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Superexcitability in Chiral Oscillators

with Spatial Degrees of Freedom
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This work presents a numerical investigation of interacting chiral oscillators (COs), characterized by

an intrinsic rotational handedness. The coupling of positional and orientational degrees of freedom

drives a mutual influence between synchronization and spatial dynamics. The control parameter, Δ

(anisotropy or detuning), represents the frequency difference between two COs (for the two-body

case) or between two families of COs (for the many-body case) with opposite handedness. For two COs

with opposite handedness, interaction forces generate a Helical Excitable Dipole (HED), where

excitability is a spatiotemporal act characterized by a helical trajectory. For many COs moving in 2Ds,

the model displays a locking-to-unlocking transition of the Kuramoto kind driven by Δ, and, within

the locking region, many "superexcitable" states sustained by a global saddle-node bifurcation,

detected by the collective period behavior versus Δ. These coherent, topological states are

characterized by dissipationless phase-momentum locking, which I quantified using appropriate

global metrics, including the Kuramoto order parameter and the novel parameter S capable of

detecting the phase-momentum locking. These states exhibit a wide variety of topologically protected

vortex complexes, whose complexity increases with system size. The model provides a unified

framework for diverse biophysical applications—from molecular ratchets to cardiac looping—

identifying the symmetry breaking of motile excitable units as a fundamental process for large-scale,

robust collective transport.

Corresponding author: Alessandro Scirè, alessandro.scire@unipv.it

Introduction

A fundamental question in the study of complex systems is: how can local, sub-threshold interactions

give rise to long-range coherent collective states? Furthermore, how do locally coupled excitable units
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self-organize when their internal state (phase) is coupled to their physical position? In classical models

space often acts as a passive background or a fixed lattice. However, in many biophysical contexts—such

as molecular motors or swimming microorganisms—the "firing" of a unit is not merely a temporal event

but a mechanical act that involves displacement. Despite great progress in understanding excitability, its

spatial self-organization still reserves significant avenues for research, particularly regarding how locally

interacting, sub-threshold excitable elements can unite to exhibit spatially distributed, coherent behavior.

Excitability is defined as the ability of a system to undergo a large, non-linear excursion in response to a

perturbation that exceeds a specific threshold, while returning quickly to a quiescent state when faced

with sub-threshold stimuli. This phenomenon is ubiquitous across diverse scientific domains, appearing

in the non-linear dynamics of semiconductor lasers  [1], the chemical oscillations of Belousov-

Zhabotinsky reactions [2], in the large-scale spreading of wildfires [3] or social information [4]. However, it

is in the study of living matter that these principles find their most intricate expression, ranging from the

rhythmic beating of the heart  [5]  to neuronal avalanches  [6], from the collective migration of epithelial

tissues [7] to the metachronal coordination of cilia [8].

Over the last decades, the study of excitability has evolved from classical FitzHugh-Nagumo  [9]  or

Hodgkin-Huxley [10] models toward the understanding of increasingly complex collective states. Current

research focuses not only on the response of single elements but on how thermal noise  [11], parameter

heterogeneity  [12], and connection topology  [13]  can induce global coherence phenomena, such as

stochastic resonance  [14]  or phase synchronization  [15]. Recent findings in active matter and biological

tissues have highlighted that the excitable response is not merely a temporal event, but a dynamic phase

transition capable of generating self-organized propagation waves and persistent spatial patterns, where

energy is stored and released to perform coordinated mechanical work [16]. In this field, researchers have

quantified how intrinsic cellular chirality translates into large-scale collective motion, revealing a

fundamental mechanism for biological morphogenesis [17]. Specifically, theoretical studies have explored

singular density correlations in chiral active fluids in three dimensions, alongside investigations into the

collective motion of self-trapping chiral active particles  [18]. However, considerable scope remains for

future research into how the principles of cellular chirality and collective excitability are precisely

integrated during complex morphogenetic processes.

In this work, I propose a framework where spatial and phase degrees of freedom are entangled through

an intrinsic geometry. I introduce the Helical Excitable Dipole (HED), formed by a pair of counter-rotating

qeios.com doi.org/10.32388/9ZDJVU.3 2

https://www.qeios.com/
https://doi.org/10.32388/9ZDJVU.3


Chiral Oscillators (COs) detuned by a form of circular anisotropy, and where the internal phase dynamics

are coupled to the spatial coordinates, making each excitation cycle a "helical pump" with a quantitative

spatial consequence. Building upon this dipolar unit, I define “superexcitability” as an emergent phase

that reflects a collective manifestation of excitability in the many-body case. Unlike classical collective

excitability, which often concerns the propagation of pulses in locally coupled excitable media,

superexcitability is governed by a global saddle-node bifurcation within the parameter regime where

local excitability remains sub-critical. The global saddle-node bifurcation enables the emergence of

robust, topologically protected, supercritical vortex complexes, the superexcitable states. The prefix

“super” highlights the topological, coherent, and dissipationless nature of these patterns, which also

exhibit phase-momentum locking, in analogy with the robust transport found in topological insulators

or superconductors. The phase diagram reveals that this transition is governed by a specific threshold

condition involving the product of anisotropy and system size.

The manuscript is organized as follows. In Section 2, I introduce the model for two Chiral Oscillators

(based on the well known Adler equation) and define the dynamics of the Helical Excitable Dipole (HED)

deriving the geometric properties of its "helical pump" mechanism. Section 3 explores the many-body

system using numerical results, where I characterize the emergence of the superexcitable phase, analyze

the topological vortex-antivortex complexes and the emergence of ballistic transport through phase-

momentum locked loops, and present the resulting phase diagram in the parameter space, discussing the

threshold condition for superexcitability. Finally, Section 4 discusses the theoretical aspects of

superexcitability and its biophysical applications—ranging from molecular motors to cardiac

morphogenesis—and provides concluding remarks. Appendix A details the stability analysis of the HED,

and Appendix B examines the interdipolar forces.

The Helical Excitable Dipole

As a starting point I address local excitability by employing the Adler equation for two coupled

oscillators, before any spatial degrees of freedom are introduced. The Adler model (published by Robert

Adler in 1946 to explain injection locking in electronic LC oscillators) provides the simplest description of

a phase-excitable system, where an external perturbation can trigger a full 2π rotation—an elementary

'firing' event. It is used to model phenomena in fields as diverse as neuroscience (firing patterns of

neurons [19]), biology (circadian rhythms [20], coupling of beating cilia and flagella [21]), superconductivity

(Josephson junctions [22]), and photonics (laser synchronization [23]).
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I consider two phase oscillators, a counterclockwise (CCW)  and a clockwise (CW)  , both living in 

  and sinusoidally coupled. With unit coupling and natural frequencies detuned as    and 

, with Δ non-negative without losing generality. The equations of motion are:

The Adler equation for the relative phase   is

If the system synchronizes ( , the stationary phase is determined by the condition

When the driving force Δ is below a critical value (Δ < 1), the system settles into a stable resting state

(synchronization). However, if the drive exceeds the threshold (Δ > 1), the system loses its stable fixed

point via Saddle-Node (SN) bifurcation and enters a limit cycle—it "fires" a continuous train of phase

slips. The threshold at (Δ = 1) is the critical point where the system switches from having a stable fixed

point to a limit cycle.

Despite being a single-phase problem, the Adler equation (3) is not actually describing a single oscillator,

but the collective behavior of a pair of oscillators with opposing chiralities, where I define chirality as the

intrinsic sense of rotation (CW or CCW) of the phase in the internal parameter space  . It is also worth

noticing that Eqs. (1)-(2) represent the Kuramoto  [24]  model with N = 2, while they also describe an

excitable “dipole” encapsulated by the single variable  .

To extend the theory toward spatialized structures, I introduce the Helical Excitable Dipole (HED)

consisting of chiral oscillators of opposite chirality whose dynamics are governed by the coupled

evolution of a relative phase  and a relative spatial coordinate  , on a cylindrical manifold 

. The equations of motion are defined as:

Here, W(x) is a short-range interaction kernel that links the internal phase dynamics and the spatial

configuration; Δ is the intrinsic frequency detuning. A detailed stability analysis of Eqs. (5)-(6) is reported

in Appendix A, in the following I deal with the excitability properties.

φ+ φ−

S 1 = Δω+

= −Δω−

= Δ + sin( − ),φ̇+
φ− φ+ (1)

= −Δ + sin( − ).φ̇− φ+ φ− (2)

ϕ = −ϕ+ ϕ−

= 2Δ − 2 sin(ϕ).ϕ̇ (3)

= 0)ϕ̇

sin(ϕ) = Δ. (4)

S 1

ϕ = −ϕ+ ϕ−

ϕ ∈ S 1 x∈ R

R×S 1

{
= (x) cos(ϕ) (5)ẋ W ′

= Δ − W(x) sin(ϕ) (6)ϕ̇
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The interaction kernel is chosen (see discussion at the end of subsection 3.1) as  , so

that the characteristic interaction length L = 1. The dynamics of Eqs. (5)-(6) are governed by a tilted

washboard potential:

The term    introduces a global tilt (driving torque), while the cosinusoidal term creates local minima

(stable traps). The depth of these traps is a function of position: as the oscillators move apart (

  increases), the potential barriers vanish. The function    is not conserved but rather acts as a

Lyapunov function: the system "slides" down the potential toward a minimum, dissipating energy until it

reaches a fixed point. If Δ = 0, the system is a pure gradient system that settles into the nearest local

minimum. If Δ exceeds a certain threshold, the system can no longer reach an equilibrium. It enters a

limit cycle (phase drift), where it continuously "descends" the potential slope. This represents an out-of-

equilibrium driven system where Δ acts as a constant energy input. When resting in a local minimum,

the system (5)-(6) displays excitability: The system functions as an excitable dipole possessing a stable

resting state protected by a threshold—specifically, the separatrix defined by the unstable manifold of the

saddle point (see Appendix A). A sub-threshold perturbation allows the trajectory to relax back to

equilibrium, but a stimulus exceeding the boundary of the manifold triggers a large-scale excursion

through phase space before the system re-stabilizes. Figure 1 illustrates that the system (5)-(6) displays a

characteristic response of a Type-I excitable system to external stimuli. Stimuli are obtained by instantly

displacing the relative position by a certain amount. Subcritical stimuli (blue traces) induce transient

excursions in both the relative spatial and phase, followed by a swift return to one of the stable resting

states, in this case:    (see Appendix A). In contrast, a supercritical stimulus (red

traces) triggers a large amplitude excursion in x and a complete 2π phase slip, characteristic of an action

potential-like response or spiking behavior. The excursion, which includes a phase slip, occurs on a

cylindrical manifold. This dynamic results in a screw-like trajectory that involves both the relative

position and the relative phase. This phenomenon describes helical excitability, a form of unconventional

spatiotemporal excitability that emerges from the coupling of chiral oscillators.

W(x) = −exp (− )x2

V (x,ϕ) = W(x)  cos(ϕ) + Δϕ. (7)

Δϕ

|x| V (x,ϕ)

= π − arcsin(Δ)ϕsync
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Figure 1. Excitability of a Helical Excitable Dipole for Δ = 0.2. The top panel illustrates the time evolution of

the relative position, while the bottom panel shows the relative phase. Trajectories for both subcritical (blue

lines) and supercritical (red lines) stimuli are displayed. A subcritical perturbation allows the system to relax

back to its stable equilibrium, whereas a supercritical stimulus triggers a large helical excursion that

corresponds to a full 2π phase slip.

The helical nature of the excitability is demonstrated by its non-zero helicity density. In the (𝑥,𝜙) phase

space, helicity density is represented by the closed loop path integral

this expression defines the Hannay angle  [25]  of the system, capturing the geometric phase shift that

results from the non-conservative winding of the phase. The Hannay angle is a classical analogue of the

geometric Berry phase. In mechanical terms, the integral (8) quantifies the net work performed on the

spatial coordinate during a full phase rotation. By Green’s theorem, this value corresponds to the area

enclosed by the trajectory in the (𝑥,𝜙) plane. While symmetric responses result in zero helicity (H = 0), a

non-zero integral over one excitation cycle identifies the unit as a helical pump, where internal phase

rotations are converted into directed spatial motion. Concerning Fig. 1, the numerical evaluation of Eq. (8)

yielded H = 2.36 for the sub-critical stimulus and H = 10.79 for the super-critical stimulus, illustrating a

H = xdϕ,∮ (8)
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kind of excitability that is not merely a temporal 'firing' event; it is instead a coherent maneuver that

spatially relocates the dipole together with the phase slip. This arises from the coupling of two units with

opposite intrinsic chirality according to Eqs. (5)-(6), so that their relative phase 𝜙 becomes inextricably

linked to their spatial separation x. While chirality is a property of the individual unit's rotation, helicity

is an emergent property of their interaction.

The HED operates as a driven-dissipative actuator where Δ provides a constant energy bias. A

suprathreshold stimulus triggers a non-linear response, forcing the dipole through a helical excursion.

Although the spatial coordinate x returns to its initial value, the cycle is non-reciprocal, as confirmed by

the finite area enclosed in the (𝑥,𝜙) plane (Eq. 8) by the helical pulse. This process constitutes a

geometry-dependent stroke where the phase-slip couples to a transient spatial deformation, thus HED

functions as a local engine that rectifies the stimulus into a structured helical maneuver.

A further feature of the HED dynamics is the spontaneous symmetry breaking (SSB) of the translational

direction along the x-axis. Although the underlying potential V(x,ϕ) is symmetric with respect to x, the

excitation process forces the system to select a specific direction for its spatial relocation. This choice is

dictated by the phase-space position at the moment of the threshold crossing: a random fluctuation in ϕ

would break the x-parity, coupling the 2π phase-slip to a directed displacement. Consequently, the HED

transforms a scalar energy input Δ into a vector transport event, establishing the basis for directed active

motion in the collective regime.

3. Two-dimensional collective dynamics

Exporting the HED to the many-body context introduces a further modeling degree of freedom in how

interaction symmetries are defined. This choice is a critical factor because different rulesets generate

consistently different outcomes. Specifically, the mutual influence between same-handedness COs must

be defined. In this work, I adopt a complementary interaction scheme consistent with previous

studies [26][27][28]. Unlike standard Kuramoto models where all units tend toward global alignment, this

scheme introduces a competition between in-phase and anti-phase synchronization dictated by relative

chirality. This design fosters a frustrated landscape and aims to enable the emergence of out-of-

equilibrium collective modes. Furthermore, a 2D geometry favors the organization into spatially-

extended topological structures.
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3.1. The model

The picture of a many-body CO system is sketched in Fig. 2a; CW and CCW COs are represented by blue

and red arrows, respectively, able to rotate and move in  , with open boundary conditions. This

representation proved more effective than the previous one [26][27][28] for visualizing the morphology of

the emerging orientational patterns (defects) and waves, as further elucidated in the manuscript. As

mentioned above, the interaction between these chiral units follows a complementary scheme (Fig. 2b)

that establishes a competition between in-phase and out-of-phase coordination: Like-Chirality

Interaction: Units of the same color repel each other spatially but attract orientationally (favoring in-

phase synchronization); Opposite-Chirality Interaction: Units of different colors attract spatially but repel

orientationally (favoring out-of-phase synchronization).

Figure 2. Sketch of the Complementary-COs Model. a) The model assigns both a position and an angle in

[0,2π] to each CO. b) Interaction forces are complementary based on color: same-colored COs repel positionally

and attract orientationally, while different-colored COs do the opposite. All interaction strengths decrease

with increasing positional distance.

Each CO is given a positional ( ) and an angular/orientational (φi) degree of freedom, with i = 1…N,

being N the total amount of COs. The equations of motion for each i-th CO are

R
2

x
→

i
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where   means differentiation respect to the i-th direction,   and φi are respectively the spatial (in ℝ2)

and angular (in S1) coordinates of the i-th unit, i = 1,…N, and | | is the Euclidean distance in ℝ2.

The functional wells (characteristic length L = 1) are the many-body corresponding of the many-body

version of the Gaussian kernel W(x) described in the previous section:

The two-valued coefficients γi define the i-th oscillator chirality, i.e., γi = +1 if the oscillator is a CCW (red)

or γi = ̶  1 if is CW (blue). If N = 2 and one CO is red and one is blue, Eqs. (9)-(10) revert to Eqs. (5)-(6).

Mathematically, the model (9)-(10) is a many-body dissipative and non-linear dynamical system, and Δ is

the control parameter. Consistently with the previous section, the effect of Δ in Eq. (10) is to split the

natural frequencies of red and blue COs, providing a rotational speed term that is clockwise for red COs

and counterclockwise for blue COs; in a physical system Δ would be called a circular anisotropy, hence Δ

will be referred to as anisotropy in the rest of the manuscript. Collectively, the parameter Δ is expected to

trigger an order-to-disorder phase transition in the system upon overcoming a specific collective

locking/unlocking threshold (similarly to the Kuramoto model), driving the system to deterministic

chaos. As introduced in the previous section, the parameter Δ makes the system active, because it

provides the COs a phase drift which, due to variables coupling, can activate positional dynamics. The

term    acts as "spin-orbit" coupling—it links the spatial motion to the internal orientation

state; this is crucial for topological structure formation as discussed further in the manuscript. The 

 term acts as the synchronization torque, a hallmark of the Kuramoto model.

Concerns might arise regarding the perceived arbitrariness in the choice of the interaction kernel W.

However, while the quantitative details of the interaction depend on its exact form, the key qualitative

results reported in this work are robust against alternative choices of short-range interaction functions.

The use of a Gaussian kernel represents the simplest and most standard choice for capturing the results

contained in this manuscript, while also ensuring numerical stability.

3.2. The isotropic limit and the emergence of order for weak anisotropy.

In the isotropic case, where Δ = 0, the system behaves as a purely dissipative gradient system. This

regime is highly degenerate: the dynamics are dominated by the initial conditions, leading to the

⎧

⎩⎨
= W ( − ) cos( − ) (9)x ⃗ ˙

i ∑N
j=1

∇i ∣∣x ⃗ i x ⃗ j∣∣ φi φj

= Δ + W ( − ) sin( − ) (10)φ̇i γi ∑N
j=1 γiγj ∣∣x ⃗ i x ⃗ j∣∣ φi φj

∇i x
→

i

  −x
→

i x
→

j

W (   − ) = − .∣
∣ x
→

i x
→

j
∣
∣ e

−  −
∣
∣
x
→

i x
→

j
∣
∣

2

(11)

cos( − )ϕi ϕj

sin( − )ϕi ϕj
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formation of branched patterns of phase locked HEDs. In this state, the system becomes trapped in a

multitude of local minima within a rugged potential landscape, exhibiting what can be described as

residual entropy. These configurations lack long-range order and are reminiscent of glassy or frozen

states, where the absence of internal drive prevents the system from escaping metastable clusters. While

these instances of residual entropy are scientifically interesting, their detailed analysis is beyond the

scope of this work.

However, the introduction of a small anisotropy Δ alters this landscape: the system breaks away from its

dependence on initial positional configurations and organizes into crystalline solutions. In this regime,

the competition between in-phase and out-of-phase coordination, enforced by the complementary

interaction scheme, stabilizes periodic lattices, finite size effects notwithstanding. Importantly, the

system still undergoes a Spontaneous Symmetry Breaking (SSB) of the circular phase space, forcing all

HEDs to align at a specific, uniform angle that is randomly determined by the initial phase conditions.

This phenomenon is shown by the following numerical results: I integrated the equations of motion for N

= 80 chiral oscillators with spatial degrees of freedom, using a standard integration method. The

anisotropy parameter was set to Δ = 0.1, a value well within the locking range for a single HED. The initial

conditions were random: oscillator phases were uniformly distributed in [0,2π], and positions were

randomly distributed within a square box with an initial density of ρ =1. This density choice is important

but not critical, provided the units are not too sparse (preventing clustering) or too compressed

(hindering collective flow). The resulting spatiotemporal dynamics (shown in Movie S1) reveal a

transition from initial disorder to a highly ordered configuration (reported in Fig. 3). The pattern

presented in Figure 3 consists of quasi-regularly spaced HEDs, where each HED satisfies the local stability

properties of the single-dipole case. This configuration is hereafter referred to as a Type 1 solution. The

spatial regularity is maintained by a repulsive dipole-dipole force, which increases with Δ and decreases

with the inter-dipolar distance (further detailed in Appendix B), pushing the pattern to expand at an

exponentially vanishing velocity. This is a collective state where no transport (no dynamics) is present

(an “insulating” state) and where all HEDs behave as one, i.e., this collective state is described by a well-

defined global phase (chosen by SSB), which is uniform across the entire pattern.
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Figure 3. A Type 1 solution for N = 80 and Δ = 0.1: A crystalline pattern of Helical

Excitable Dipoles (HEDs) possessing both positional and orientational order. This

configuration represents a stable equilibrium state resulting from the

spontaneous breaking of the continuous circular symmetry. The HEDs are locked

into a specific, uniform orientation, determined randomly by the initial

conditions.

3.3. Collective dynamics for moderate anisotropy

Increasing Δ without crossing the local stability threshold, a different collective behavior shows up,

bistable with Type 1. The Movie S2 shows the spatiotemporal evolution of N = 80 COs with Δ = 0.2. After

the transient has expired, the system develops a topological vortex complex, which I have termed the

Type 2 solution. This configuration exhibits a peculiar twofold structure: a static texture
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Figure 4. Illustrates persistent features by superimposing video frames over time for N = 80 and Δ = 0.2. (a) A

stable antivortex complex with a topological charge Q = ̶ 1; (b) A stable vortex complex with topological charge

Q = 1, emerging for the same parameter values.

of HEDs curling around a central core, and surrounding this, a dynamic state made of two trains of

equidistant COs traveling in opposite directions along the same loop trajectory. Within the loop, the

positional and orientational motions are synchronized in a "phase-momentum locked" state, i.e., one full

phase rotation (2𝜋) corresponds to a net spatial translation along the closed path for each CO. In the loop,

on average, the distance between adjacent COs of the same chirality is maintained at 1, with minimal

deviation. Surprisingly, the red and blue CO trains slide over each other almost "frictionless", despite the

value of Δ that would imply attraction and mutual locking in the same position by COs of different

chirality.

Emergent Type 2 solutions are topological point defects driven by a phase singularity, representing a

dynamic balance between alignment interactions and "spin-orbit" (phase-momentum) coupling. They

appear in two distinct forms (vortex and antivortex) for the same parameter values, as illustrated in a

superimposition of video frames (akin to a long-exposure photograph) shown in Figure 4. These forms

are classified based on their winding number (or topological charge) Q which measures the net rotation

of the COs' orientation along a CCW closed path around the defect core. In both cases (vortex and

antivortex), the red and blue CO phase of the static texture rotate together (in the same direction)
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following a closed path around the defect core; however, within the dynamics loop, their own spatial

rotation can be either concordant or discordant with their phase rotation. Specifically, for the stable

vortex complex Q = +1, the spatial rotation is concordant with the phase rotation, resulting in a smooth

loop trajectory (Figure 4b). Conversely, for the stable antivortex complex Q = -1, the spatial rotation is

discordant with the phase rotation in the loop, which produces the characteristic twisted loop shape

observed in the Figure 4a. The selection between the vortex complex (Q = +1) and the antivortex complex

(Q = -1) is again the result of spontaneous symmetry breaking, i.e. it is determined by subtle differences

in the initial conditions.

The attractors emerging from repeated simulations of Eqs. (5)-(6), for moderate anisotropy (Δ between

0.2 and 0.4) and for a given system size (N = 80), show a wide range of morphological diversity; still, all

can be ascribed to one out of three distinct states based on their topological properties: Type 1 solutions

(equilibrium states with Q = 0), Type 2 vortex (Fig. 5a, d and e) with Q = +1, or Type 2 antivortex (Fig. 5b

and f) with Q = -1. The emerging Type 2 solutions display a high degree of variability in terms of: the

number of elements involved in the internal loop; the phase singularity position in the plane; the

vorticity and the velocity of the transport motion (momentum); and the phase rotation velocity in the

loops. Rarely, a double loop with a daughter loop branching off from the main formation (see Fig. 5d)

appears, providing evidence of the system's capacity for morphological complexity, as discussed in a later

section; however, even that “strange” configuration belongs to the Q = +1 topological class.
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Figure 5. Illustrates the diversity of emerging attractors obtained from repeated numerical simulations using

different values of Δ, N = 80. The system exhibits multistability, settling into either equilibrium Type 1

solutions or Type 2 solutions, which include both vortices (panels a, d, e) and antivortices (panels b, f)

complexes. Type 2 solutions display high variability in the number of elements, position, vorticity,

momentum and phase velocity.

Increasing further the anisotropy, numerical simulations for Δ ≈ 0.4 (N = 80) show the emergence of

“spurious” clusters of fast rotating and spatially confined COs, in shapes of small rods (see Figure 7)

within the Type 2 state (i.e. in compresence with vortices or antivortices). Small rods rotation excites

phase vibrations in the neighboring locked HEDs and affects the phase-momentum coherence in the

vortices. This highlights a complex interplay between localized rotational motion and the collective,

large-scale order of the system.
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Figure 6. Emergence of spatially confined, fast-rotating chiral oscillators (COs)

clusters for Δ = 0.4, N = 80 within a Type 2 state. The vector field illustrates the

high rotational velocity of the CO rods (larger, curved arrows), which excite

phase vibrations in the surrounding phase-locked HEDs.

Increasing Δ further to approximately 0.5, the system exhibits spatiotemporal chaotic dynamics in both

position and orientation, a form of active turbulence. I refer to these dynamic states as Type 3. Further

increasing Δ, the behavior becomes more erratic, and eventually no trace of order remains.

3.4. Robustness against perturbations

The primary implication of a topological invariant is robustness. In a topological state, the value of the

invariant remains unchanged under continuous deformations, strong perturbations, or a high degree of

diversity in spatial arrangements. In fact, the complementary regime structures obtained in the previous

subsection, made of vortex and antivortex complexes, proved to be highly resilient with respect to

different kinds of perturbations. First, the structures persist stably under the addition of Langevin white

noise terms to Eqs. (9)-(10) even at high levels of noise (a more detailed study will be the subject of future
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investigations). Second, I perturbed the structure that emerged in Movie S2 in the following way: after

the structure is formed, I removed one red CO from a HED forming the static texture and placed it into the

loop, close to the center. The resulting dynamics are reported in Movie S3, which shows that the displaced

red element is quickly absorbed into the vortex and, after a short time, a red CO is expelled from the

internal loop so that it can couple back with the uncoupled blue CO, and reform a HED to restore the

original topology. This observed self-repairing capability is a direct consequence of the non-local

topological protection inherent to these complexes. The reported results suggest that a relatively small

ensemble of N = 80 COs is able to display a rich multi-stable scenario that requires a systematic

investigation.

3.5. Statistical analysis

Considering the system (9)-(10), I have performed reiterated numerical simulations with Δ spanning from

0 to 1, and with different realizations for each value of Δ, starting from already discussed starting

conditions. First, I have used the averaged kinetic 'temperature' T as a reference, which is a measure of

the system's average spatial activity

where   denotes the time average. The second parameter describes the rhythm of the collective phase

dynamics. By transposing to many-body the phase difference ϕ employed in the previous Section, I

calculate the mean folded phase which accounts for the chirality γ of each oscillator

which, for N = 2 chiral oscillators of opposite chirality, reverts (up to a factor 2) to the phase difference ϕ

of a single HED, discussed in Section 2 and in Appendix A.

The associated collective period τ is consequently defined as: 

which reverts to the oscillation period introduced in Appendix A for a single HED. The results for T versus

Δ are shown in Fig. 7a.

T = ⟨ ⟩ ,
1

N
∑
i=1

N

ẋ
2
i (7)

⟨∙⟩

Φ = ⟨ ⟩ ,
1

N
∑
i=1

N

γiφi (8)

τ = ,
2π

Φ̇
(9)
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Figure 7. The data are obtained from numerical simulations: 10 distinct realizations for each value of Δ. Panel

(a) shows the scatter plot of the time-averaged kinetic temperature T as a function of the control parameter Δ;

the plot reveals distinct behavioral regimes: a small Δ regime (Type 1patterns) with vanishing T; a bistable

intermediate regime Δlow < Δ < Δhigh (Δhigh ≈ 0.58, Δlow ≈ 0.18) featuring a lower branch of Type 1 patterns and

an upper branch of Type 2 patterns (fitting with T = aΔ2, a = 0.04); and a supercritical, turbulent, chaotic

regime for Δ > Δhigh. Inset in panel (a) displays the time-averaged absolute value of the Kuramoto order

parameter ( ) as a function of Δ. The panel illustrates a Kuramoto-like phase transition behavior,

specifically the transition from Type 1 (static phase synchronization,  ) to Type 3

(desynchronization/turbulence,  ), obtained from initial conditions near the Type 1 basin of attraction.

Panel (b) pictures the collective period τ (mean and standard deviation) versus Δ. Fitting (partially) with 

 with C = 119)

Panel (a) of Fig. 7, shows T ≈ 0 for low values of Δ, approximately 0 < Δ < 0.18. In this region the

equilibrium Type 1 patterns appear, stably. For 0.18 < Δ < 0.58 the values of T separate in two branches.

The lower branch is a continuation of the Type 1 pattern branch from the previous interval, and is

bistable with a second branch containing the twofold Type 2 patterns discussed in the previous

subsection. The upper branch follows approximately a Δ2 dependence (grey fitting line in Fig.6a) and

contains an infinite number of different attractors, separated in two families classified via the topological

charge Q). For Δ > 0.58, local instabilities take place and all the COs unlock destroying both Type 1 and

Type 2 attractors, and chaotic dynamics (Type 3 attractors) appear, increasingly turbulent as Δ increases

further and any trace of order is finally lost. The values of Δ = 0.58 for local instabilities consistently

differs from the instability threshold of a single HED (Δ = 1), this is so because at moderate Δ values, local

ρav

= 1ρav

  → 0ρav

τ = C

Δ−Δlow√
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instabilities and spatially confined, fast-rotating clusters begin to appear in the collective regime,

perturbing large-scale coherence and driving the system towards chaotic dynamics (Type 3) before the

single HED reaches its instability threshold of Δ = 1. The local instability threshold of the collective

system is therefore reduced due to these emergent many-body dynamics, which are not predicted by the

single-dipole model. Current coarse-grained analyses are underway to better quantify this specific

aspect.

The transition from Type 1 to Type 3 patterns is a "classical" spontaneous symmetry breaking phase

transition of the Landau type, understood in terms of the breaking of a local circular symmetry, parallel

to the transition to a ferromagnetic state [29] or the Kuramoto transition to collective synchronization. It

can be described using the Kuramoto order parameter, modified as in previous works [25][26][27]:

The time averaged absolute value    is bounded between 0 and 1, representing total phase

desynchronization and total phase synchronization, respectively. The inset in Panel (a) of Fig. 7 shows

the typical Kuramoto-like phase transition behavior when    is computed versus Δ as it concerns the

transition Type 1 to Type 3, obtained by making the system start from initial conditions close to the

basin of attraction of Type 1 solution. The transition occurs at approximatively Δ=0.58, confirming this

value as the threshold for local unlocking and chaos.

The kinetic temperature T data for the upper branch of Type 2 solutions, presented in Figure 7a,

(partially) follows a quadratic dependence:

with 𝑎 = 0.04 as a fitting parameter. The origin of this Δ2 behavior is currently under investigation.

Panel (b) of Fig. 7 displays the collective period 𝜏 (mean and standard deviation) as a function of Δ. The

data can be(partially) fitted by

with 𝐶=119 is a fitting parameter and Δlow = 0.18, as far as Type 2 attractors are concerned. The behavior

of the collective period τ in Fig. 7b suggests the presence of a global Saddle-Node bifurcation acting as the

organizing center for the emergence of the Type 2 patterns. The (partial) fitting (12) of the collective

period 𝜏 is the signature of critical slowing down that generically occurs as a control parameter

approaches the Saddle-Node bifurcation point (here Δlow). This provides the mechanism for the system

ρ = .eiθ
1

N
∑
k=1

N

γke
iφk (10)

= ⟨ρ⟩ρav

ρav

T = a ,Δ2 (11)

τ = C/ ,Δ − Δlow
− −−−−−−−

√ (12)
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to access a new class of collective states that exhibit topological features. I name those states

superexcitable, for their collective, coherent, and dissipationless nature, and for emerging from the global

version of the same kind of bifurcation (Saddle-Node) that governs conventional type I excitability.

Additionally, superexcitability takes place within the locally excitable range of the control parameter. This

means the individual COs are not simply being dragged above their local excitability threshold; instead,

the collective interaction itself creates a new, global bifurcation within the locally locked region that

involves a significant restructuring of the system's entire phase space topology. The states (Type 2

patterns containing stable vortex and antivortex complexes) that emerge from this transition display

characteristics typically associated with topological matter: robustness, non-local character, quantized

invariants, and phase-momentum locking. In order to quantify the phase-momentum locking I created a

global time-averaged parameter 𝑆, defined as

where the velocity (linear momentum) within definition (13) is introduced through an artificial complex

number 𝑣 = 𝑣𝑥 + 𝑖𝑣𝑦, a construct designed to facilitate the interaction and coupling between the

momentum angle and the intrinsic phase of each unit. The parameter S acts as an effective complex order

parameter for identifying the onset of phase-momentum locking within the global dynamics, in practice

it serves as a measure of the instantaneous, zero-lag cross-correlation between the linear momentum

vector and the intrinsic phase orientation of each chiral oscillator. A high value for |S| indicates a high

degree of coherence, analogous to the emergence of collective order in classical statistical mechanics

models, such as the magnetization in the Ising model below its critical temperature  [29]. More

specifically, parameter S serves as the macroscopic, mean-field analogue of a coherent state found in

quantum mechanics and optics, representing the emergence of a stable amplitude dynamics and a well-

defined collective phase. This behavior draws a parallel to the complex order parameter Ψ, that describes

phase transitions to the superfluid or superconducting state (in Ginzburg-Landau (GL) theory [30]) where

|Ψ|2 quantifies the condensate density and topological defects (like quantized vortices) are characterized

by phase winding. However, here S acts as the order parameter for a topological phase which describes a

fundamentally different scenario with respect to GL. The observation of non-zero | S | separates coherent

phase-momentum locked states (vortices - Type 2 states) from both static Type 1 patterns and from

disorganized, high-variance Type 3 states.

S = ⟨ ( )⟩ ,∑
j

vje
iϕj (13)
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Figure 8. Representation of the phase-momentum locking order parameter |S| as a function of the anisotropy

Δ. Data points from 20 distinct realizations for each value of Δ are shown. The points with high |S| highlight

the superexcitable states (Type 2 solutions), characterized by coherent dynamics. An example of a “clean”

superexcitable state is reported in the inset for Δ = 0.3.

The data related to the kinetic temperature T and the collective period τ (Fig. 8) provide an overview of

the phase diagram, highlighting the regions of activity and oscillation frequency. However, these

parameters show two partially superimposed transitions: the superexcitable and the Kuramoto-like.

Consequently, the localization of the superexcitable phase is less clear, as it is partly hidden behind

“dirty” or metastable states characterized by non-optimal phase-momentum coherence. The order

parameter S serves as a specific theoretical tool to characterize the superexcitable transition, isolating the

"clean" vortices (see inset of Fig.8) and antivortices, because the observation of a non-zero |S| value

separates the coherent states with phase-momentum locking (Type 2) from both the static Type 1

patterns and the disorganized Type 3 states.

In essence, the Kuramoto parameter ρav and the novel parameter S distinctly characterize the two

different transitions discussed above. Specifically, ρav captures the breaking of the local circular

symmetry associated with a standard Kuramoto-like transition, while S quantifies the non-local,

topological order linked to the superexcitable states.
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3.6. Exploring Larger systems

The results obtained in the previous section concern a sample system size of N = 80. While this might

appear a relatively small number for large-scale statistical analysis, I found that for larger sizes the

scenario becomes significantly more complex, exhibiting irregularly long “glassy” transients, that are

resistant to analysis in this statistical framework. This choice (N = 80) was deliberate to allow for a

preliminary characterization of the collective dynamical mechanisms and the resulting phase diagram,

acknowledging potential finite-size effects on the precise transition points.

In this subsection, the evolution of superexcitable states is examined as the system size N increases by

means of some examples. As a general remark, the single loop patterns observed in smaller systems are

replaced by a flexible, morphogenetic flow that generates dynamic compartments and progressively

more intricate phase-momentum locked flows as N increases, displaying both long-range order and

topological protection. Figure 9 illustrates the progression from: panel (a) for N=200 (simple figure-eight

shape, see Movie S4 for the regime spatiotemporal dynamics) to panel (b) for N=500 (more convoluted

boundary loops, see Movie S5) to panel (c) for N=1000 (highly intricate, compartmentalized network, see

Movie S6). A detailed analysis of the N = 1000, Δ = 0.01 case is provided in a previous work [28]. The phase-

momentum relationship is still a kind of synchronization, but more intricate with respect to the simple

1:1 locking displayed by smaller systems.
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Figure 9. Sketch illustrating some examples of the increase in complexity of superexcitable states, as system

size N increases. The single vortex observed in small systems is replaced by a progressively complex,

morphogenetic flow that forms increasingly intricate phase-momentum locked networks.

Fig. 9c shows instabilities, which indicate a weakening of the topological protection. Indeed, in [28]  it is

reported that such network is only marginally stable and has a finite lifetime; a possible reason for it is

discussed in the next section.

The “big sizes” are numerically hard to tackle; the flow stabilizes after a long, non-exponential “glassy”

transients. Many scenarios open, the mathematical explanation of the process that governs such

complex patters will be the object of future research.

3.7. Robustness to phase randomization and topological jumps

In this subsection, I investigate the stability of a complex superexcitable state for a system size of N =

500. As illustrated in Fig. 8(b), the such state is characterized by a complex topological defect—

specifically an anti-vortex—carrying a topological charge of Q = -1. To test the resilience of this state, I

introduce a massive stochastic perturbation by randomizing all phases at a given time (see Movie S7).

Following this perturbation, the system does not relax back to its original state; instead, it undergoes a

rapid structural reorganization, jumping to a new steady-state configuration. This new regime is

characterized by a higher-order topological defect with a charge of Q = -2 (see Fig. 10).
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Figure 10. Quiver plots of the phase-momentum locked transport regime for N=500. (a) Vector field

configuration in the 2D plane before the global phase perturbation, this panel is a reproduction of Figure 9(b),

repeated here for direct comparison purposes. The system is in a complex, stable, superexcitable state with a

topological charge of Q = - 1. The image is an overlap of multiple final frames, illustrating the static nature of

the particle distribution. (b) The system's new stable configuration after an abrupt randomization of all

phases. The system relaxes into a new topological sector with a quantized charge of Q = - 2.

The strong perturbation—which completely destroys the coherence of the structure and alters the

transport coordination—does not annihilate the existing order. Instead, it forces a topological jump

corresponding to a discrete change to a higher integer value of the topological charge. This behavior,

characterized by the system seeking an alternative stable topological sector, is a distinct signature of a

collective topological state. While far from exhaustive, this simple numerical evidence suggests that

these complex topological dynamics warrant a more detailed analysis in future work.

3.8. Phase diagram in the N-Δ plane

By exploring different system sizes, ranging from N = 80 to N = 1000, I have observed that the minimum

values of Δ required to obtain Type 2 solutions (Δlow) decrease as the system size N increases, whereas

the transition to chaos stabilizes around Δhigh ≈ 0.5 - 0.6. To highlight the transition between the stability

region of Type 1 and the bistable region containing both Type 1 and 2, I performed extensive numerical

simulations calculating S across the (N, Δ) parameter plane. The result is reported in Fig. 11, where black
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dots indicate the presence of a Type 1 uniform “insulating” solution, and colored dots denote the

emergence of Type 2 superexcitable vortex complexes detected by high |S| values. The analysis reveals

that as N increases, the transition value Δlow decreases following the empirical scaling relationship

where    is a fitting parameter. Repeated simulations consistently yielded similar results, and data from

single runs at higher values of remained consistent with the scaling behavior described by Eq. (13). As an

addendum to previous results, what was called “network death” in [28] can be understood in the light of

Eq. (13). In [28], the emergence of a complex phase-momentum locked network with N = 1000 and Δ = 0.01

(sketched Fig.7c) was reported. The network revealed not to be stable in the very long run. In fact, Eq. (13)

gives Δlow(N=1000) = 0.012 as the lower stability threshold for those kinds of solutions; so, being close to

threshold but outside the stability region, the network was marginally stable and did not endure.

Figure 11. Phase diagram in the (N, Δ) parameter space, illustrating the transition between different solution

types. The figure shows the maximum value of |S| over 10 realizations for each value of N and Δ. The

boundary value Δlow is fitted with   (blue dashed curve); a = 12.

(N) = ,Δlow
a

N
(13)

a

(N) =Δlow
a

N
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Since the density is fixed, N (the number of COs) also represents the area of the squared box where the

dynamics initiate. Consequently, the significant value is the product of the anisotropy Δ and the system

size N. This product NΔlow effectively acts as a minimum 'quantum' necessary to assist the formation of

the superexcitable phase, and, since Δ cannot exceed Δhigh ≈ 0.5 which would activate chaotic behavior,

the minimum size for having vortex/antivortex complexes is N ≈ 24. The number N = 24 appears to be the

smallest number of COs that can structurally support the complex arrangement required for a stable,

self-organized vortex or antivortex composite; it represents the point where the behavior transitions

from single-unit interactions to the onset of collective behavior: Below N = 24, the local interactions

dominate, and vortices cannot "nucleate" effectively.

4. Discussion

This work introduces a framework for studying the reciprocal effects of synchronization dynamics and

physical space organization in a system of chiral oscillators (COs), possessing an intrinsic rotational

handedness. The model features two populations of these units with antagonistic positional and

orientational interactions, which introduce frustration into the system dynamics. The COs are organized

in two families (red and blue) with opposite chirality tuned by a control parameter, a form of circular

anisotropy. The interaction forces tend to create red/blue locked dipoles, which emerge as excitable

structures, hereafter termed Helical Excitable Dipoles (HEDs). HEDs are characterized by a non-zero

helicity density represented by the Hannay angle of the system, a classical analogue of the geometric

phase. A non-zero integral over one excitation cycle identifies the HED as a helical pump, where internal

phase rotations convert into oriented spatial dynamics. This "metric consequence" of excitation

distinguishes the HED from classical excitable oscillators and forms the basis for the collective vortices

observed in the many-body case.

Though the work spans a range from N=2 to N=1000, it focuses primarily on an intermediate system size

N = 80, a challenging domain that straddles the boundary between standard dynamical systems analysis

and statistical mechanics. This specific range of dimensions is where the inherent analytical difficulty

lies, as the system is too large for exhaustive bifurcation analysis and too small for conventional

thermodynamic limits to apply effectively. It is within this intermediate scale that the rich diversity of

collective behaviors, often "washed out" in the thermodynamic limit, emerges due to the synergetic

cooperation of multiple degrees of freedom. The analytical challenges presented were addressed in this

work through the combination of numerical simulations and statistical tools.
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The system displays rich topological characteristics in the collective regime. The coupling of

orientational and positional degrees of freedom facilitates the existence of point defects characterized by

integer winding numbers and associated phase singularities. These are composite patterns of topological

orientational textures and phase-momentum locked loops. The flow in these loops is ballistic, which

contrasts with predictions based on local properties. These characteristics are hallmarks of a topological

phase, and the patterns classify as topological dissipative structures.

This phase, which I defined as superexcitable, promotes a non-dissipative collective transport by analogy

with certain topological phases of matter, such as those found in topological insulators and

superconductors, and constitutes a whole new class of out-of-equilibrium states. A global saddle-node

bifurcation acts as the critical switch that allows the system's dynamics to transition into

superexcitability, which manifests as robust vortex complexes characterized by phase-momentum

locking, paralleling the spin helical transport found in topological insulators [31]. The results indicate that

these behaviors emerge well within the local excitability region, suggesting that they are the collective

spatio-temporal manifestation of excitability, and not simply the result of drag generated by some

suprathreshold oscillators. Essentially, the intrinsic coupling between phase and spatial momentum,

combined with the topological protection of the collective structure, creates an extremely efficient and

non-dissipative transport mechanism that differs from classical diffusive spatiotemporal excitability [9]

[10].

The investigation included the numerical evaluation of collective parameters such as kinetic temperature

and collective period, along with a Kuramoto order parameter. The system displays a dual phase

transition: an "ordinary" symmetry-breaking transition (Kuramoto-type synchronization) coexists with

a new topological (superexcitable) transition that activates the vortex complexes, unveiled by a newly

introduced collective parameter that emphasizes dynamic states with high degree of phase-momentum

locking. The evaluated boundaries of the topological transition in the parameter plane suggest that the

topological phase activates when a specific amount of the product between the anisotropy and the

system size becomes available.

Increasing the system size leads to greater complexity in collective organization. Unlike the single vortex

observed in smaller systems, larger systems show a flexible morphogenetic flow with complex phase-

momentum locking patterns.

This work provides a preliminary numerical outlook on the phenomenology of this complex system and

proposes collective parameters for identifying the various regimes, thereby paving the way for future,
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more comprehensive research into these dynamics.

Beyond theoretical considerations, the described scenario finds various applications in biophysics. The

Helical Excitable Dipole (HED) model is conceptually similar to a biological ratchet mechanism. Both rely

on breaking specific symmetries to achieve a polarized, non-equilibrium response to movement, as

occurs in molecular motors operating at scales where thermal fluctuations are significant. The concept of

motile excitable units that self-organize into collective, adaptive, and topologically protected rhythms is

applicable to the coordinated movement of flagella  [21], migrating epithelial tissues  [7], and the

metachronal coordination of cilia  [8], where each beat is a mechanical act involving displacement. In

cardiology, during the embryonic phase, the myocardium undergoes a sophisticated self-organization

characterized by a transition from a simple cell layer to a complex, pulsating structure. Myocardial

progenitor cells exhibit spatial motility, migrating from the mesoderm to coalesce into fields that form

the heart [32]. The formation of the helical structure (looping) of the embryonic heart tube, essential for

its final function as a pump, is a key example of how intrinsic cellular chirality translates into large-scale

deformation and helical movement, a process that ensures the correct orientation of the organ. Excitation

in these systems is not merely a temporal event but a topological act of symmetry breaking that

translates into net spatial transport. The presented model applies to such scenarios because it simulates

how motile excitable units self-organize into a topologically protected collective rhythm, providing a

unified framework for understanding collective movement across diverse biological contexts.

Appendix A. Stability analysis of the Helical Excitable Dipole (HED)

The system describes the coupled evolution of a relative phase   and a relative spatial coordinate   on a

cylindrical manifold    For the reader's convenience, I reproduce here the Equations (5)-(6),

relabeled as (A1)-(A2):

Where    is the Gaussian interaction kernel (short-range) and Δ is the intrinsic

frequency detuning.

ϕ x

R× .S 1

= (x) cos(ϕ) = 2x cos(ϕ)ẋ W
′

e−x2
(A1)

= Δ − W(x) sin(ϕ) = Δ + sin(ϕ)ϕ̇ e−x2

(A2)

W(x) = exp (− )x2
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A.1. Stability analysis of the HED for Δ =0

Nullclines

The nullclines are the sets of points in the (𝑥,𝜙) phase space where either    or  . The 𝑥-

nullcline for Eq. (A1) is

This condition is satisfied if:   or   which means   for any integer 𝑛. The 𝜙-

nullcline for Eq. (A2) is

this condition is satisfied if:  , which means   for any integer n.

Equilibrium Points

Equilibrium points (fixed points) occur where both nullclines intersect. The equilibrium points are

therefore

for any integer 𝑛.

The Linear Stability Analysis (LSA) indicates that the equilibrium points (0,2𝜋𝑛) are unstable nodes

(sources), whereas the equilibrium points (0, 𝜋+2𝜋𝑛) are stable nodes (sinks).

Even in the isotropic limit where Δ=0, the basin of attraction of the single stable fixed point displays a

non-trivial geometry, shown by a numerical investigation. The outcome graph (Fig. A1) illustrates the

following elements: the colored background (red and blue) represents the basin of attraction. Each

colored area groups initial conditions that converge to a specific long-term behavior. The blue area

indicates initial conditions that converge to the stable, locked fixed point (green circle) at (0, π). The red

area indicates initial conditions whose trajectories do not converge to the locked state, leading instead to

unbounded phase rolling.

= 0ẋ = 0ϕ̇

2x cos(ϕ) = 0e−x2

(A3)

x = 0 cos(ϕ) = 0 ϕ = π/2 + nπ

sin(ϕ) = 0,e−x2

(A4)

sin(ϕ) = 0 ϕ = nπ

( , ) = (0,nπ)x0 ϕ0 (A5)
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Figure A1. Basin of attraction map for the Helical Excitable Dipole system in the isotropic, purely dissipative

limit Δ=0. The color overlay indicates the final long-term behavior based on initial conditions. The blue

region denotes initial conditions that converge to the stable, stationary locked state (green circle). The red

region indicates initial conditions that result in unbounded phase rolling. The dashed lines represent the

nullclines, white for ϕ, black for x. The fixed points are marked by circles: green for the stable node and

magenta for the unstable node.

A.2. Stability analysis of a HED for Δ>0

Nullclines

The condition for the x-nullcline remains unchanged from the Δ = 0 case, The condition for the 𝜙

nullcline changes due to Δ 

The conditions for the existence of real solutions of Eq. (A6) are   (Δ has been taken non-negative).

sin(ϕ) = −Δex
2

(A6)

Δ ≤ 1
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Equilibrium Points

Fixed points are the intersections between the nullclines. There are two main families of solutions in the

interval  :

is the stable/locked state (or sink, the green point in Fig. A2), whereas

is unstable/unlocked (a source, the magenta point in Fig. A2).

Differently from the previous Δ = 0 case, here a saddle point is also present, create by the nullcline 

. For 

This solution exists only if   so can be dismissed. For 

This solution exists only if   and the position 𝑥 of these saddle points (cyan points in Fig.A2) are

[0, 2π)

= arcsin(−Δ) + πϕsync (A7)

= arcsin(−Δ)ϕunsync (A8)

ϕ = π/2 + nπ ϕ = π/2

1 = −Δ ⟹ = −ex
2

ex
2 1

Δ
(A9)

Δ < 0 ϕ = 3π/2

−1 = −Δ ⟹ =ex
2

ex
2 1

Δ
(A10)

Δ > 0

= ±xsaddle − ln(Δ)
− −−−−−

√ (A11)
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Figure A2. Basin of attraction map for the Helical Excitable Dipole system for Δ=0.5. The color overlay

indicates the final long-term behavior based on initial conditions. The blue region denotes initial conditions

that converge to the stable, stationary locked state (green circle). The red region indicates initial conditions

that result in unbounded phase rolling. The dashed lines represent the nullclines, white for ϕ, black for x. The

fixed points are marked by circles: green for the stable node and magenta for the unstable node, cyan for

saddle fixed points.

The introduction of a non-zero frequency detuning (termed anisotropy in the main text) Δ explicitly

breaks the phase-reflection symmetry shown in Fig. A1. This perturbation induces a directed motion,

effectively creating an Adler-like ratchet potential that is the precursor to the system's helical excitability.

In order to further characterize the nature of the bifurcation from the locked to the unlocked state, I have

numerically computed the oscillation period   as a function of the anisotropy parameter Δ for the

HED. The results, presented in Figure A3, confirm the existence of a sharp transition around Δ𝑐 = 1. In the

unlocked regime (Δ>1), τ follows a scaling law well described by the function

τ = 2π

ϕ̇

τ = A/ Δ − 1
− −−−−√ (A12)
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This square-root dependence of the period on the distance from the critical point is a characteristic

signature of a Saddle-Node bifurcation, which is a common mechanism for the onset of synchronization

and oscillations in non-linear dynamical systems.

Figure A3. Oscillation period as a function τ of the anisotropy parameter Δ for the Helical Excitable Dipole.

The red circles represent the data obtained from numerical simulations. The continuous black line is a fit

curve following the scaling law Eq. (A12), highlighting the divergence of the period near the critical

bifurcation point Δc = 1.

As the parameter Δ approaches the threshold, the trajectory slows down in a "bottleneck" region. The

time required to complete a cycle (the period) diverges to infinity following the inverse square-root law.

In the context of biophysics and nonlinear dynamics, this corresponds to Type I excitability.

Appendix B. Interdipolar Forces

Numerical simulations in Section 3.2 reported a regular pattern of almost equispaced HEDs, which

diffuse spatially due to a repulsive interdipolar force (Type 1 solution, see Fig. 3). This appendix is

dedicated to the analysis of this force. To evaluate it, I consider two HEDs separated by a distance D and I
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numerically calculate the radial component of the net force between them. This measures the effective

interaction that drives their separation or approach. The simulation comprises N=4 COs (2 red and 2 blue)

placed randomly within a small initial radius of 0.5 units from the origin, evolving according to Eqs. (9)-

(10). The COs quickly form two dipoles that start to interact. I use a fixed random seed to ensure the

reproducibility of these initial positions across all simulations for different Δ values, allowing for a

consistent comparison of the resulting force profiles.

Figure B1. Effective radial force Feff as a function of the interdipolar distance D for different anisotropy

parameters Δ. For Δ = 0, the force drops strictly to zero at larger distances, leading to ramified patterns in

the many-body case. For non-zero Δ values, a weak residual repulsion persists, driving the crystalline

arrangements observed in Figure 3 of the main text.

Figure B1 displays the effective radial force Feff as a function of the interdipolar distance D for various

anisotropy parameters Δ. The results demonstrate a distance-dependent interaction profile. Short Range

Repulsion: The repulsive force increases significantly when the distance D is less than the characteristic

interaction length scale L=1. Force Decay: As the distance increases beyond D ≈ 1 the repulsive force

rapidly decreases. For Δ = 0 (black dotted line), the force drops strictly to zero at larger distances. This
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total cessation of repulsion allows the formation of the ramified patterns, described in the main text

(beginning section 3.2), as dipoles can stop interacting entirely when sufficiently separated. For non-zero

Δ values (colored lines), the repulsive force persists, albeit weakly, even at larger distances. This residual

repulsion prevents the indefinite aggregation seen at Δ = 0 and drives the system towards the ordered

crystalline arrangements reported in Figure 3 of the main text. While this pairwise approach neglects

potential many-body effects, it provides a reliable qualitative description for sufficiently spaced dipoles,

consistent with the dipolar interactions observed at low or vanishing anisotropy.

Abbreviations

The following abbreviations are used in this manuscript:

CO (Chiral Oscillator), HED (Helical Excitable Dipole), CW (ClockWise), CCW (CounterClockWise), SN

(Saddle-Node), SSB (Spontaneous Symmetry Breaking).

Supplementary Materials

The following supporting information can be downloaded at:

Video S1: title: Uniform type 1 pattern.

Video S2: title: Antivortex complex.

Video S3: title: Robustness against rupture

Video S4: title: Regime pattern for N=200, Δ=0.15.

Video S5: title: Regime pattern for N=500, Δ=0.1.

Video S6: title: Regime pattern for N=1000, Δ=0.01.
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