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The family of bent functions is a known class of Boolean functions that have

great importance in cryptography. The Cayley graph defined on   by the

support of a bent function is a strongly regular graph  , with  .

In this paper, we list the parameters of such Cayley graphs. Moreover, a

condition is given on  -bent functions  , involving the

support of their components  , and their  -ary symmetric differences.
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1. Introduction

A cryptosystem is an encryption and decryption

algorithm for a message. If Alice wants to send a

message   to Bob, the encryption algorithm   computes

the ciphertext   starting from a key , i.e. 

. Bob uses the decryption algorithm    to

recover   from a key  , i.e.  . Necessarily,

for all  ,  . Cryptosystems

are called private key if the parties know each other and

have shared information about their private keys, or

public key if it is not necessary that the two parties know

each other, and they have two public keys. The best-

known private key algorithms are    (Data

Encryption Standard) and its successor   (Advanced

Encryption Standard). The reader can find more

information on cryptography in  [1]. One of the most

important features of cryptographic algorithms is the

confusion, i.e., the relation between any bit and all the

plaintext appearing at random. After the linear

cryptanalysis techniques of H. Matsui  [2], one of the

research items in cryptography was to find functions as

far as possible from the linear functions, that is,

maximizing the Hamming distance, in order to resist

linear attacks, see  [3]. Among the family of Boolean

functions, such functions are called bent functions. In [4]

[5] a characterization of bent functions is given in terms

of strongly regular graphs. Here, we give considerations

on parameters of such strongly regular graphs and a

first characterization of  -bent functions. 

2. Preliminaries

Let    be the binary field. A Boolean function is a

function   and to denote   we will use two

different notations: the classical notation, where the

input string is given by   binary variables, and the  -

tuple vector representation  where 

  and    is the binary expansion of the

integer  . We will denote by   the support of  , i.e. 

Definition 2.1. Let   be a Boolean function.

We say that    is a linear function if  , 

.

We say that   is an affine function if it is a linear function

plus a constant in  .

We denote with   the set of all affine functions

The nonlinearity of a Boolean function    is the

minimum Hamming distance between    and an affine

function, i.e. 

Definition 2.2. A Boolean function    is called a bent

function if  .

Note that by Definition 2.2    must be even. Bent

functions are also called   (perfectly nonlinear). Here

we define the Abstract Fourier Transform of a Boolean
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function    as the rational-valued function    which

defines the coefficients of    with respect to the

orthonormal basis of the group characters 

, where    is the standard inner

product and  . Then 

Note that  . The Walsh spectrum is the set

of values of  . Here we investigate the spectrum in

terms of a graph eigenvalue problem.

3. The Cayley graph 

Definition 3.1. Let   be a group with identity  .

A Cayley subset is a subset   such that   and

whenever  , then  .

The Cayley graph   of   with respect to 

 is the graph whose vertex set is  , where two vertices 

 and   are adjacent if and only if  .

We modify this definition by dropping the condition 

, allowing loops in the Cayley graph.

Consider now the additive group  , where   is the

componentwise sum. For all  ,  , then

each subset of    is a Cayley subset. We can associate

each Boolean function    to the Cayley graph 

. The vertex set    is the whole 

, while the edge set is 

.

The graph has   vertices, which are the cosets

of   in  . Since eigenvectors of the Cayley graph are

exactly the group characters  ,

see [6], the following two results give a characterization

of the spectrum of   from the Walsh spectrum of  .

Result 3.2. [[4], Theorem 1] The  -th eigenvalue    of the

Cayley graph, which corresponds to the eigenvector  , is

given by 

Result 3.3. [[4], Proposition 2] 

1. The largest spectral coefficient is 

, with multiplicity 

.

2. The number of non-zero spectral coefficients is the

rank of the adjacency matrix of  .

3. If   is connected,   has a spectral coefficient equal to 

  if and only if its Walsh spectrum is symmetric

with respect to 0.

4. Strongly regular graphs

A strongly regular graph with parameters  ,

denoted by  , is a graph with    vertices,

each vertex lies on    edges, any two adjacent vertices

have   common neighbours, and any two non-adjacent

vertices have   common neighbours. We give now some

folklore results on strongly regular graphs, see  [7]  for

more details.

Result 4.1. .

The spectrum of the adjacency matrix of an 

 is fully determined by its parameters.

Result 4.2. A strongly regular graph    with parameters 

  has exactly three eigenvalues:  ,    and    of

multiplicity, respectively,  ,   and  , where: 

We write the spectrum as  . On the other hand, we

can express the parameters of a strongly regular graph

starting from its spectrum 

Corollary 4.3. Consider a  , with spectrum 

. Then   if and only if  .

Result 4.4. The parameters    and    of a 

 may be derived from its spectrum, since: 

In  [4][5]  a characterization of bent functions is given

from a graph theoretical point of view.

Result 4.5. [[4], Lemma 12] If   is a bent function, the graph 

 is a strongly regular graph with  .

Result 4.6. [[5], Theorem 3] Bent functions are the only

functions whose associated Cayley graph    is a strongly

regular graph with  .
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Proposition 4.7. The Cayley graph   of a bent function is

exactly one of the following:

Proof. From [[4], Definition 4] we know the three

eigenvalues    of  . From 4.4. we get the

parameters    and  , while 4.1. allows us to compute 

. 

Example 4.8. The first strongly regular graphs defined by

bent functions are

, i.e. the complete graph  .

, i.e. a trivial strongly regular graph made

of 2 disconnected edges.

.

.

.

.

.

.

.

.

Note that in each case, the graphs have the parameters of

the complements of the affine polar graphs  ,

which is the graph arising from a quadric    in the vector

space    and two points    represent

adjacent vertices if and only if  . Note that the

quadric is elliptic or hyperbolic while we consider the first or

the second example, respectively. See the table of strongly

regular graphs in [8] for more details.

5. Vectorial bent function

Consider now functions  , 

, where for each  , 

. The set of affine vectorial functions 

 is defined as in the case  . We can introduce

two different ways to express the nonlinearity of a

vectorial Boolean function: 

Definition 5.1. A  -bent function, or vectorial bent

function, is a function    such that 

, or equivalently, each linear combination

of   is a bent function.

In order to give graph-based properties of  -bent

functions, we need now to define the set operation

symmetric difference, which is the equivalent of the

logical operation  .

Definition 5.2. The symmetric difference between two sets 

 and   is 

Proposition 5.3. The power set of any set    is an

elementary abelian  -group under the operation of

symmetric difference.

Proof. The symmetric difference is commutative and

associative:

;

.

Moreover, the empty set is the identity, and each

element has order two:

;

.

An elementary abelian  -group is also called a Boolean

group, see [9] for more details.

The symmetric difference of a collection of sets is made

of elements contained in an odd number of sets. The  -

ary symmetric difference is defined as follows; 

Proposition 5.4. Consider a vectorial Boolean function 

, with  , and let 

  be the support of  , of  . If the

function    is  -bent, then the Cayley graphs 

  are strongly regular with    for all

index subsets  .

6. Conclusion

Future work should extend these notions to the case 

  odd, by taking into account    (almost perfectly

nonlinear) functions, i.e., functions which are as close as

possible to perfect nonlinearity.
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