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In this paper, we present a detailed and comprehensive review of the MAX phase (bulk) and their 2D

derivative MXenes on the basis of their synthesis, properties, and applications. MAX/Mexene have

emerged as a class of materials with tremendous potential for various applications in numerous

emerging technologies. We thoroughly surveyed almost all of the relevant literature on MAX/Mexene.

We provide a comprehensive report on the synthesis methods of MAX phases, including traditional

and innovative approaches such as solid-state synthesis and spark plasma sintering, highlighting

their structural and compositional diversity. The unique physical, chemical, and mechanical

properties of MAX phases, such as high thermal stability, electronic, magnetic, electrical conductivity,

and flexibility, are explored along with the underlying mechanism. Furthermore, the review highlights

the current research trend in MAX phase and MXene and their advancement in energy harvesting

applications such as H  production, solar cells, energy storage, catalysis, spintronics, electronic

devices and environmental remediation. Their added features are damage tolerance, radiation

tolerance, heat tolerance, crack-healing, heat exchangers, etc. In addition, this review provides

information on future research directions that utilize current knowledge and identify gaps. The

purpose of this review is to facilitate advancements in the understanding and application of MAX

phases and MXenes, positioning them as pivotal materials in next-generation technologies.
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I. Introduction

MAX phase has drawn the attention of the science and research community due to the high demands of

the 2D materials, and the exfoliation of MXene from it, which gives promising applications[1][2][3][4][5][6]

[7][8][9][10][11][12][13][14][15][16]  in various fields due to its large group of structural and combination

variances of the materials. The metal-nonmetal elemental combination variances in MAX phase (M

AX ), where metal (M) element having high temperature stability while the nonmetallic A element forms

the layered structure, as a result deliver a unique ceramic-like mechanical properties, high electrical, high

thermal conductivity, excellent machinability, and good corrosion resistance. However, for device

fabrication to integrate these unique properties for practical application, the exfoliation of MAX into the

2D layer (MXene) is crucial. MXene is a 2D sheet having few nanometer thicknesses with a large surface-

to-volume ratio that offers high interaction ability with various ions, enabling rapid charge-and-

discharge processes in energy storage applications. Moreover, the properties of MXene can easily be

manipulated to obtain desired functionalities through various methods such as strain engineering,

applied electric field, surface functionalization (-OH, -F, or -O groups), etc. Since then, the research

interest have been mounting on the production of MXenes from various methods such as solid state

reaction[17][18], hot pressing[19][20], spark plasma sintering(SPS)[21][22], self-propagating high-

temperature synthesis (SHS)[23][24][25][26], microwave-assisted heating[27][28], molten salt-assisted

synthesis[29], physical vapor deposition[30][31][32][33], chemical vapor deposition[34][35], and thermal

spraying[36][37]  to synthesize and find its correlation with distinct properties has been explored. It has

excellent properties such as corrosion resistance[38][39][40][41], crack healing properties[42][43][44][45][46]

[47], oxidation resistance[43][48][49][50][51][52][53][54]  and radiation resistance[55][56][57][58][59][60]. It has

shown wide promising applications as catalysis[61][62][63], biomedicine[64][65][66], energy storage[67][68],

sensors[69], and nanocomposites[26][67][70][71][72]. The history of MAX phases dates back to the 1960s; the

pioneer work done by Hans Nowotny and his coworkers[73], made their remarkable efforts resulted in the

discovery of more than 100 new carbides and nitrides within that decade. In those decades more than 30

s were called H or Hagg phases having chemistry M AX, where M is an early transition metal, A is an

element of group A (mainly III A and IVA) and X is C or N. Few years later in 1967 they discovered M AX

type phases that are hexagonal layered interleaved with layers of pure A forming a structure similar to H-

Phase. With time and research, more discovery[16][74][75][76][77][77][78][79][80][81][82][83][84][85][86][87][88][89]

[90][91][92][93][94] of different such phases finally leads to the realization of the general formulation M

n+1

n

2

3

n+1
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AX , which is known as the MAX phase (where  , M is an early transition metal, A is an element

from group   and X is C or N. Later, also discovered the hybrid structure of the MAX phase 

[33]).

The MAX phase parent compound of MXenes in its own has tremendous potential and promising

applications[71][95][96][97][98][99][100][101][102][103][104][105]  due to the diverse class of nanolaminate

materials showing dual metallic-ceramic properties. To date, there are 342 MAX phases that span 28 M

elements, 28 A elements, and 6 X elements, including alloys[106]. There is an emerging more stable

combination called the in-plane and out-of-ordered plane (i / o-MAX)[107][108], and a solid

solution[109]  adds more numbers to the present figure, but lacks a standardized formulation due to

complex structures[93][110][111], synthesis complexity[112], mechanical properties[113]  and lacks corrosion

resistance above a certain temperature[112].

Since the discovery of MXene in 2011[114], which forms the hexagonal layered exfoliate of the MAX phase,

researchers and engineers have devoted much of their time to studying its promising applications. It has

shown excellent properties including nanocomposite capabilities[15][15][115][116][117], high electrical

conductivity[118][119][120][121], outstanding mechanical strength[122][123][124], hydrophilic (water-attracting)

surfaces[125][126], high tunability[127][128], excellent flexibility[129], good capacitance[15][119][130][131][132],

and suitability for energy storage[119][133][133][134][135][136][137].

Furthermore, MXene is effective in applications such as nanofluids[138], thermal conductivity[139], and

devices such as sensors and actuators[140][141]. It also shows interesting electronic[142][143][144],

magnetic[145][146], optical[144][147], and thermoelectric behaviors, opening up a wide range of applications.

These applications include catalysis[148][149][150][151], electromagnetic interference shielding[12],

environmental management[152][153], lubrication[154][155], and antibacterial functions[156][157]. It will soon

surpass graphene and other 2D materials[158] which is studied exhaustively thus far.

Currently, MAX phases and MXenes have attracted considerable attention due to their exceptional

properties, enabling their effective use in photocatalysis[159][160], environmental remediation[161][162][163],

and capture  [164][165][166][167]. Their functionality in these areas is rooted in their remarkable

electronic, structural and chemical adaptability.

This review paper discusses its synthesis, properties, and applications in detail.

n n = 1 − 3

13 − 16 n > 3

CO2
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Figure 1. Elements involved in MAX phases, MXenes, and their intercalated ions. Blue-striped elements are

found only in MAX phases, and their MXenes have not yet been synthesized. Red-background elements are

the A elements in MAX phases that can be etched to form MXenes. Green-background cations have been

intercalated into MXenes. Adapted with permission from Ref.[168], © Copyright (2019) American Chemical

Society.
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MAX/MXene Methods/Properties Application Ref

,  ,  , 

Atmospheric Plasma Spray (APS)

method, Mechanical properties, high

thermal stability

High-temperature structures,

thermal barrier coatings for

gas-turbine engines, heating

elements

[169]

[170]

[171]

[172]

[173]

,  , 
Reactive sintering method, Filtration

membranes

Water purification, gas

separation, industrial

processes

[174]

[175]

[176]

,  ,  , PLA- Fused deposition modeling (FDM)

method, Tunable electromagnetism

Electromagnetic interference

shielding

[177]

[178]

[179]

Electrofriction properties
Electrofriction material,

lubrication

[180]

[181]

,  SPS + Powder Milling, Crack healing

[182]

[183]

Cu-MAX phase, 
Electrodeposition, Evaporation, High

electrical conductivity
Composite coating

[184]

[185]

Combustion synthesis and hot press

Method, compression properties,

abrasive wear behavior and thermo-

physics properties

Heat Sink [186]

 , Selective etching Method,lubrication Biomedical

[66]

[187]

[188]

[189]

[190]

ball milling   Selective etching

method, electrolyte/cation interfacial

charge transports properties

Supercapacitors [191]

AlCTi2 Ti3AlC2 AlCCr2 Al2O3

AlNTi2 Ti3AlC2 Ti3C2

Ti3SiC2 Ti3AlC2 AlCCr2

MoAlB

Cu/Ti3SiC2

AlCCr2 AlCTi2

AlCTi2

TiCx-TiB2

Ti3C2Tx Ti3AlC2

Ti3C2Tx

+
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MAX/MXene Methods/Properties Application Ref

,

Hot pressing Method, Damage

tolerance, electrical conductivity, and

machinability

Thermal shock resistance

[192]

[193]

,
selective etching method, chemical

properties
Batteries

[68]

[194]

[195]

Pressure-less sintering method,

physico-chemical properties
Photocatalysis [160]

 (M = Ti, Zr, Hf, V, Nb, Ta, Cr,

Mo, and W)

Theoretical simulations, Perdew–

Burke–Ernzerhof (PBE-D3)
CO  capture

[166]

[167]

 (X: C, N; T: O, F)
Full potential linearized augmented

plane-wave (FP-LAPW)
Spintronics [196]

Table I. Methods/properties and applications of different MAX and MXene materials

II. Structure of MAX phase and MXene

A. Structure of the MAX phase

The MAX phase is a nanolayered ternary group compound with hexagonal lattice structure and forms a

P6 /mmc space group with atomic planes of A atoms interleaving rock salt-structured [M C]-

octahedra[197][198]  shown in Fig.2. In Fig.2(a-c) the   MAX phase represents a class of materials with

the stoichiometry  , consisting of two layers of transition metal ( ), one layer of an element of the

A group ( ), and a single layer of carbon or nitrogen ( ) arranged in an alternating structure.

The   MAX phase features a stoichiometry of  , where three layers of transition metal alternate

with a single layer of the A group element and two layers of carbon or nitrogen. The   MAX phase is

characterized by a composition of  , containing four layers of transition metal interleaved with

one layer of an A-group element and three layers of carbon or nitrogen.

Fe2AlB2 -CAl2O3

Hf3 C2Tx CMo2 Tx

AlCCr2

NM2

2

XV2 T2

3 6

211

AXM2 M

A X

312 M3AX2

413

M4AX3
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Similarly, there are higher   values such as the   MAX phase, which follows the formula  , with

five layers of transition metal, a single layer of the A-group element, and four layers of carbon or

nitrogen, and the    MAX phase, which exhibits a stoichiometry of  , involving six layers of

transition metal, one layer of the A-group element, and five layers of carbon or nitrogen in a repeating

pattern.

Some of different type of MAX phase materials are as follows:

2:1:1    Ti ZnN[199]  V ZnC[200]  Nb CuC[201]  Mn GaC[202]  Mo AuC[203]  Ti AuN[204]  (Ti Cr ) AlC (x

, x )[205][206], V (Sn Fe )C[207] etc.

3:1:2    V AlC [208]  Ti SiC [23]  Ta AlC [209]  Ti ZnC [210]  Zr AlC [19]  (Ti V ) AlC [211]  (V Cr )

AlC [212] etc.

4:1:3   Ti AlN [213] V AlC [214] Nb AlC [215] Ta AlC [216] (Mo,V) AlC [217](Ti Cr ) AlC [107] etc.

5:1:4   Mo VAlC [218], (Ti Nb ) AlC [219], etc.

Some of different type of MXene materials are as follows:

Single transition metal MXene (2:1): Mo N[220], (Ti Nb )C[221], V C[222], Nb C[222], Mo C[223], Mo

C[224], Ti N[225], (V Nb )C[221], (Ti V )C[221], Ti C[226], W C[227], Nb C[228], Mo Y C[224]

Single transition metal MXene (3:2): Hf C [194] Ti C [116], Zr C [229] and Ti CN[226]

Single transition metal MXene (4:3):Ta C [226], Nb C [142], V C [230], Ti N [231](Mo,V) C [232]

Single transition metal MXene (5:4): Mo VC [218]

Double transition metal MXene (2:1:2) MXenes: Mo TiC [233], Mo ScC [234] Cr TiC [233]

Double transition metal MXene (2:2:3) MXenes: Mo Ti C [233]

In this way, the MAX phase forms a regular arrangement of atoms that form M X   layers, where X

atoms sandwiched between M layers and the layer of A atoms stack again alternatively with the M X

 layer along the c-axis direction[235].

Fig.1 illustrates the elements present in the MAX phases, MXenes, and their intercalated ions. The

elements marked with blue stripes are exclusive to MAX phases, and their corresponding MXenes have

not been synthesized yet. Elements with a red background represent the A elements in MAX phases that

can be etched to produce MXenes. Cations with a green background have been successfully intercalated

into MXenes.

n 514 M5AX4

615 M6AX5

→ 2 2 2 2 2 2 1−x x 2

= 0.25 = 0.75 2 0.67 0.33

→ 3 2 3 2 3 2 3 2 3 2 0.5 0.5 3 2 0.5 0.5 3

2

→ 4 3 4 3 4 3 4 3 4 3 3/8 5/8 4 3

→ 4 4 0.5 0.5 5 4

2 2−y y 2 2 2 1.33

2 2−y y 2−y y 2 1.33 1.33 1.33 0.67

3 2 3 2 3 2 3

4 3 4 3 4 3 4 3 4 3

4 4

2 2 2 2 2 2

2 2 3

n+1 n

n+1

n

qeios.com doi.org/10.32388/A3QP41 7

https://www.qeios.com/
https://doi.org/10.32388/A3QP41


There are more than one type of M elements, unlike the traditional trinary MAX phase that has the same

M elements. Such MAX phase is the so-called solid solution in which two or more different metals are

randomly distributed within and between the metal layers such as 

[236]. Similarly, in the same spirit, when more than two M metals

are present, it is called the high entropy MAX phase that has also been synthesized[237][238][238][239][240]

[241][242][243][244][245][246][247][248][249].

There are two other types of structure called the out-of-plane ordered[107][234][245][250][251]  (o-MAX)

quaternary MAX phase    or    and the in-plane ordered (i-MAX) phases 

,  ,  ,    and 

[108][252].

In i-MAX featuring a 211 stoichiometry, the M elements is in an in-plane arrangement. Theoretical and

empirical knowledge have allowed the formulation of rules governing i-MAX formation, involving

certain criteria such as a ratio of 2: 1 for M1: M2, the two metals differ significantly in size, with M2 being

larger than M1. Furthermore, electrons tend to occupy bonding orbitals, strengthening the connections

between atoms and the small A element, which influences how it fits within metal layers[110][253].

whereas o-MAX phase materials follow a general formula of  , with   being either 2 or

3. In these structures, two M   layers surround one or two M   layers within each M layer, creating a

distinctive arrangement. The first o-MAX phase,  , was discovered by a solid-state

reaction between   and  [18].

MAX phases can undergo phase transitions when exposed to extreme conditions, such as high

temperature or pressure[254]. These changes usually involve modifications to the layer stacking sequence

or a shift from a hexagonal structure to a more compact form. For example, at elevated temperatures,

MAX phases can transform from a hexagonal to a more organized or distorted configuration. Similarly,

when they are subjected to mechanical stress, these phases may experience delamination or exfoliation,

leading to the creation of MXenes. MAX phases, including Ti SiC  and Ti AlC, undergo phase transitions

under extreme conditions such as temperature and mechanical stress. At high temperatures, they can

change from a hexagonal structure to a more ordered or distorted structure[101][255][256].

( AlC and ( AlCTi1−xVx)2 V1−xCrx)2

( ,M′ M′′)3AX2 ( ,M′ M′′)4AX3

( , AlCMo2/3 Sc1/3)2 ( , AlCV2/3 Zr1/3)2 ( , AlCMo2/3 Y1/3)2 ( , AlCCr2/3 Zr1/3)2 ( , AlCCr2/3 Zr1/3)2

( ,M1 M2)n+1 AlCn n

1 2

(Cr2/3Ti1/3)3AlC2

AlCCr2 TiC

3 2 2
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Figure 2. MAX phase unit cells: (a) 211, (b) 312, and (c) 413 phases. Reprinted with

permission from Ref.[257]. © Copyright (2017) Elsevier.
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Figure 3. (a) Mn+1AXn phase unit cell with the c-axis nor- mal to the basal plane. (b) Nanolaminated

Mn+1AXn phase structure with n = 1, where the monolayer of the A element is interleaved by M-X-M

slabs. Redrawn from Ref.[258].

Figure 4. MAX phases and   phase structures

B. Structure of MXene

The structure of MXene retains the symmetry of its precursor MAX phase with P6 /mmc space group,

which has a hexagonal crystal structure and the general formula  , where M and X represent the

early transition metal and (C or N) respectively &  . However, during the etching process used to

separate MXene from the MAX phase, termination groups such as -F, -OH, or =O are added. This results

in a more general formula:  , where   and   represent the termination groups[259].

AMn+1 Xn

3

Mn+1Xn

n = 1, 2, 3

Mn+1XnTz n = 1, 2, 3 T
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Figure 5. Atomic structure of (a) pristine   with the two types of hollow sites A and B, and

terminated   in the four configurations: (b) MD1, (c) MD2, (d) MD3, and (e) MD4. M, X, and T

elements are respectively in red, brown, and blue. Reprinted (abstract/excerpt/figure) with

permission from Ref.[260] © Copyright (2018) by the American Physical Society.

Similarly, out-of-plane o-MXene has hexagonal symmetry with a general formula of    or 

, while in-plane i-MXene has the formula (M’ M” ) X. Upon functionalization and the

addition of termination groups, the stability of MXenes is further improved thermodynamically[261].

MXenes can also experience phase transitions when exposed to harsh conditions such as high

temperatures or mechanical stress. Such transformations play a crucial role in the properties of MXenes,

particularly in their use in energy storage and catalytic applications. These transitions typically involve

changes in the structural arrangement of the layers, such as a shift from a hexagonal structure to a more

compacted form. Specifically, Ti C T  MXene undergoes two main phases: (1) a low temperature phase

transition (700–1000    C), forming a mixture of Ti C and TiC , and (2) a high temperature transition

above 1000   C, resulting in a pure TiC  phase[262]. Mechanical stress, such as delamination of the MAX

phases, can also lead to MXenes forming as two-dimensional materials, altering their atomic

configurations and properties. These transitions are essential for the development of MXenes in

applications such as energy storage and catalysis.

XM2

XM2 T2

M′
2M′′X2

M′
2M′′

2X3 2/3 1/3 2

3 2 x

∘
2 y

∘
y
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III. Synthesis

A. Synthesis of MAX phase

In general, there are two approaches for MAX phase synthesis: top-down and bottom-up approaches.

Most traditional ternary MAX phases have been synthesized using the bottom-up approach. These

approaches involve powder metallurgy (powder synthesis) and thin film deposition[71][107][237][249][263]

[264][265]. These methods open the doors to substituting the A-site with different possible chemical

compositions, exploiting a wider range of material properties.

The top-down approach allows for modification of post-synthesis layer A, and we can expand the

elements of group A beyond group 12 to 16[201][266][267][268][269].

1. Bottom-up approach

The main characteristic of the bottom-up approach is the direct synthesis method, such as solid-state

reaction, hot pressing[19][20], spark plasma sintering(SPS)[270][271][272][273][274], self-propagating high-

temperature synthesis (SHS)[23][24][25][26], microwave-assisted heating[27][28], physical vapor

deposition[30][31][32][33], chemical vapor deposition[34][35], and thermal spraying[36][37].

2. Top-down approach

The top-down approach is characterized by the way the A-group layer is modified. These phases are

typically obtained from a bottom-up method, where the layers A are partially or completely modified

after synthesis using techniques such as molten salt-assisted synthesis[29], sputter deposition, laser

processing, ball milling, and reactive sintering[265], among others.

Fig.6 illustrates the different methods for synthesizing MAX phases, and Table II summarizes some of

the well-known synthesized MAX phases, properties and methods.

The following are some of the standard synthesis methods of MAX phase.
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Figure 6. Illustration of MAX Phase Synthesis methods
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Figure 7. Diagram of spark plasma sintering (SPS) setup

A1. Spark Plasma Sintering(SPS)

The synthesis of MAX phases by Spark Plasma Sintering (SPS) as shown in Fig.7 is a precise and efficient

technique that integrates high temperatures, uniaxial pressure, and pulsed electric currents[275][275][276].

The process begins with mixing stoichiometric amounts of fine powders, such as Maxthal powder,

consisting of a transition metal (e.g., Ti), an A-group element (e.g., Al), and a carbon or nitrogen source, to

achieve uniformity. The blended powder is then placed into a graphite die, with graphite foil used as a

protective layer to prevent sticking between the powder and the die components.

During sintering, the SPS system applies rapid heating rates, typically ranging from 50-100  C/min, to

reach the target temperature, which is generally between 1000  C and 1500  C, depending on the specific

MAX phase. At the same time, two different uniaxial pressures of 20 to 50 MPa are applied through two

axes to help the material become denser. This pressure helps to reduce air gaps between the particles,

encourages the particles to fit together more tightly, and improves the bonding between them, leading to

∘

∘ ∘
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a stronger and more solid structure. Pulsed direct current passes through the graphite die, producing

localized heating and plasma, which accelerates diffusion and the chemical reactions necessary for phase

formation. The temperature is maintained for 5 to 30 minutes to allow complete development of the MAX

phase structure. Controlled cooling follows to prevent structural defects, such as cracks or unintended

phase changes. The sintered material is then characterized using methods like X-ray diffraction (XRD) for

phase verification and scanning electron microscopy (SEM) for microstructural analysis. This method

yields high-purity MAX phases with customizable properties that can be subsequently converted into

MXenes by selectively etching out the A-group element. In this process, several factors contribute to the

final properties of the material. The choice of solvent can affect precursor dispersion and reactivity.

Temperature plays a critical role in driving the sintering process and ensuring proper phase formation.

The environment, such as a controlled atmosphere, prevents oxidation and preserves phase stability.

Pressure aids in densifying the material and improving crystallinity. Finally, the cost of preparation is

influenced by the energy-intensive nature of SPS, which requires specialized equipment to precisely

control these conditions.

A2. Self-Propagating High-Temperature Synthesis (SHS)

Synthesis of MAX phases using Self-Propagating High-Temperature Synthesis (SHS) involves an efficient

exothermic reaction that begins with the application of a small external energy input and then

propagates autonomously[277][278][279][280][281]. The process begins by preparing a mixture of

stoichiometric powders, typically comprising a transition metal (such as titanium), an element of group A

(such as aluminum), and a carbon or nitrogen source in appropriate ratios. These reactants are carefully

blended to ensure uniformity.

Once the powders are mixed, the reaction is initiated by applying heat, which triggers the exothermic

reaction between the fuel and the oxidizer. The heat generated during this reaction is sufficient to sustain

the process without the need for continuous external energy input, rapidly raising the temperature of the

reactants to more than 1000    C. This high temperature facilitates the formation of the MAX phase, a

metal carbide or nitride with a unique layered structure.

The SHS reaction is typically conducted in an inert atmosphere or vacuum to prevent unwanted oxidation

and ensure the desired reaction. The synthesis can be performed in different forms, such as powder

compaction or thin-layer deposition, to control the morphology and size of the final product. After the

reaction, the material was allowed to cool, usually rapidly, to preserve its microstructure and phase purity.

∘
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The resulting MAX phase was then characterized by various techniques, such as XRD and scanning

electron microscopy (SEM), to confirm the phase structure and examine its microstructure. SHS offers a

highly energy-efficient and cost-effective method for synthesizing MAX phases, producing high-purity

materials suitable for a range of advanced applications.

Maintaining temperature is vital in this process as it initiates and sustains the exothermic reaction

driving the synthesis and also controlling environmental factors, such as the atmosphere, is essential to

prevent oxidation and pressure plays a role in the reaction kinetics and the evolution of phases, while

SHS’s energy-efficient nature keeps preparation costs low by minimizing the need for external heating

compared to other methods.

Figure 8. Schematic diagram of CVD

A3. Chemical Vapor Deposition(CVD)

This method is usually used to obtain thin film MAX phases. Fig.5 represents the schematic

representation of CVD setup. It involves a sequence of steps where metal(M), aluminum(A), and

carbon/nitrogen-based precursor gases are introduced into a reaction chamber and undergo chemical
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reactions on a heated substrate, ultimately forming the desired MAX phase structure. Initially, gaseous

precursors, such as metal halides (e.g. titanium chloride, vanadium chloride), aluminum compounds (e.g.

aluminum chloride, aluminum alkyls), and carbon sources (e.g., methane, acetylene, or carbon monoxide),

are introduced into the chamber. This reaction chamber is heated to temperatures ranging from 800°C to

1100   C, depending on the specific MAX phase that is being synthesized.

When the gaseous precursors come into contact with the heated substrate, typically a ceramic or metal

surface, they react chemically to form the MAX phase material. For example, to synthesize Ti3AlC2,

titanium and aluminum precursors are introduced into the chamber, together with a carbon source.

These react at high temperatures to produce Ti3AlC2, with byproducts such as hydrochloric acid or other

gases being vented. The key to a successful CVD process lies in maintaining precise control over the

temperature, pressure, and precursor flow rates, ensuring the correct stoichiometry and crystalline

structure of the MAX phase. CVD can be performed at atmospheric pressure (APCVD) or low pressure

(LPCVD), depending on the requirements of the application. To achieve the desired MAX phase, careful

control over the chemical composition of the precursors is necessary. For example, the carbon source

must be accurately regulated to prevent excess carbon, which could lead to the formation of undesired

carbide phases instead of the intended MAX phase. Once the deposition is complete, additional post-

deposition treatments, such as sintering or annealing, may be applied to refine the microstructure and

enhance the crystalline quality of the MAX phase. This method allows for the production of dense,

uniform films that adhere well to the substrate, making it an effective approach for the fabrication of

MAX phases for various applications, including protective coatings, electronic devices, and energy

storage systems.

A4. Physical Vapor Deposition(PVD)

MAX phases through the Physical Vapor Deposition (PVD) process involve the deposition of metal (M),

aluminum (A), and carbon or nitrogen (X) atoms from a vapor phase onto a substrate, where they react

under controlled conditions to form the desired structure of the MAX phase[282][283]. The process begins

by introducing solid precursor materials, such as titanium, vanadium, or aluminum, into a vacuum

chamber where they are heated or evaporated. In some cases, carbon sources (such as graphite or

methane) are also introduced to ensure the carbon content necessary for MAX phase formation. The

chamber is typically maintained at low pressure, and the evaporated precursors are directed onto the

substrate surface, where they condense and react to form a thin film of the MAX phase. In PVD, the metal

∘
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and carbozn precursors undergo physical vaporization processes such as thermal evaporation,

sputtering, or laser ablation. Upon reaching the heated substrate, these atoms or ions condense to form

the MAX phase material. For example, to produce Ti3AlC2, titanium and aluminum are vaporized and

deposited on a substrate, where they react with carbon atoms, leading to the formation of the Ti3AlC2

structure. The main challenge in PVD for MAX phases is to achieve proper stoichiometry by controlling

the flux and energy of the arriving species, ensuring the correct atomic ratio between the metal,

aluminum, and carbon.

The PVD process can be performed using various techniques, such as thermal evaporation, sputtering, or

pulsed laser deposition (PLD), with each technique offering distinct advantages depending on the specific

requirements of the MAX phase. The process can be conducted under vacuum or low pressure conditions,

and the temperature of the substrate is typically controlled to ensure proper deposition and phase

formation. Once the MAX phase is deposited, post-deposition treatments such as annealing or additional

sintering steps may be required to refine the crystal structure and improve the phase purity of the final

product. The PVD process enables the formation of dense, high-quality MAX phase films that adhere well

to substrates, making it a promising technique for producing MAX phases for applications such as

protective coatings, electronic devices, and energy storage materials.
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Figure 9. Diagram of Molten Salt-Assisted synthesis. Reproduced with permission from Ref[284] Copyright

(2020) Elsevier

A5. Molten Salt-Assisted synthesis

This approach uses molten salts to accelerate reaction rates and allow the formation of MAX phases at

temperatures lower than those of conventional methods. The process starts with the selection of

precursors, including metal powders, salts (both metal and non-metal), carbon sources, and molten salts

such as NaCl or KCl. These materials are mixed in stoichiometric proportions and ball-milled for

uniformity. The mixture was then placed in a crucible, heated in a high-temperature furnace under an

inert atmosphere, and molten salt was added to aid in the diffusion of the reactant. The molten salt

functions as a flux, lowering the reaction temperature and helping to reduce the number of metal oxides

by carbon, which promotes the formation of carbide or nitride phases. Once the reaction is complete, the

system is cooled, and the solidified salts are separated from the product. The MAX phase is then washed

to remove any remaining salts or impurities. The final product is characterized using methods like X-ray

diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy to verify its purity,

structure, and morphology. This method offers benefits such as lower reaction temperatures, enhanced

diffusion of reactants, and better phase control, although challenges such as maintaining exact

stoichiometry and effectively removing molten salts persist. The technique has been successfully used to
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synthesize various MAX phases, such as Ti AlC , Ti AlC[284][285][286], ,  ,  , 

,  , as well as   and  [287][288].

Figure 10. Schematic representation of Thermal Spray Method

A6. Thermal Spraying

Thermal spraying is another method used to synthesize MAX phases, such as Ti AlC , by coating

substrates with powdered precursors that are heated and sprayed onto a surface. Fig.10 illustrates the

schematic process of the thermal spray method. The process typically involves using a high-temperature

flame or plasma to melt the precursor powders and propel them onto a substrate, where they rapidly cool

and form a solid coating. In the case of MAX phases, the powders generally consist of elemental titanium

(Ti), aluminum (Al), and carbon (C) or a mixture of these components in the desired stoichiometric ratios.

The thermal spraying method allows for the deposition of these materials in a controlled manner,

enabling the formation of a dense MAX phase coating. One key advantage of this method is that it can be

performed at relatively low temperatures compared to traditional sintering techniques, preventing

undesirable reactions or decomposition. In addition, the rapid cooling process helps to achieve finer

3 2 2 Ti3SiC2 AlNTi2 AlCTi2

Ti3AlC2 AlCV2 MoAlB Cr2AlB2

3 2
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microstructures. Various types of thermal spraying techniques, such as plasma spray, flame spray, or

high-velocity oxygen fuel (HVOF) spraying, can be employed depending on the desired coating

characteristics and the substrate material. After the spraying process, the MAX phase coating is often

subjected to post-deposition treatments, such as heat treatment or annealing, to further enhance the

quality and phase purity of the MAX phase. The method offers flexibility in producing thin, uniform

coatings and is particularly useful in applications where high-performance coatings with specific

mechanical properties, such as wear resistance and thermal stability, are required.

Figure 11. Schematic representation of Hot Pressing Method. Reproduced with permission from

Ref[289] Copyright (2020) Elsevier

A6. Hot Pressing

It is a popular method for making MAX phases by applying high temperature and pressure to compact

and form the material from powdered precursors. Fig.11 represents a schematic diagram of Hot Pressing

method. In this process, a mixture of elemental powders such as M, A, and X is placed in a mold. The

powders are then heated and compressed in a controlled environment, typically under an inert

atmosphere, to create the desired MAX phase.

The temperature during hot pressing is usually set between 1200   C and 1600   C[24], depending on the

specific MAX phase being performed. The pressure applied can range from a few MPa to several hundred

MPa, helping to make the material more compact, reduce air pockets, and ensure a uniform product. This

combination of heat and pressure speeds up the diffusion of atoms and encourages the formation of the

desired phase, resulting in a high-quality, dense MAX phase.

o o
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One of the main advantages of hot pressing is its ability to produce dense materials with minimal pores,

which is important to achieve strong and hard MAX phases. The process also allows for better control

over the grain structure, as the applied pressure and heat help align the grains in the final product. Hot

pressing is suitable for both small-scale laboratory production and large-scale industrial manufacturing

of MAX phases. However, there are challenges with hot pressing, such as ensuring an even temperature

and pressure throughout the sample, which can affect the quality of the final material. The method also

requires specialized equipment and careful optimization of conditions to achieve the desired properties

and phase purity[23][290]. Despite these challenges, hot pressing remains an effective and versatile

technique for making MAX phases with excellent mechanical properties.
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Ceramics

Composition
Applied Method Properties References

Ti3AlC2 SHS
TMD = 99.29%; HV = 4.22±0.96 GPa; KiC =

8.52±1.86 MPa1/2

[291]

Ti2AlC SHS
TMD = 74.56%; HV = 0.62±0.27 GPa; KiC =

7.88±0.57 MPa1/2

[291]

Ti2AlC SPS TMD = 94.42%; capacitance = 73 mF/g [22]

V4AlC3 SPS
TMD = 99%; HV = 6.74 ± 0.12 GPa; BS = 389 ± 19

MPa

[21]

Ti3AlC2 Molten Salt-Assisted TMD   99.0%; [284]

Nb4AlC3 Reactive Hot Pressing  = 7.10   10-6 °C-1; E = 350 GPa; KiC = 6.0 MPa1/2 [20]

Ti2AlC Ball Milling + SPS TMD = 95.0%; HV = 8.7 GPa;   = 0.35 [292]

Zr3AlC2C Reactive Hot Pressing HV = 4.4 ± 0.4 GPa [19]

Ti3SiC2

Molten Salt Shielded

Synthesis
TMD = 95.3% [288]

Ti3AlC2

Microwave-assisted

Heating
TMD = 98.5% [286]

Table II. Table illustrates some common MAX Phases fabricated by different methods and their Theoretical

Maximum Density (TMD), Vickers Hardness (HV), Bending Strength (BS), Fracture Toughness (KIc), Young

Modulus (E), Coefficient of Thermal Expansion (α), Friction coefficient (kfr) values.

>

α ×

kfr
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Figure 12. Schematic diagram of Ball Milling Method

A7. Ball Milling

The synthesis of MAX phases through ball milling follows a structured process that integrates

mechanical alloying with subsequent thermal treatment to create the desired nanolaminate structures.

Fig.12 represents schematic diagram of the process. Initially, the precursor materials required, which are

typically high-purity elemental powders of M (transition metal), A (IIIA group IIIA or IVA element), and X

(carbon or nitrogen), were accurately weighed in stoichiometric proportions. These powders are then

placed in a high-energy ball mill, such as a planetary or shaker mill, alongside milling media such as

hardened steel or tungsten carbide balls. To achieve optimal results, the ball-to-powder weight ratio

(BPR) is adjusted, usually within the range of 5:1 to 15:1, depending on the specific materials and the

milling setup. Milling is conducted under an inert atmosphere, such as an argon atmosphere, or in a

vacuum to prevent oxidation and contamination. During the milling process, repeated impact and

friction between balls and powder particles facilitate mechanical alloying. This process induces plastic

deformation, particle fracture, and cold welding, leading to a uniform powder mixture and a significant

reduction in particle size to the nanometer scale. The duration of milling, which can range from a few
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hours to several tens of hours, is crucial to obtaining a fine and homogeneous powder mixture. Extended

milling ensures thorough mixing and activates the powders, enhancing their reactivity in the subsequent

stages. The milled powder is then subjected to thermal treatment, typically in a tube or box furnace, to

promote the formation of the MAX phase. The powder is either compacted into pellets or placed in a

crucible before being heated to temperatures ranging from 1000°C to 1500°C, depending on the target

MAX phase. This heating process is carried out under an inert or reducing atmosphere, such as an argon

or argon-hydrogen mixture, to prevent oxidation. The temperature is maintained for an optimized dwell

time, often lasting several hours, to ensure a complete phase transformation. After synthesis, the sample

was cooled to room temperature and analyzed using techniques such as X-ray diffraction (XRD) to verify

the formation of the MAX phase. If secondary phases are identified, adjustments to parameters such as

milling duration, temperature, or stoichiometric ratios may be necessary. Finally, the resulting MAX

phase is examined using microstructural characterization methods, such as scanning or transmission

electron microscopy, to assess its laminar structure and purity. This approach is popular because of its

simplicity, cost-effectiveness, and ability to produce fine reactive powders.
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Category Synthesized

Single-

Metal

MAX

Phases

Al: Ta AlC[81], Ti AlN[293], Ti AlC [93], Zr AlC [19], Ta AlC [294], Ti AlC[81], V AlC[81], Cr AlC[81], Zr

AlC[19], Nb AlC[81], Hf AlC[19], Hf AlC [19], V AlC [295], Nb AlC [215], Ta AlC [296], Ti AlN [16], Ta AlC

[294], Ti Al C [297].

Si: Ti SiC [75], Ti SiC [33], Ti Si C [33], Ti Si C [33].

P: V PC[298], Nb PC[299].

S: Ti SC[300], Zr SC[300], Nb SC[299], Hf SC[92], Zr SB[301], Nb SB[302], Hf SB[301].

Fe: Ta FeC[303], Nb FeC[303], Ti FeN[303].

Co: Nb CoC[267], Ta CoC[267].

Ni: Nb NiC[267], Ta NiC[267].

Cu: Nb CuC[201], Ti CuN [304].

Zn: Ti ZnC[199], V ZnC[199], Ti ZnC [199], Nb ZnC[199], Ti ZnN[199].

Ga: Ti GaC[83], V GaC[81], Cr GaC[79], Mn GaC[305], Nb GaC[83], Mo GaC[81], Ta GaC[83], Ti GaN[83], V

GaN[92], Cr GaN[306], Ti GaC [307], Ti GaC [307], Mo Ga C[308][309].

Ge: Ti GeC[82], V GeC[79], Cr GeC[79], Nb GeC[30], Zr GeC[310], Ti GeC [77], Ti GeC [311], Ti Ge C

[311], Ti Ge C[311].

As: V AsC[312], Nb AsC[92].

Se: Zr SeC[313], Hf SeC[314], Zr SeB[315], Hf SeB[315].

Cd: Ti CdC[83], Ti Cd C [316].

In: Ti InC[82], Zr InC[82], Hf InC[82], Nb InC[83], Ti InN[83], Zr InN[83], Ti InC [307], Zr InC [25], Hf

InC [25], Hf InN[84].

Sn: Sc SnC[317], Ti SnC[81], V SnC[318], Zr SnC[81], Nb SnC[83], Hf SnC[81], Lu SnC[319], Hf SnN[320],

Nb SnB[310], Ti SnC [321], Zr SnC [25], Hf SnC [25], Ti SnC[322].

Sb: Ti SbP[323], Zr SbP[323], Hf SbP[323], Nb SbC[316], Ti SbC [316].

Te: Hf TeB[324].

Ir: Ti IrC[97].

Pt: Nb PtC[316].

Au: Ti AuC [97], Ti Au C [97], Ti Au C[325], Mo AuC[203], Nb AuC[316], Cr AuC[326], Ti AuN[204].

Ti: Ti TlC[83], Zr TlC[327], Hf TlC[327], Zr TlN[84].

Pb: Sc PbC[41], Ti PbC[83], Zr PbC[327], Hf PbC[327], Zr PbC [41], Hf PbC[41].

Bi: Nb Bi C[316].
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Category Synthesized

o-MAX

Al:  [328] [328] (Mo Ti )Al [251] (Mo Ti)AlC [250][251], Cr TiAlC [107], (Cr V

) VAlC [329], (Cr / V / ) AlC [329], (Cr / Ti / ) AlC [107], (Mo Sc)AlC [234], (Cr V )AlC [329], (Mo

Ti )AlC [251], Cr + Ti - AlC  ( )[107], (Cr V ) (Cr V ) AlC [329], Mo Nb AlC [330].

i-MAX

Al: W Mo R AlC (R = Gd, Tb, Dy, Ho, Er, Y)[331], Mo Sm AlC[332] Mo Dy AlC[332] W

Y AlC[227], W Gd AlC[333], W Tb AlC[333], W Dy AlC[333], W Ho AlC[333], W Er

AlC[333], (Mo / Sm / ) AlC[332], (Mo / Nd / ) AlC[332], (Mo / Gd / ) AlC[332], (Mo / Tb / )

AlC[332], (Mo / Ho / ) AlC[332], (Mo / Dy / ) AlC[332], (Mo / Er / ) AlC[332], (Mo / Tm / )

AlC[332], (Mo / Ce / ) AlC[332], (Mo / Pr / ) AlC[332], Mo Sc AlC[334], Mo Y AlC[108], W

Tm AlC[333], W Lu AlC[333] , V Sc AlC[252], V Zr AlC[335], Cr Sc AlC[18], Cr Y

AlC[18], Cr Zr AlC[336], (W Sc ) AlC[227], (Mo / Y / ) AlC[108], (V / Zr / ) AlC[108], (W Y

) AlC[227], , (Cr / Sc / ) AlC[18] , Cr Gd AlC[337], Cr Tb AlC[337], Cr Dy AlC[337], Cr

Ho AlC[337], Cr Er AlC[337], Cr Tm AlC[337], Cr Lu AlC[337], W Sc AlC[227] , W

Mo Gd AlC[331], (W Mo ) Tb AlC[331], (W Mo ) Dy AlC[331], (W Mo ) Ho

AlC[331], (W Mo ) Er AlC[331] , (Mo / Sc / ) AlC[234][334], (Cr / Y / ) AlC[24], (Cr / Zr / )AlC

[24], Mo Ce AlC[332], Mo Pr AlC[332], Mo Nd AlC[332], Mo Sm AlC[332], Mo Dy

AlC[332], Mo Ho AlC[332], Mo Er AlC[332], Mo Tm AlC[332], (W Mo ) Y AlC[331],

Nb (Al Au )C[316], Ti (AI Cu )C [338]

Ga: (Mo / Gd / ) GaC[111], (Mo / Lu / ) AlC[332], (Mo / Tb / ) GaC[111], (Mo / Dy / ) GaC[111], (Mo

/ Er / ) GaC[111], (Mo / Ho / ) GaC[111], (Mo / Tm / ) GaC[111], (Mo / Lu / ) GaC[111], (Mo / Yb /

) GaC[111], (Mn / Sc / ) GaC[111], (Cr / Sc / ) GaC[111], Cr Sc GaC[339] Mo Sc GaC[253], (Mo

/ Y / GaC[253], Mo Gd GaC[340], Mo Tb GaC[340], Mo Dy GaC[340], Mo Ho

GaC[340], Mo Er GaC[340], Mo Tm GaC[340], Mo Yb GaC[340], Mo Lu GaC[340], (Mo /

Y / ) GaC[336], (Mo / Sc / ) GaC[336], Mn Sc GaC[339] Mo (Ga Au ) C[203]

High-

Entropy

MAX

Phase

Ti VNbTaZr AlC (M = Zr, Hf)[255], Ti NbVZr SC[341], Ti VCrMoAlC [342], Ti V Zr Nb Ta

AlC N [343], M AlC  (M = Ti, V, Mo, Nb, Ta)[344].

Table III. Synthesized MAX Phases by Category

Mo2VAlC2 Mo2V2 AlC3 2 2 3 2 2 2 2 0.75

0.25 2 2 2 3 1 3 3 2 2 3 1 3 3 2 2 2 2 2 3 2

2 3 2 x 2 x 3 x = 0.5 0.7 0.3 2 0.2 0.8 2 3 2 2 3

1/3 1/3 1/3 2 2/3 1/3 2/3 1/3 4/3

2/3 4/3 2/3 4/3 2/3 4/3 2/3 4/3 2/3 4/3 2/3

2 3 1 3 2 2 3 1 3 2 2 3 1 3 2 2 3 1 3 2

2 3 1 3 2 2 3 1 3 2 2 3 1 3 2 2 3 1 3 2

2 3 1 3 2 2 3 1 3 2 4/3 2/3 4/3 2/3 4/3

2/3 4/3 2/3 4/3 2/3 4/3 2/3 4/3 2/3 4/3 2/3

4/3 2/3 2/3 1/3 2 2 3 1 3 2 2 3 1 3 2 2/3

1/3 2 2 3 1 3 2 4/3 2/3 4/3 2/3 4/3 2/3 4/3

2/3 4/3 2/3 4/3 2/3 4/3 2/3 4/3 2/3 2/3

2/3 2/3 0.5 0.5 4/3 2/3 0.5 0.5 4/3 2/3 0.5 0.5 4/3 2/3

0.5 0.5 4/3 2/3 2 3 1 3 2 2 3 1 3 2 2 3 1 3 2

4/3 2/3 4/3 2/3 4/3 2/3 4/3 2/3 4/3 2/3

4/3 2/3 4/3 2/3 4/3 2/3 0.5 0.5 4/3 2/3

2 0.2 0.8 3 1/3 2/3 2

2 3 1 3 2 2 3 1 3 2 2 3 1 3 2 2 3 1 3 2

2 3 1 3 2 2 3 1 3 2 2 3 1 3 2 2 3 1 3 2 2 3 1

3 2 2 3 1 3 2 2 3 1 3 2 4/3 2/3 4/3 2/3

2 3 2 3 4/3 2/3 4/3 2/3 4/3 2/3 4/3 2/3

4/3 2/3 4/3 2/3 4/3 2/3 4/3 2/3 2

3 1 3 2 2 3 1 3 2 4/3 2/3 2 0.1 0.9 2

2 2 2 2 3 2 1/3 1/6 1/6 1/6 1/6 2

x 1−x 4 3
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*Note: Table III represents one of the well-known synthesized MAX phases as Single-Metal, o-MAX, i-MAX and

high-entropy categories with examples. Added recent synthesized data and reproduced from Ref.[345]. © Wiley.

However, precise control over milling and sintering conditions is essential to avoid contamination and

ensure the successful formation of high-purity MAX phases.

A8. Liquid / solid state reaction

It is a commonly used technique to synthesize MAX phases, which involves the interaction between

liquid and solid precursors to drive phase formation[346][347][348]. The process starts with the careful

selection of precursors tailored to the specific (M AX ) phase being synthesized. Typical precursors

include transition metals such as titanium and vanadium, A-group elements such as aluminum and

silicon, and carbon or nitrogen sources such as graphite or boron carbide. These materials are finely

ground and uniformly mixed—often through ball milling—to achieve a homogeneous mixture with fine

particle sizes, which enhances the reaction kinetics. The prepared powder mixture is then compacted

into pellets to improve particle contact and suppress the development of unwanted phases. During the

heating stage, the compacted mixture is subjected to elevated temperatures under controlled conditions,

such as in an inert or vacuum atmosphere, to prevent oxidation. When the temperature exceeds the

melting point of the A-group element, a liquid phase is formed, which reacts with the solid transition

metal and carbon or nitrogen to yield the desired MAX phase. This liquid phase significantly accelerates

diffusion, promoting efficient phase formation and uniformity in the resulting structure. The reaction

conditions, typically within the range of 1000 to 1500  C, and the duration of heating are meticulously

optimized to ensure high product yield and minimal impurity content. After the reaction concludes, the

material is cooled, and optional post-synthesis treatments, such as annealing, can be applied to further

improve purity and crystallinity.

B. Synthesis of MXene

Thanks to M-A metallic bond which is weaker than the ionic and / or covalent M-X bond, it was possible

to exfoliate MXenes from precursor MAX phase[349][350][351][352][353].The MXenes are produced by

selectively etching specific layers of their MAX phase precursors. Selective etching is the widely used

top-down approach.

n+1 n

∘
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Etching is one of the common methods to obtain Mxene from the MAX phase, where the etched layers

are mixed with termination groups such as hydroxyl (-OH), oxygen (-O), or fluorine (-F). Those etched

layers are held together by weak forces such as hydrogen or van der Waals. The use of hydrofluoric acid

poses a risk; a different path has been explored. Ghidiu et al. first introduced the main substance used in

which the mixture of hydrochloric acid (HCl) and lithium fluoride salt was introduced in Ti AlC [354].

This provides a basis for the use of other fluoride salts such as (NaF, KF, and NH F)[355][355][356]. Several

bottom-up synthesis techniques have also been established, such as chemical vapor deposition (CVD)[4]

[357][358][359][360][361], the template method[362][363][364], and plasma-enhanced pulsed laser deposition

(PEPLD)[365][366]. Compared with the selective etching process, materials created through these bottom-

up approaches, especially CVD, exhibit high crystalline quality.

Figure 13. SEM images of MAX and MXene powders etched under various conditions.© Royal Society of

Chemistry Ref.[367].

3 2

4
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Figure 14. (a) Three main non-terminated MXene structures:  ,  , and  . (b) SEM images of 

,  , and   (left to right) following HF treatment. (c) Schematic representation of MXene

synthesis from MAX phases. © Royal Society of Chemistry Ref.[367].

The following are some common methods for synthesizing MXene.

B1. Selective etching methods

The selective etching method is a widely recognized and commonly used approach for the synthesizing

of MXenes from their MAX phase precursors. As illustrated in Fig.14, this method involves the targeted

removal of the "A" layer, typically composed of elements from group 13 or 14 of the periodic table such as

aluminum (Al) or silicon (Si), followed by the exfoliation of MXene layers after treatment with

hydrofluoric acid (HF). During the process, the MAX phase material is exposed to acidic solutions such as

HF or other fluoride-based etchants, which selectively break the bonds connecting the "A" element to the

surrounding layers. This reaction results in the formation of two-dimensional MXene sheets. Subsequent

refinement steps, including washing and delamination, were performed to purify and separate the

MXene layers, enabling their application in a variety of fields.

XM2 M3 X2 M4 X3

AlCTi2 Ti3AlC2 Ti4AlC3

qeios.com doi.org/10.32388/A3QP41 30

https://www.qeios.com/
https://doi.org/10.32388/A3QP41


The first MXene synthesized using this method was Ti3C2Tx
[116], obtained by immersing Ti3AlC2

powders in a 50 wt.% hydrofluoric acid (HF) solution. The differential reactivity of the M-A and M-X

bonds toward HF facilitated the selective removal of Al layers. This process has since been used to

produce various other MXenes[142][194][195][222][224][225][230][368][369].

Fig.13(a) shows the SEM images of    (MAX) powder, showing its characteristic compact layered

structure, (b-d) present multilayered powders    synthesized using HF solutions with

concentrations of 30 wt.%, 10 wt.% and 5 wt.%, respectively. In particular, only the 30 wt.% HF

treatment produces the distinctive accordion-like morphology. (e) illustrates    powder

synthesized via ammonium ( )-assisted etching, while (f) highlights the MILD etching method using

LiF in HCl. Both methods exhibit a limited opening of the MXene lamellae, similar to the results observed

with 5 wt.% HF etching. Finally,(g) and (h) show individual MXene flakes etched using 5 wt% HF and the

MILD technique, displayed on a porous alumina substrate.

B2. Chemical vapor depositions

Chemical Vapor Deposition (CVD) is a highly effective technique for the synthesis of MXenes, providing a

controlled environment to produce high-quality thin films or flakes. In this method, precursor gases,

which contain the elements necessary for the creation of MXene, are introduced into a heated reaction

chamber. These gases, often composed of metals like titanium and other components such as carbon or

nitrogen, react at elevated temperatures on a heated substrate to form a solid, thin layer of MXene. The

process starts with the deposition of metal layers, commonly titanium, onto a substrate. These metal

layers then react with carbon- or nitrogen-based gases to produce the desired MXene compound. For

example, MXenes of titanium carbide (TiC) or titanium carbonitride (TiCN) can be synthesized by

introducing carbon-rich gases such as methane (CH ) or nitrogen-containing gases such as ammonia

(NH ). CVD offers precise control over growth parameters such as temperature, pressure, and gas

composition, allowing manipulation of the morphology and structure of MXene. This leads to the

formation of uniform, thin MXene layers that can be transferred onto various substrates for further

processing. In 2015, Xu et al.[4]  introduced the first successful method to grow high-quality ultrathin

transition metal carbide (TMC) crystals by chemical vapor deposition (CVD). This approach utilized a

bilayer metal foil, consisting of copper (Cu) and a transition metal, as the substrate for crystal growth.

This method is especially advantageous for producing high-purity MXene films with controlled

Ti3AlC2

Ti3C2Tx

Ti3C2Tx

NH4

4

3
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thickness and consistency, making it suitable for applications in sensors, energy storage, and flexible

electronics.

B3. The hydrothermal method

It involves a reaction that occurs under high temperature and pressure within an aqueous

environment[370][371]. This process is carried out in a sealed container known as an autoclave, which

allows precise control over both temperature and pressure, thus facilitating the necessary chemical

reactions to generate MXenes.[372][373][374][375] In this technique, the MAX phase precursor is combined

with a suitable etching agent, typically a fluoride-based acid (such as hydrofluoric acid, HF). The mixture

is then exposed to elevated temperatures, typically between 100    C and 250    C, and kept under high

pressure for an extended period. These conditions promote selective etching of the "A" layer, commonly a

metal such as aluminum (Al) or silicon (Si), from the MAX phase, resulting in the formation of MXene

sheets. One of the main benefits of the hydrothermal method is that it allows for MXene synthesis under

conditions more moderate than that obtained with alternative methods such as selective etching with HF.

The controlled conditions within the autoclave lead to high purity and consistent quality of the resulting

MXenes. Additionally, this approach can be tailored to produce MXenes with different surface functional

groups, depending on the specific etching agents and reaction parameters used. Following hydrothermal

treatment, the MXene sheets are typically separated, washed, and exfoliated to produce a few-layer high-

quality MXenes suitable for a variety of applications, including energy storage[370][370], catalysis[376],

capacitor[371] and detection[377].

B4. Ball Milling Method

It is a mechanical technique used to synthesize MXenes by applying high-energy collisions to the MAX

phase precursor. In this process, the MAX phase powders are placed in a sealed container with hard

milling balls and, occasionally, a liquid medium. The container is rotated at high speeds, causing the

milling balls to collide with the MAX phase particles, imparting mechanical energy.[378][379][380]

This energy is sufficient to break the bonds between the "A" element (often aluminum or silicon) and the

surrounding metal layers of the MAX phase, resulting in exfoliation and the formation of MXene sheets.

The ball milling process is highly customizable and can be conducted under various conditions, such as

dry or wet milling, in an inert atmosphere, or at different temperatures, depending on the desired

properties of the MXenes. The physical and morphological properties of the resulting MXenes are

∘ ∘
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influenced by several factors, including milling type (dry or wet), milling speed, ball-to-powder ratio, and

milling duration. Huang et al.[179]  synthesized a Pt/Nb C MXene composite-based catalyst through ball

milling. They started by immersing 500 mg of Nb C MXene in 30 ml of 100% ethanol to prepare a

homogeneous solution, assisted by ultrasonication. Chloroplatinic acid was added to the solution and the

resulting sample was ball milled in a corundum tank at 150 rpm for 30 minutes to form the Pt/Nb C

MXene composite. The final product was filtered using a vacuum filter and annealed at 600    C for 2

hours under inert conditions. This mechanochemical technique offers a novel, efficient and

environmentally friendly method to produce noble electrocatalysts with Nb C MXene for energy storage

and conversion applications. Ball milling provides a versatile and scalable method for synthesizing

MXenes with controlled sizes, thicknesses, and surface characteristics, making it suitable for a wide

range of applications, including energy storage, sensors, and catalysis. After milling, the MXene sheets

are typically separated, washed, and exfoliated to obtain high-quality, few-layer MXenes, ready for

further processing or immediate use.

B5. Electrophoretic deposition

Electrophoretic deposition (EPD) is a technique used to produce MXenes by applying an electric field to a

suspension of MXene particles in a liquid medium, such as water or an organic solvent. In this process,

the dispersed MXene flakes migrate to an electrode when exposed to the applied electric field[381]

[382]  The first step in the procedure involves the preparation of a stable suspension of MXene. This is

achieved by dispersing exfoliated MXene sheets in a chosen solvent, with the addition of surfactants or

stabilizers to prevent particle aggregation and ensure even dispersion. The concentration of MXene in

the suspension is adjusted as a function of the desired film thickness and morphology. Once the

suspension is ready, it is placed in a container between two electrodes-one acting as the anode and the

other as the cathode. The electric field applied across the electrodes causes the charged MXene particles

to move toward the electrode of opposite charge. The MXene flakes then deposit on the electrode surface,

forming a thin film[383][384][385]. The deposition rate and film quality can be controlled by adjusting the

applied voltage, deposition time, and concentration of MXene in the suspension. After deposition, the

resulting MXene film is dried to remove any remaining solvent. Further processing, such as annealing or

sintering, can be performed to improve the structural integrity, electrical conductivity, and other

properties of the film. The electrophoretic deposition method enables the fabrication of uniform and

controlled MXene films, making it ideal for applications in areas such as sensors, energy storage devices,
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and flexible electronics, where thin, precisely structured materials are required. The advantages of

electrophoretic deposition include the ability to precisely control the thickness of MXene films, the

potential for scalable production, and the flexibility to use different solvents and deposition parameters

to customize the properties of the final film[386].

IV. Properties of MAX phase and MXene

1. Properties of MAX Phase

MAX phase is a class of ternary layered metal carbides and nitrides showing both metallic and ceramics

properties[23][95][320][367][387][388]  giving rise to variety in its applications. The strong metallic bond

between M layers gives good electrical and thermal conductivities, and the covalent bond between M-X

gives thermal stability. Its unique layered structure of the MAX phase is characterized by distinctive

properties and also allows the creation of hybrid materials by mixing the MAX phase with other

materials to reach desired applications.

Electronic Properties

The study of the electronic properties of MAX phases is crucial to understanding their various behaviors.

The study of Ti-based carbides ( ,  , and  ) has been carried out in a comprehensive

manner compared to other MAX phases. All MAX phases show high conductivity similar to that of

metals, with refractivities ranging from   to  [23][95][388]. Their resistivity increases linearly with

temperature and they have very low Seebeck coefficients[387]. For example, the electronic resistivity of 

 increases from   at   to approximately   at  [389].

Fig.17(d) shows the electrical conductivity and resistivity of large-scale Ti AlC synthesized by the

SHS/PHIP process from RT to 900   C, the resistivity increasing linearly, indicating the metallic

conductivity. The electronic band structure of Nb GaC, presented in Fig.15 and discussed in Ref.[390],

demonstrates that the Fermi level ( ) is represented by a horizontal dashed line, signifying the absence

of a band gap due to the overlap of conduction and valence bands. This indicates that Nb GaC is a metallic

solid. The energy dispersion along the  -A, H-K, and M-L pathways corresponds to the  -direction, while

the A-H, K- ,  -M, and L-H pathways describe dispersion within the basal ( ) planes. A smaller

dispersion is observed in the  -direction compared to the basal plane, suggesting that electronic

conductivity is higher in the basal plane. The effective mass tensor is anticipated to be larger in the  -
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0.07 2μΩm

AlCTi2 0.36 × Ωm10−6 300 K 1.0 × Ωm10−6 1200 K

2

∘

2

EF

2

Γ c

Γ Γ ab

c

c

qeios.com doi.org/10.32388/A3QP41 34

https://www.qeios.com/
https://doi.org/10.32388/A3QP41


direction, contributing to the reduced dispersion in that orientation. Consequently, the anisotropic nature

of electronic conductivity, a hallmark of MAX phases, including Nb AlC, is observed in these

materials[391].

Figure 15. Band structures and the corresponding total and partial density of states (DOS) for (a, c) Nb GaC

and (b, d) Nb AlC, obtained through GGA-PBEsol calculations. Reproduced with permission from Ref.

[390] Copyright (2023) Royal Society of Chemistry

Thermal Properties

A thorough understanding of the thermal properties of MAX phases requires studying their thermal

expansion coefficients, heat capacity, and conductivity at different temperatures. MAX phases are known

for their distinctive thermal conductivity and typically have thermal expansion coefficients in the range

of  . For example,   exhibits a relatively high thermal expansion coefficient. The
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thermal conductivity of these materials generally increases linearly with temperature, paralleling the

behavior of electronic resistivity. Additionally, the contributions of electrons and phonons to the overall

thermal conductivity change with temperature; electrons primarily dominate at room temperature, while

phonons play a more significant role in Al-containing MAX phases. This increased phonon contribution

in aluminum-rich compositions is attributed to the strong binding of aluminum atoms, which supports

coherent vibrations with adjacent atoms[290][392][393][394][395].

Fig17 (f) shows the thermal conductivity, molar heat capacity, and thermal diffusivity of large-scale Ti

AlC synthesized by the SHS/PHIP process over 200–1200   C. Fig17 (c) compares the temperature-

dependent thermal conductivity of the large-scale sample with that of the small-scale sample and other

typical MAX phases[389], (d) shows the variation of the electron, phonon, and total thermal conductivities

with temperature.

Figure 16. The thermal expansion behavior of Ti AlC N  over the temperature range of 25–

900 °C. Reproduced with permission from Ref.[396] Copyright SciOpen
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Mechanical Properties

MAX phases are distinguished by their unique microstructure and chemical bonding, which contribute to

exceptional mechanical properties at room temperature. They typically exhibit a high Young’s modulus,

flexural strength, compressive strength, and fracture toughness, although they have a lower shear and

hardness modulus. The high Young’s modulus and strength stem from strong covalent bonds between M

and A elements, while weaker bonds between the MX and A layers lead to a reduced shear modulus.

Although they have a low density (4.1-5 g/cm ), they maintain a high specific stiffness, especially 

, which compares favorably to   ceramics and exceeds that of Ti metal[397][398][399].

Exceptions like   and   have higher densities (up to 13.18 g/cm³). Generally, MAX phases

exhibit moderate hardness (2–5 GPa) and a Young modulus ranging from 282 to 340 GPa, placing them

between    and    ceramics, but above most metals. Although their flexural strength may be

lower than that of some ceramics, they show excellent crack resistance due to high fracture toughness,

similar to the interlocking microstructure of ceramics Si N )[400][401][402]. Mechanical enhancements

through solid solutions or particle reinforcements can improve properties such as flexural strength and

Vickers hardness. For instance, Ti Al Si Sn C ) exhibits increased flexural strength, while ZrC and

ZrO  improve the stiffness and hardness of fractures in composites  . Substituting Ti with V or Cr

can also increase the bulk modulus. The layered structure of MAX phases supports unique mechanical

responses, such as nonlinear elastic kinking behavior and complex deformation mechanisms such as

crack deflection and kink band formation, which are critical to their mechanical performance[389][403]

[403][404][405][406].

Fig.17(a) shows the flexural stress vs. displacement curves at high temperatures for large-scale Ti AlC

bulk produced by the SHS / PHI process reveal the brittle fracture behavior from RT to 900 °C, shifting to

plastic deformation beyond 950    C. The brittle-plastic transition temperature (BPTT) is identified

between 900 and 950    C, with a reduced slope suggesting a decrease in Young’s modulus. Fig.17(b)

illustrates the temperature-dependent flexural strength and fracture displacement, comparing the

results with samples of lower density. Above 950   C, the flexural strength decreases dramatically with

increased fracture displacement, while a higher relative density improves both properties without

affecting the BPTT[389].
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Figure 17. (a) Flexural stress–displacement curves and (b) corresponding flexural strength across the

temperature range from RT to 1000 °C, (c) Thermal conductivity as a function of temperature for large-scale

Ti2AlC synthesized via the SHS/PHIP process, for Ti2AlC, Cr2AlC, Ta2AlC, Nb2AlC, and Ti3SiC2. (d)

Temperature dependence of electrical conductivity and resistivity for large-scale Ti2AlC produced via the

SHS/PHIP process. (e) Temperature dependence of thermal conductivity, heat capacity, and thermal diffusivity

for large-scale Ti2AlC synthesized via the SHS/PHIP process, (f) Variation of electron, phonon, and total
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thermal conductivities with temperature. Reproduced from Ref.[389] with permission from Copyright(2013)

Elsevier

Magnetic Properties

Understanding the magnetic properties helps to obtain them in applications such as spintronics,

magnetic sensors, magnetic refrigeration, biomedical applications, data transfer, etc. The magnetic

ground state has been theoretically predicted for a large number of MAX phases and also experimentally

observed[407][408]. However, studies on magnetic MAX phases predominantly focus on the substitution

of manganese and chromium-based compounds. Such as  ,  ,  , and 

, as well as    and    and  [408]. Recent developments

made by Tao et al. in magnetic MAX phases include the ordered structures in the plane of 

  (where  )[339]  and  [332][340]  where (Rare-Earth)RE

comprising Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu. The theoretical prediction of promising

ferromagnetic properties shown by   will also enhance the exploration of work on the magnetic

MAX phase. These will add more candidates for the spintronics application.

Fig.18 represents the magnetic response measured with a vibrating sample magnetometer at three

different temperatures, reaching a maximum temperature of 300 K. The upper left inset shows the

magnetization in and out of the plane    in low applied fields at 50 K, where the coercive field in the

plane was determined to be 28 5 mT. A small remanence is observed in the in-plane direction. The

bottom right inset displays the temperature dependence of the saturation moment  , with a fit to the

functional form  , and the remanent moment   in units of the Bohr magneton per Mn atom[407].
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Figure 18. The magnetic response was recorded with a vibrating sample magnetometer

at three distinct temperatures. Reprinted with permission from[407]. © Copyright

(2023) American Physical Society

Optical Properties

MAX phases display notable anisotropic optical characteristics in the infrared and visible light regions,

with distinct spectral variations observed for different polarization directions. However, this anisotropy

reduces at higher energy levels, where the spectra for both polarizations converge and become almost

indistinguishable across various compositions. These optical properties are largely influenced by the

electronic structure of the materials, with the density of states (DOS) providing insights into the origins

of spectral peaks.
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Figure 19. (a) Real part ( ) and (b) imaginary part ( ) of the dielectric function for Nb

ScAC  (A = Al, Si) compounds. .Reprinted with permission from[409]. © Copyright

(2023) Springer Nature

In Fig.19 the larger imaginary dielectric constant signifies greater light absorption at specific

wavelengths. In contrast, the real part of the dielectric constant reflects the polarization properties of the

material. It relates to the speed of light within the material, where a higher value denotes a reduced light

propagation speed. One of the prominent applications of MAX phases is their effectiveness as coatings to

minimize solar heating. Reflectivity analysis of Nb ScAC  (A = Al, Si)[409] compounds shows a reflectivity
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that exceeds 44%, meeting the threshold for solar heat reduction[410][411]. This establishes their potential

as efficient thermal management materials. Furthermore, the refractive index values —  for

Nb ScAlC   and    for Nb ScSiC —underscore their capacity to control the phase velocity of

incident light, which is crucial for the precise development of electronic and photonic devices. MAX

phases offer outstanding optical properties combined with flexibility for diverse applications, including

solar energy control[412], advanced optical systems[413], and electronic device engineering. Their

anisotropic nature and high refractive indices make them particularly well-suited for specialized thermal

and optical functionalities.

A. Properties of MXene

MXene is a two-dimensional material derived from metal carbides and nitrides that is notable for its

exceptional properties and the wide range of possible compositions. This compositional versatility opens

up more room for potential applications, making MXene a highly promising material in fields such as

energy storage, catalysis, spintronics, and electronics.

Electronic Properties

Depending on the nature of the M, X and T groups, the electronic properties of MXene vary from metallic

to semiconductor[261][414]. Functionalization groups also play a vital role in the definition of electronic

structures[261][415][416] as shown in Fig.20. Due to significant spin-orbit coupling predicts the existence of

2D topological insulator as shown in Fig.23 and Fig.24 predicted from DFT calculation. In Fig.23, band

structures for  ,  , and    are calculated with and without spin-orbit

coupling (SOC). Considering SOC will introduce a band gap at the   point, which shows the topological

insulating behavior. Fig.24 illustrates the local density of states (LDOS) as a function of energy and

momentum for Mo HfC O  at the zigzag edge, with the Fermi level positioned at zero. The edge states

bridge the bulk valence and conduction bands, meeting exclusively at the M point. Several other

terminated MXenes, represented as M’ M” Xene oxides (for   and  ), have been theoretically

found to exhibit stability along with topological insulating properties. These findings suggest that such

MXenes could serve as a platform for future research in topological materials[417]. Furthermore,

electronic conductivity in MXene systems has been demonstrated to be anisotropic[418][419]. In Fig.23(a)

The states near the Fermi level are attributed to M -  orbitals, which contribute to electrical conductivity
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in MXene systems, and most terminated MXenes show metallicity compared to that of a

semiconductor[415][420].

Figure 20. Electronic band diagrams of (a) V C, (b) V CF , (c) V C(OH) , and (d) V CF(OH) in their

high-symmetry states, where the Fermi level is aligned to zero energy. Reprinted with permission

from Ref.[421]. © Copyright (2018) American Physical Society

Thermal Properties

Theoretical investigation by Zha et al.[422] found that the thermal expansion coefficient, electronic band

gap, and charge carrier mobility of the systems    (M = Ti, Zr, Hf) exhibit a highly anisotropic

nature. Using the BoltzTraP2 code, the electronic contribution to total thermal conductivity was

calculated Ref.[423][424]. Similarly, the contribution of the lattice was determined using the temperature-

dependent effective potential (TDEP) code[425][426][426].

It has been observed that both the in-plane thermal conductivity,  , and the out-of-plane thermal

conductivity,  , show a slight decrease as the temperature increases. An anisotropy ratio greater than 2

was predicted for the entire temperature range. This anisotropy comes from both electronic and lattice

contributions, with the lattice contribution being the most dominant Ref.[419].
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Figure 21. (a) Phonon dispersion across the full Brillouin zone (BZ); (b) temperature dependence of

specific heat; (c) thermal expansion coefficient variation with temperature; (d) Grüneisen parameter

distribution throughout the BZ. Reprinted with permission from Ref.[427] © Copyright (2016)

American Chemical Society

The dispersion of phonons throughout the Brillouin Zone (BZ), shown in Fig.21(a), was used to examine

the specific heat and thermal expansion coefficient of Mo C MXene. As depicted in Figures 21(b) and

21(c), the specific heat increases with temperature, reaching 290 J/kg·K at room temperature and 351 J / kg

K at 800 K. Mo C MXene exhibits a unique thermal expansion behavior compared to functionalization

MXenes and bulk materials; it contracts at low temperatures, with a negative thermal expansion

coefficient of -3.27 10  K  at 25 K, then expands at higher temperatures, reaching 3.65 10  K  at

800 K. Fig.21(d) shows that acoustic modes dominate the thermal behavior of Mo C MXene, the ZA mode

contributing to both thermal contraction and expansion. The TA mode mainly causes contraction, while

the LA mode drives expansion. Due to the low thermal expansion coefficient of Mo C MXene, a thermal

mismatch with pure molybdenum occurs, enabling the clean Mo C MXene to be obtained by rapid

cooling. This low thermal expansion also benefits practical applications by improving the temperature

stability[427].
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Mechanical Properties

The elastic behavior of Cr AlC single crystals was studied through first-principles calculations and

nanoindentation tests, producing    and  , with experimental values, using

the Oliver and Pharr method, of    and  , which confirms close agreement[428]

[429][430].

Kurtoglu et al. found that the elastic constant of MXene is twice larger than the corresponding MAX

phase[431] and also found that nitrides are more stiff than carbides[432][433]. The measured Young modulus

of   GPa is lower than that of graphene (  GPa) and h-BN (  GPa). However, this

value represents the highest Young’s modulus recorded for a solution-processed 2D material, exceeding

that of MoS  at   GPa and graphene oxide at   GPa[434]. However, experiments revealed

improvements in various mechanical properties, including tensile strength, elastic modulus, thermal and

electrical conductivities, as well as electrochemical capacitance[14][435][436][437][438][439].

Figure 22. The stress-strain relationship for Mo C MXene under biaxial strain. The

inset displays the linear regression of the initial curve, used to determine the biaxial

elastic modulus. Reprinted from Ref.[427]. © Copyright (2016) American Chemical

Society
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Fig.22 illustrates the stress-strain relationship for Mo C MXene, showing a biaxial elastic modulus of 

  GPa, slightly exceeding that of monolayer MoS . Beyond a critical strain of 0.086, the

material undergoes creep deformation, with an ideal strength of 20.8 GPa, close to that of monolayer MoS

 (23.8 GPa), highlighting its robust elasticity and strength.

Figure 23. Calculated GGA band structures for   (a, b),   (c, d), and 

 (e, f) with and without spin-orbit coupling (SOC). Including SOC introduces a gap at

the   point. Reprinted with permission from Ref.[440]. © Copyright (2016) American Chemical

Society
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Figure 24. Energy and momentum-dependent local density of states (LDOS) for 

 at the zigzag edge, with the Fermi level set to zero. Edge states connect

the bulk valence and conduction bands, intersecting only at the M point. Reprinted

with permission from Ref.[440]. © Copyright (2016) American Chemical Society

Magnetic Properties

Unfortunately, the majority of MXenes discovered so far, both theoretically and experimentally, have

been found to be nonmagnetic. Exceptions include a few specific compounds, such as (Cr Ti)AlC , Ti NF

, Ti N(OH) , Ti NO , V NF , V N(OH) , V NO , Cr NO , Mn C, Mn CF , Mn C(OH) , Mn CO , Mn N, Mn

NF , Mn N(OH) , Mn NO , Cr C, Cr CF , and Cr C(OH) [441][442][443]. Upon functionalization, some

MXenes have been predicted to retain a magnetic moment[444].

Mo2HfC2 O2

2 2 2
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Figure 25. Illustration of the localized magnetic moments in M NT  MXenes for various transition-metal

groups. (a) Side view of the MXene crystal structure with the unit cell highlighted. (b) Top view of a

monolayer MXene displaying octahedral coordination. (c) Simplified density of states considered in the

model. (d) Electron arrangement localized on transition-metal centers for groups IV to VII of the periodic

table, where dotted spins represent equal probability of occupation in either the top (T) or bottom (B) layer

states. Reprinted wih permisssion from Ref.[445]. © Copyright (2017) American Chemical Society

2 2
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Figure 26. Electronic band structure and density of states (DOS) for Mn NT MXenes. Site-projected DOS

for (a) Mn NF , (c) Mn NO , and (e) Mn N(OH) . Band structure plots for (b) Mn NF , (d) Mn NO , and (f)

Mn N(OH) . Reprinted from Ref.[445]. © Copyright (2017) American Chemical Society

Ferromagnetic (FM) ground states are critical for 2D magnetic materials, and five nitride MXenes (Mn

NF , Mn NO , Mn N(OH) , Ti NO , and Cr NO ) was studied[445] and demonstrated robust FM behavior .

For Mn NF , the FM phase is more stable than the nonmagnetic phase by 7.1 eV, with a magnetic moment

of  9.0   per formula unit, primarily from localized spin density near transition-metal atoms. Unlike

Mn C MXenes, which exhibit antiferromagnetic (AFM) states for specific terminations, nitride MXenes

maintain FM states across all terminations due to an additional electron from nitrogen, stabilizing FM

spin configurations.

The magnetic moments of different MXenes can also be estimated using a simplified model, mainly for

M NT   MXenes with    transition metals, but this approach can be extended to include    and 

  elements. However, for heavier elements, increased delocalization of electrons may lead to

nonmagnetic states, although larger atomic radii and reduced hybridization could still enable
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magnetism. From the theoretical study, using density functional theory (DFT), the results shown in

Fig.25 and Fig.26[445] confirm the predictions of the model, with minor deviations arising from electron

delocalization in 2D crystals. These findings highlight the tunability of MXene magnetism via

transition-metal selection and surface terminations, making them versatile candidates for magnetic

applications.

From Fig.26, the electronic band structure and DOS for Mn NT MXenes show robust half-metallicity with

metallic conduction for the majority spins and a wide (  eV) semiconducting gap for minority spins,

validated across all surface terminations.

Optical Properties

MXenes exhibit remarkable optical properties, making them ideal for use in photovoltaics,

photocatalysis, transparent electrodes, and optically conducting devices. These materials absorb light in

a wide spectrum, including the UV-visible (300–500 nm) and near-infrared (700–800 nm) regions Ref.

[446], with films as thin as 10 nm showing transmittance to 91%. Their optical properties can be tuned by

adjusting the film thickness or adding compounds such as tetramethylammonium, which enhances

transparency, or urea, hydrazine, and dimethyl sulfoxide (DMSO), which reduce it. MXenes also possess a

tunable bandgap (up to  2 eV) and surface terminations ( ,  ,  ), making them highly versatile

for advanced optoelectronic applications[367][447][448][449].

Additionally, MXenes exhibit strong light absorption as a result of their high-density electronic states,

and their localized surface plasmon resonance (LSPR) in the near- and mid-infrared ranges enables use

in sensors, photodetectors, and solar energy harvesting. These materials also show high photothermal

conversion efficiency, non-linear optical behaviors such as saturable absorption, and harmonic

generation, positioning them for photothermal therapy, ultrafast lasers, and optical limiters. Despite

challenges such as oxidation stability and scalable synthesis, MXenes hold great potential in photonics,

optoelectronics, and energy devices.

Ti C T  also demonstrates nonlinear optical properties[447], including saturable absorption (SA), where

light transmission increases nonlinearly with intensity. With a nonlinear absorption coefficient of 

  m V , Ti C T   is promising for optical switching applications[449][450][451]. This behavior is

attributed to plasmon-induced absorption when the laser wavelength matches the plasmon resonance

frequency. Ti C T  shows nonlinear absorption across 800–1800 nm, with one-photon absorption at low
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intensities and multi-photon absorption at higher intensities, making it suitable for ultra-fast laser

applications such as mode-locked lasers.

Moreover, Ti C T  is applicable in telecommunication (1550-1620 nm C band) and demonstrates superior

resilience under high laser energy compared to other 2D materials. Furthermore, when combined with C

, it forms optical diodes for signal filtering, and it can produce random lasing when dispersed in

rhodamine 101 solution[452].

Figure 27. Reprinted with permission from[66]. © Copyright (2023) Elsevier

V. Application

Application of MAX Phase and MXene

MAX phases and MXene have shown significant potential in various applications, as some of them are

listed in TableI with different synthesis, properties, and application methods, attributed to their versatile

chemical compositions.

Some of the applications of MAX Phase

High-Temperature Structural Materials: MAX phases exhibit excellent thermal stability,Ti AlC has

been rigorously tested at high temperatures and exhibits remarkable stability even at extreme

temperatures up to 1350  C[453][454][455][456], oxidation resistance[38][39][40][41], and creep

resistance[457][458], making them suitable for high-temperature applications in jet engines, gas

turbines, and nuclear reactors[42][102][182][183][459][460].
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Electrical and Thermal Conductors: Their metallic nature ensures good electrical and thermal

conductivity, making them ideal for use in electrical contacts[184][461] and heat sinks[186].

Wear-Resistant Coatings: MAX phases combine hardness with damage tolerance, providing excellent

wear and corrosion resistance[38][39][40][41][462]  for coatings on cutting tools, molds, and industrial

machinery[463].

Biomedical Applications: Biocompatible MAX phases like Ti SiC   are explored for use in medical

implants[187][188][464], prosthetics[189][465], and surgical tools due to their non-toxicity and good

mechanical properties[64][65][66].

Energy Storage and Conversion: MAX phases are studied for use in supercapacitors[191], batteries[68],

and fuel cells due to their electrical conductivity and stability under extreme conditions.

Radiation Shielding: MAX phases, particularly those based on carbides, are explored for radiation

resistance in nuclear applications[102][459], such as fuel claddings and containment systems.

Tribological Applications: Their self-lubricating properties make MAX phases ideal for sliding

components and seals in the aerospace and automotive industries[190][273][466].

Catalysis and Chemical Stability: MAX phases exhibit chemical stability in harsh environments,

making them suitable for catalytic supports and components in chemical processing[62][63][64][64][67].

Environmental Applications: Due to their resistance to thermal shock and oxidation[38][39][40][41][192]

[193], MAX phases are used in filters and components exposed to high-temperature exhaust gases.

Magnetic and Spintronic Applications:

Emerging studies suggest potential for certain MAX phases (or their derivatives like MXenes) in

spintronic devices and magnetic materials[196][408][467].

Photocatalysis: It can serve as precursors to photocatalytic materials for hydrogen production via

water splitting and pollutant degradation due to their tunable electronic properties and layered

structure[105][160][468].

Superconductors: MAX phases exhibit superconducting behavior under specific conditions,

attributed to their unique layered crystal structure and excellent electrical conductivity[469][470].

Some of the applications of MXene

Energy Storage Devices: MXenes are extensively used in supercapacitors[15][119][130][131][132], lithium-

ion batteries[471][472][473], sodium-ion batteries[474][475], and other energy storage devices due to their

high conductivity and tunable surface chemistry.

3 2
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Electromagnetic Interference (EMI) Shielding: The exceptional electrical conductivity[118][119][120]

[121] and the layered structure of MXenes make them highly effective for EMI shielding applications in

electronics[12][476][477].

Water Purification and Desalination: MXenes, with their high adsorption capacity and hydrophilic

surfaces[125][126], are used to remove heavy metals, dyes and salts from water[152][153][161][162].

Catalysis: MXenes act as efficient catalysts or catalyst supports in various chemical reactions,

including the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER) and the

reduction of carbon dioxide[148][149][150][151]. It has effective use in photocatalysis[159][160]

Biomedical Applications: MXenes are explored for drug delivery, biosensors[478][479][480],

photothermal therapy[163][481][482], and antimicrobial coatings[483][484]  due to their biocompatibility

and large surface area[156].

Sensors and Actuators: Their high conductivity and ability to interact with various molecules make

MXenes suitable for gas sensors[485][486], strain sensors[487][488], and biosensors[478][479][480].

Wearable Electronics: MXenes are used in flexible and stretchable electronics for applications such as

smart textiles[489][490], wearable health monitors[491][492] and electronic skin[493]s.

Thermal Management: It has high thermal conductivity, making it an effective material for heat

dissipation in electronics and other thermal management applications[494][495].

Electronics and Optoelectronics: MXenes are being studied for use in transistors, memory devices,

photodetectors, and other advanced electronic and optoelectronic devices[142][143][144][496][497][498].

Spintronics and Magnetism: Some MXenes exhibit magnetic properties[145][146]  and are being

explored for potential applications in spintronics and magnetic storage devices[1][467][499].

CO2 Capture: Functionalized MXenes exhibit excellent CO2 adsorption capabilities due to their

chemical tunability and large surface area, making them ideal for carbon capture technologies[165][166]

[166][500][501].

Superconductors: MXenes hold promise for superconducting technologies[502][503][504], using their

exceptional metallic conductivity and unique two-dimensional layered architecture under certain

conditions.
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Figure 28. Reprinted with permission from Ref.[468]. © Copyright (2024) Elsevier

VI. Conclusion

In summary, MAX phases and their 2D derivative MXenes have emerged as groundbreaking energy-

efficient materials appealing candidates for next-generation energy-efficient technological applications.

This review addresses current status, challenges, and provides general solutions for large-scale

production, improving the properties of MAX/MXenes, and highlighting their transformative potential

across a wide range of industries. This paper also provides a comprehensive report on several novel and

cost-effective techniques to synthesize the MAX phase and exfoliate 2D materials (MXene) from bulk.

MAX phases, with their unique combination of the metal-nonmetal layered hexagonal structure, possess

distinctive properties such as high electrical conductivity, high thermal conductivity, and mechanical

strength which make them promising in high-temperature applications in aerospace, automotive, and

energy industries. They also show impressive potential for application in extreme conditions due to their

high resistance, high thermal stability, and high corrosion resistance, positioning them as ideal

candidates for demanding environments where materials must perform reliably for extended periods.

However, the integration of bulk properties into modern technological devices is challenging, which

require high speed, high storage, low-power consumption, portability, etc. In order to fulfill the demand

of modern technology, it is necessary to scale down to the 2D nano-size compatibility, addressing all its
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merits. So, this review expands the traditional understanding of the 2D properties (MXene), which was

previously limited to the bulk (MAX phase). Although the 2D nanosheet of MXene is derived from MAX

phases, the horizons for these materials have been further broadened. The ability of MXenes to tune their

functionalities under various conditions such as strain engineering, applied electric field, surface

functionalization (-OH, -F, or -O groups), etc., makes them a key material for specific applications.

Modulation of the surface terminations of MXenes has opened up new possibilities for their use in

sensors, catalysis, and environmental remediation such as water purification and CO  capture. MXenes

are promising for the advancement of performance in energy storage and conversion, particularly in

lithium-ion and sodium-ion batteries, supercapacitors, photocatalysts, and other energy-

storage/harvesting systems, which could significantly add to the list of renewable energy technologies.

The versatility of MXenes lies in their excellent conductivity, mechanical flexibility, and ease of

functionalization, ideal for use in flexible electronics, sensors, and wearable devices. As the demand for

smaller, more flexible and multifunctional electronic devices increases, the ability of MXenes to be

integrated into such technologies could play a key role in the development of next-generation smart

devices, health monitoring systems, and wearable technologies. Despite the promising potential of MAX

phases and MXenes, challenges related to their synthesis, scalability, and long-term stability in various

environments are still associated.

Through our rigorous literature survey, we have noticed that MXenes are rarely explored in the field of

spin technology despite having all merits such as tunable electronic and magnetic properties, high

electrical conductivity, and ability to interact with magnetic fields. The integration of MXenes into

spintronic devices, such as spin valves, magnetic tunnel junctions, and spin injectors, could lead to the

development of faster, more efficient, and energy-efficient devices, which are crucial for the future of

information processing and storage. Understanding the emergence of macroscopic behavior of MXenes

by controlling the electron spin at a fundamental level is likely to unlock new possibilities and accelerate

the development of novel spintronic devices. In our next project, we aim to understand the fundamental

of spin-dynamics in MXenes employing first-principles density functional theory (DFT) calculations and

explore their magnetic properties, spin-polarized transport, etc. The project will also address the

development of efficient methods for energy-saving spintronics technologies that pave the way for

advanced information processing systems.
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