗2 direction. (Note that

the results are independent of the order of measurements.) The probability that both the

measurement results are positive is

pq(A,B) =
1

2
sin2 θ1

2
. (15)

Similarly, we measure spin 1 along the n⃗2 direction and spin 2 along the n⃗3 direction. The

probability that both results are positive is

pq(B,C) =
1

2
sin2 θ2 − θ1

2
. (16)

We measure spin 1 along the n⃗1 direction and spin 2 along the n⃗3 direction. The probability

that both results are positive is

pq(A,C) =
1

2
sin2 θ2

2
. (17)

Let us choose θ1 = π/3 and θ2 = 2π/3. In this case, we have

pq(A,B) =
1

8
, pq(B,C) =

1

8
, pq(A,C) =

3

8
. (18)

Obviously,

pq(A,B) + pq(B,C) < pq(A,C) . (19)

This shows that the correlation probability between two spins in the spin singlet can violate

Bell’s inequality (8)! This possibility of violating Bell’s inequality by the spin singlet is its

subtle and fundamental difference from the chocolate ensemble.
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Note that different values of θ1 and θ2 correspond to boxing chocolates in the ensemble

differently. We proved earlier that Bell’s inequality is satisfied no matter how the chocolates

are boxed, as long as the rule of boxing is satisfied. Why is Bell’s inequality violated by the

singlet for some values of θ1 and θ2. Let us now analyze the violation more closely.

Bell’s inequality is proved with the help of Fig. 2. We will see that this figure is not

well defined for spin. To be specific, the total set is defined as all the possible measurement

results for spin 1 and it is represented by the large square in Fig. 2. In this figure, circle A is

the subset of all the positive measurement results for spin 1 along the n⃗1 direction; circle B

is the subset of all the positive measurement results for spin 1 along the n⃗2 direction; circle

C is the subset of all the positive measurement results for spin 1 along the n⃗3 direction.

A smaller subset, which consists of two parts, K1 and K4, contains all the measurement

results for spin 1 that are positive along the n⃗1 direction and simultaneously negative along

the n⃗2 direction. This subset is in a sense not well defined because in general one can not

measure a single spin along two different directions at the same time. Fortunately, for the

special case of the singlet state, this subset is well defined. As spin 1 is in a singlet state,

the negative results along the n⃗2 direction can be inferred from the positive results for the

measurement on spin 2 along the n⃗2 direction. In other words, one can measure spin 1 along

n⃗1 direction and simultaneously measure spin 2 along n⃗2 direction. If both outcomes are

positive, they belong to the subset made of K1 and K4.

When we examine the smallest subsets, for example, K1, we are in real trouble. K1 is

supposed to contain certain outcomes when spin 1 is measured simultaneously along three

different directions: n⃗1, n⃗2, and n⃗3. This is impossible, and even the singlet state can

not come to rescue. The last-ditch rescue effort is to allow the three measurements be

done at different times; still K1 is ill-defined because the results depend on the order of the

measurements. If the measurement were done first along n⃗1, then n⃗2, and finally n⃗3, then the

size of K1 would be proportional to sin2 θ1
2
cos2 θ2−θ1

2
; if the order of n⃗2 and n⃗3 were switched,

then K1 proportional to sin2 θ2
2
cos2 θ2−θ1

2
. Two different orders two different results, so the

subset K1 is not well defined.

So, all the small subsets Kj, j = 1, 2, · · · , 8 in Fig. 2 are not well defined for spins. The

fundamental reason is that the three operators, n⃗1 · σ̂, n⃗2 · σ̂, and n⃗3 · σ̂, do not commute with

each other; as a result, the overall measurement outcome depends on the time order of the

three measurements. For chocolates, all these subsets Kj, j = 1, 2, · · · , 8 are well defined.
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This is because the different properties of chocolates can be possessed and inspected (or

measured) simultaneously; once the chocolates are boxed, the sizes of these subsets are

determined.

III. The GHZ state and the classical ensemble

The GHZ state (4) is another quantum state often used to illustrate quantum entan-

glement. It is an entangled state with three spins. We are only concerned here with the

measurement of each spin along the x, y, and z directions. It is clear that any one of the

spins in the GHZ state no longer has a definite pure quantum state, instead it is in a mixed

state (2). As a result, if we measure any of the three spins along the x, y, or z direction,

we have a 50% chance of getting positive results and a 50% chance of getting negative results.

There are correlations among the spins. When measuring any spin in the GHZ state

along the z direction, if the result is up, then the results for the other two spins are also up;

if the result is down, the other two are down. Either of the two outcomes has a 50% chance.

The correlations along the x and y directions are not as straightforward. They are implied

in the following equations,

σ̂(1)
x σ̂(2)

y σ̂(3)
y |Φ⟩ = |Φ⟩ , (20)

σ̂(1)
y σ̂(2)

x σ̂(3)
y |Φ⟩ = |Φ⟩ , (21)

σ̂(1)
y σ̂(2)

y σ̂(3)
x |Φ⟩ = |Φ⟩ , (22)

which can be verified by direct computation. These three equations show that, if we mea-

sure one of the three spins along the x direction and the other two spins in the y direction,

each of the three results can be positive or negative, but it must be positive when they

are multiplied together. An equivalent statement is that the following two measurement

outcomes are impossible: (1) one result is negative and the other two are positive; (2) all

three results are negative.

I construct an ensemble of chocolates to share these features of the GHZ state: the

spin measurements along the x, y, and z directions correspond to the three properties of

chocolates, type, shape, and production place, respectively. There are 24N chocolates in
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the ensemble, of which 12N are dark, 12N round, and 12N Swiss. These chocolates are

placed in 8N boxes with three in each box. Every box has three compartments, numbered

1, 2, and 3 from left to right. The 8N boxes are divided equally into eight groups, and

each group is boxed in a different way. The eight ways of boxing are shown in Figure 4.

Below we compare the properties of this chocolate ensemble with those of the spin GHZ state.

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

d r(7) d r d r d r̄(8) d r̄ d r̄

d r̄(5) d̄ r d̄ r

d̄ r(3)

(1)

d r̄ d̄ r

d̄ r d̄ r d r̄

d r(6) d̄ r̄ d̄ r̄

d̄ r̄(4)

(2)

d r d̄ r̄

d̄ r̄ d̄ r̄ d r

FIG. 4. Eight ways to box the chocolates in the GHZ ensemble. d is for dark, d̄ for non-dark; r is

for round, s̄ for other shapes. For example, for the box in (1), the chocolates in both compartments

1 and 2 are round and milk; the chocolate in compartment 3 is dark but not round. In four of the

eight boxes, all the chocolates are Swiss; in the other four, all the chocolates are not Swiss.

Single-body probability - There are 24 chocolates in Figure 4, of which 12 chocolates are

dark, 12 chocolates are not dark. Therefore, in the whole chocolate ensemble, there are

12N chocolates that are dark and 12N chocolates that are not dark. This means that there

is a 50% chance that the chocolate is dark and a 50% chance that it is not black. With

respect to shape and production place, we have similar results: there is a 50% chance that

the chocolate is round and a 50% chance that it is not; there is a 50% chance that the

chocolate is Swiss and a 50% chance that it is not Swiss. This is similar to the measurement

of a single spin in the GHZ state (4). For measurements of any single spin in the GHZ state

along the x, y, or z direction, the results are: 50% chance of being positive and 50% chance

of being negative. Thus, in terms of the single-body probability, the GHZ state and the

corresponding chocolate ensemble are identical.

Correlation at distance - Since the chocolates are packed in boxes according to the eight

designed ways in Figure 4, there is correlation among the three chocolates in the same

box. Clearly, this correlation is independent of distance: if the chocolates are separated and
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placed on three distant planets, the correlation among the three chocolates in the same box

does not change. With respect to production place, the correlation is obvious: if any of the

chocolates in a box is Swiss, the other two are also Swiss; if any of the chocolates in a box

is not Swiss, the other two are not Swiss, either. This is similar to the measurement of spin

in the GHZ state along z direction.

The correlations with respect to type and shape are more subtle. To demonstrate them,

we define a correlation variable

Cxyy = c(1)x c(2)y c(3)y . (23)

If the chocolate in compartment 1 is dark, then c
(1)
x = 1; if the chocolate in compartment

1 is not dark, then c
(1)
x = −1. If the chocolates in compartments 2 and 3 are round, then

c
(2)
y = c

(3)
y = 1; if they are not round, then c

(2)
y = c

(3)
y = −1. For the first way of boxing

in Figure 4, we have c
(1)
x = −1, c

(2)
y = 1, and c

(3)
y = −1, which lead to Cxyy = 1. One can

check that, for the other seven ways of boxing, we have the same result, Cxyy = 1. This is

consistent with the correlation in quantum entanglement embodied in Eq.(20).

Similarly, we can define

Cyxy = c(1)y c(2)x c(3)y , Cyyx = c(1)y c(2)y c(3)x . (24)

A case-by-case check confirms that we have Cyxy = Cyyx = 1 for all the boxings in Figure 4.

This is consistent with the quantum correlations (21,22) in the GHZ state.

Although the chocolate ensemble is similar to the GHZ state in all aspects that we have

examined, there is a crucial difference. To show the difference, we define a new correlation

variable

Cxxx = c(1)x c(2)x c(3)x . (25)

For the second way of boxing in Figure 4, we have c
(1)
x = −1, c

(2)
x = −1, and c

(3)
x = 1,

which lead to Cxxx = 1. For the other seven cases, we similarly have Cxxx = 1. This means

that for this chocolate ensemble, Cxxx = 1. In contrast, for the GHZ state, we can show by

straightforward computation that

σ̂(1)
x σ̂(2)

x σ̂(3)
x |Φ⟩ = −|Φ⟩ . (26)
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This is the opposite of Cxxx = 1. This suggests that the chocolate ensemble constructed

based on Fig. 4, while agreeing with the GHZ state in many aspects, is not be completely

consistent with the GHZ state. In fact, it can be rigorously proved that there does not

exist a classical ensemble that is identical to the GHZ state in terms of its probability

distribution and correlation. If we assume that such an ensemble exists, to be consistant

with the quantum correlations indicated in Eqs. (20,21,22), this classical ensemble must

satisfy the following three conditions:

Cxyy = c(1)x c(2)y c(3)y = 1 , (27)

Cyxy = c(1)y c(2)x c(3)y = 1 , (28)

Cyyx = c(1)y c(2)y c(3)x = 1 . (29)

Here cx and cy can be any two distinct properties of the system in the ensemble. Utilizing

the equalities,

(c(1)y )2 = (c(2)y )2 = (c(3)y )2 = 1 , (30)

we can prove that

CxyyCyxyCyyx

=c(1)x c(2)y c(3)y c(1)y c(2)x c(3)y c(1)y c(2)y c(3)x

=c(1)x c(2)x c(3)x = Cxxx . (31)

Thus Cxxx = 1. The chocolate ensemble we constructed does indeed satisfy this equation.

In sharp contrast, the GHZ state does not. The reason is that the spin operators σ̂x and σ̂y

do not commute, and Eq. (26) cannot be derived from Eqs. (20,21,22).

IV. Summary

I have constructed two chocolate ensembles, with the aim to to make them share as

many features as possible with their corresponding quantum entangled states. But I can

not make the chocolate ensembles completely identical to the quantum entangled states.

This is a matter of principle. This is similar to that we can never build a machine of

perpetual motion because it would violate the first or second law of thermodynamics. For any

quantum entangled state, we can construct a classical ensemble whose one-body probability

14



is identical to that of the entangled state, but its many-body probability correlation cannot

be exactly the same as that of the entangled state. The fundamental reason is that different

physical properties of a quantum system are related to different operators, which do not

commute in general. As a result, the quantum correlation between these properties are

fundamentally different from the classical correlation, which is showcased by the violation

of Bell’s inequality.

Although Schrödinger pointed out the most essential features of quantum entanglement,

he did not propose a quantitative description of entanglement. In 1957 Everett described

entanglement quantitatively in terms of von Neumann entropy in his doctoral thesis [9, 10].
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