Graphene molecular nanomemories show unique electronic properties, and their small dimensions, structural strength, and high performance make them a charge storage medium for Nano memory applications. We use a set of techniques involving a solution of nanoparticles, which creates a very thin layer on the target substrate and is used as a sacrificial layer during the nanopatterning process.

Due to the interaction between nanoparticles, they can organize themselves and create a thin layer that forms a hole between them. This technique was originally called natural lithography. Due to the integral nature of colloidal particles and their hydrophilic character, they form a colloidal crystal with ordered cavities through which the substances of interest penetrate and deposit on the substrate. For example, polystyrene latex nanospheres can be used. Materials deposited on the nanoparticles disappear after immersing the sample in a suitable solvent and sonication. This process is similar to a removal process. The advantages of this technique include wide patterns, simplicity, good clarity, and the ability to combine it with other lithography techniques. On the other hand, this technique creates problems due to the limited forms available for patterned functional materials, the array of nanopatterns, and the existence of point defects. Combined nanolithography has also been used to perform successive exposures of chemical resists enhanced by optical lithography and electron beam lithography. Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas. Typically, the self-organization of the block copolymer is randomly oriented and lacks long-range order, but the previous top-down pattern of the substrate for lithography provides an oriented block copolymer. Combined nanolithography irradiation of a substrate causes the preferential growth of semiconductor material in the irradiated regions, which can be used to fabricate ordered arrays of semiconductor dots.

References

5. Afshin Rashid. (2023). Review of: "Reproduction (electrical nano memories) by the method combined nanolithography (11 V), Fast switching speed (1 microsecond)", Qeios. doi:10.32388/jg1x8x.

7. Sara Johnson. (2023). Review of: "Biosensors are very small electrodes with nanometer size and cellular dimensions that can detect chemical species through the stabilization of certain enzymes on their surface.", Qeios. doi:10.32388/sauwce.

