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Tabular data synthesis is crucial in machine learning, yet existing general methods-primarily based on statistical or

deep learning models-are highly data-dependent and often fall short in recommender systems. This limitation arises

from their di�culty in capturing complex distributions and understanding complicated feature relations from sparse

and limited data, along with their inability to grasp semantic feature relations. Recently, Large Language Models

(LLMs) have shown potential in generating synthetic data through few-shot learning and semantic understanding.

However, they often su�er from inconsistent distribution and lack of diversity due to their inherent distribution

disparity with the target dataset. To address these challenges and enhance tabular data synthesis for recommendation

tasks, we propose a novel two-stage framework named SampleLLM to improve the quality of LLM-based tabular data

synthesis for recommendations by ensuring better distribution alignment. In the �rst stage, SampleLLM employs

LLMs with Chain-of-Thought prompts and diverse exemplars to generate data that closely aligns with the target

dataset distribution, even when input samples are limited. The second stage uses an advanced feature attribution-

based importance sampling method to re�ne feature relationships within the synthetic data, reducing any distribution

biases introduced by the LLM. Experimental results on three recommendation datasets, two general datasets, and

online deployment illustrate that SampleLLM signi�cantly surpasses existing methods for recommendation tasks and

holds promise for a broader range of tabular data scenarios.

1. Introduction

Tabular data is integral to a wide array of machine learning applications across sectors like e-commerce and healthcare,

underscoring its foundational importance[1][2][3][4][5]. This widespread reliance ampli�es the urgent demand for high-

quality synthetic tabular data, particularly in recommender systems, where data sparsity poses signi�cant challenges[6]

[7][4]. Insu�cient quality and volume of datasets critically impair the performance and e�ciency of machine learning

models[8].

Traditional tabular data synthesis methods[9][10][11], focusing on a wide range of general tasks, primarily rely on

statistical and deep learning models, which are heavily data-dependent and e�ective with abundant data availability[12].

However, when applied to recommendation tasks, these methods not only struggle in scenarios characterized by

inherent data sparsity and scarcity but also fail to capture the semantic relationships between features, which is proven

to be more and more crucial in recommendation modeling[13][14]. Consequently, there is a pressing need for innovative
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approaches capable of generating high-quality synthetic tabular data from minimal input while understanding semantic

feature relations for recommendation tasks.

The advent of Large Language Models (LLMs) has marked a shift in possibilities[15], o�ering new capabilities through

few-shot learning and deep semantic understanding[16][17][18]. Despite their promise in synthetic data generation, LLMs

frequently encounter challenges with inconsistent distributions and inaccurately modeled feature relationships[19][20],

both of which are critical for e�ective recommendation modeling[21][22][23]. These challenges arise from an intrinsic

distribution mismatch between LLMs’ inherent knowledge and target datasets. Moreover, when using limited

exemplars, a simplistic random selection for few-shot learning might overlook important regions of the original

dataset, leading to reduced output diversity, as demonstrated in Figure 1.

To address these challenges, we propose SampleLLM, a novel two-stage framework designed to enhance the quality of

LLM-based tabular data synthesis in recommendation tasks. The �rst stage utilizes LLMs with Chain-of-Thought

prompts[24]  and a curated selection of diverse exemplars to improve semantic understanding and feature relation

modeling[25]  in generating synthetic data with limited input samples. The second stage further integrates a feature

attribution-based importance sampling technique to re�ne the synthetic data, reducing any distribution biases

introduced by LLMs by employing a semi-independence assumption for feature interactions that could streamline

computation while preserving the essential characteristics and relationships within the dataset.

Figure 1. Visualization of LLM-generated and original tabular

samples on the HELOC dataset reveals that the synthetic data lacks

distribution alignment and diversity, clustering around a few

centers within the original data distribution.

In summary, our contribution could be summarized as follows:

To the best of our knowledge, this is the �rst method to consider distribution alignment for LLM-based tabular data

synthesis in recommendations.
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We propose a comprehensive framework SampleLLM that combines a feature attribution-based importance sampling

strategy for distribution alignment with advanced few-shot LLM generation techniques. This integration

signi�cantly enhances the utility and distribution consistency of the generated tabular data.

Experiments conducted on three widely used recommendation datasets, two general datasets, and through online

deployment reveal that the synthetic tabular data generated by SampleLLM not only surpasses existing baselines in

recommendation tasks but also shows promise for broader application in general tasks.

2. Framework

In this section, we �rst describe the problem formulation of the tabular data synthesis, and then provide an overview of

SampleLLM and detail its key components.

2.1. Problem Formulation

The task of tabular data synthesis involves generating synthetic tabular data that closely resemble those in a given

dataset. The synthetic data is used for various purposes, including augmenting training datasets and conducting

experiments without exposing sensitive information. Formally, let   represent the original dataset

with   samples, where each   is a sample with   attributes and one label  , i.e.,  . The objective

is to develop a generative model    that produces a synthetic dataset with    samples    such that 

  exhibits similar statistical properties and distributional characteristics as    and could be applied to various tasks

with similar performance. These requirements can be formalized as follows:

Distributional Similarity: The synthetic dataset   should follow the similar distribution as the original dataset  .

This can be expressed as:

where   and   denote the probability distributions of the synthetic and original datasets, respectively.

Utility: The synthetic dataset   should be useful for the same downstream tasks as the original dataset  . If    is

used to train a machine learning model  , the model’s performance on downstream tasks should closely match that

of a model trained on the original dataset  . Formally, this can be expressed as: 

where   denotes the utility of   for model  . For simplicity, this aspect is referred to as Machine Learning

E�cacy (MLE) utility[26][27] in this paper. In addition, in terms of data enhancement[10][28], we aim for the machine

learning model    trained on the combined dataset    to achieve performance on downstream tasks that is

comparable to or surpasses that of a model trained exclusively on the original dataset  . Formally, this can be

expressed as: 

For simplicity, this aspect is referred to as augmentation utility in this paper.

By ensuring these properties, the synthetic dataset   can e�ectively supplement or substitute for the original dataset 

 in various applications, providing a valuable tool for data argumentation and analysis while preserving privacy and
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con�dentiality.

2.2. SampleLLM Overview

As illustrated in Figure 2, SampleLLM consists of two stages. In the �rst stage, the designed instruction and sampled

exemplars from the original dataset   are selected to serve as the input for the LLM, producing synthetic tabular data 

. In the second stage, a novel feature attribution-based importance sampling operation is performed to achieve

further feature relation modeling and distributional alignment between the synthetic and original datasets, resulting in

the �nal synthetic dataset  .

Figure 2. The overall structure of SampleLLM. (a) In the �rst stage, a manually designed instruction and   samples extracted

with clustering sampling are used as inputs to the LLM, which generates   synthetic samples. This process is repeated   times.

(b) In the second stage, a novel feature attribution-based importance sampling method is employed on the synthetic samples.

Speci�cally, in the �rst stage, an instruction    is designed to explain the data generation task to the LLM. This

instruction is �rst selected from a set of manually crafted instructions based on performance criteria, and then re�ned

by LLM with o�cial documents and a small number of samples in a Chain-of-Thought (CoT) manner to extract key

information. Following this, a cluster sampling method is applied to the original tabular data to generate   exemplars

represented by  . This ensures that the data generated by the LLM is diverse and closely resembles the original

distribution. By combining the instruction and exemplars as inputs, the LLM generates   synthetic samples using a few-

shot learning strategy. This process is repeated   times to produce a total of   synthetic samples, where  ,  , and   are

hyper-parameters. In the second stage, an innovative importance sampling method is applied to the synthetic dataset 

 to further align its distribution with that of the original data  . The weight of each sample is determined by the joint

distribution probability of the features and labels under a semi-independent hypothesis where the non-independent
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feature groups are obtained through the overall interaction map of the original dataset and the discriminant

probabilities of di�erent labels are given by a predictive model trained on the corresponding dataset.

Figure 3. A simpli�ed instruction example.

2.3. Designed Instruction

Traditional statistical and deep learning models are predominantly data-driven, necessitating substantial volumes of

samples to accurately model data distributions. This reliance signi�cantly limits their e�ectiveness when dealing with

recommendation tasks with small and sparse datasets, where synthetic data generation becomes crucial. Furthermore,

when it comes to textual features, these models typically use ID encodings as input, hindering their ability to capture the

semantic associations between features. To address these limitations, we leverage the general knowledge and semantic

understanding capabilities of LLMs for data synthesis via few-shot learning. A pivotal component of this approach is the

precise framing of the tabular data synthesis task within the prompt, referred to as the instruction, as illustrated in

Figure 3. Here, we identify the most e�ective instruction from a set of manually crafted options tailored to each dataset.

In our study, the �nal instruction for each dataset is selected from �ve custom-designed instructions. Speci�cally, for

each dataset, 1% synthetic samples are generated and incorporated into the training set. The instruction that delivers the

best performance is then established as the standard for that dataset. To further enhance the instruction with relevant

knowledge, we input the manually curated instruction, along with o�cial documents   and a few data samples  , into

the LLM, which iteratively re�nes the instruction expression using a Chain-of-Thought process. This procedure is

described as follows:

where the maximum value of iteration times   is �xed at 5. For simplicity, we denote the �nal output instruction as  .

2.4. Selecting Exemplars

As the key to few-shot learning, exemplars are crucial for providing LLMs with a small number of examples that

standardize the format, content, and distribution of LLM-generated samples. However, current studies[29] often select

exemplars randomly from the original dataset. This approach may fail to capture the diverse distribution of the original
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data, especially since the number of exemplars is limited by the maximum input tokens of the LLM. Furthermore, the

intrinsic distribution di�erences between LLM’s inherent knowledge and target dataset exacerbate this issue.

Consequently, as shown in Figure  1, signi�cant distribution discrepancies are observed between the generated and

original tabular samples.

To address these problems, two alignment methods are applied in SampleLLM. The �rst method aims to maintain

sample diversity during exemplar selection to avoid distribution concentration, as detailed below. The second method

discussed further in Section  2.5, leverages a novel feature attribution-based importance sampling method to model

critical feature relations and address the distribution di�erences caused by the LLM.

To ensure exemplars re�ect the diverse characteristics of the original data and mitigate the sample aggregation issue in

LLM output, a simple clustering-based sampling method is �rst proposed in SampleLLM for exemplar selection. This

approach is mathematically represented as follows:

Here,    clusters    are derived from the original dataset    using a clustering algorithm  —

speci�cally, the K-means method. From each cluster, one exemplar is selected using method  —in this case, random

selection—to form an exemplar set  . This approach ensures that each group of exemplars contains samples from

diverse regions of the original dataset’s distribution, thereby enhancing diversity and achieving better alignment with

the distribution characteristics of the original data.

As illustrated in Figure 2 (a), due to the maximum output token limitations in LLMs, the entire �rst stage of SampleLLM

will iterate   times, with   samples generated by LLM each time, where   and   are hyper-parameters. After generation,

the generated    samples will be formatted in tabular form and aggregated together to form a temporary synthetic

tabular dataset  .

2.5. Feature Attribution-based Importance Sampling

Although cluster sampling methods are designed to mitigate discrepancies in data distributions, inherent di�erences

caused by the LLM’s input-output processing still result in a distribution gap and di�erentiated feature interaction

frequency between the generated and the original data. This gap poses signi�cant challenges in recommendation

scenarios, where feature associations serve as a foundational modeling basis. To address these issues, SampleLLM

employs a feature attribution-based importance sampling method to further re�ne the feature relation and alignment of

distribution in    with that in  [30][31]. Our method is proposed because directly calculating the exact importance

weights for tabular samples is challenging due to the high dimensionality of tabular data, which complicates the

estimation of the joint distribution of the features and labels in samples:

One straightforward approach to simplify the calculation is to assume independence among all features:

{
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However, this assumption often diverges signi�cantly from reality, as it is generally impractical to assume complete

independence among all features in most datasets. Consequently, this approach may lead to inaccuracies in estimating

distribution probabilities, thereby complicating the data alignment process.

To mitigate these issues, SampleLLM adopts a semi-independence assumption where feature �elds containing

signi�cant interactions (e.g., �elds 1 and 8) are considered non-independent, while others are treated as independent.

This balanced approach reduces computational overhead while minimizing calculation errors, enabling the computation

of importance weights based on frequency statistics:

2.5.1. Feature Interaction Extraction

To determine the distribution probability of a sample within a speci�c dataset, as speci�ed in Equation (8), it is essential

to identify signi�cant feature interactions. This paper introduces a feature attribution-based method for extracting such

interactions.

For a dataset    linked to a particular prediction task and a deep learning-based predictive model  , we could quantify

the importance of each feature to the output by approximating model performance degradation after ablating this

feature with 1st-order Taylor approximation[32] as follows:

where    are features in  ,    are non-informative features like zero feature or random feature and    is typically a

randomly selected subset of   or a single sample containing all-zero values[33]. This approach quanti�es the importance

of each feature to the output by approximating model performance change after setting an informative feature to non-

informative.

To attribute feature interactions, we extend 1st-order Taylor expansion to 2nd-order, capturing the importance of

feature   to the importance of feature  . The resulting expression is:

Intuitively, this method measures feature interaction strength as approximated feature importance change when

switching interaction from informative to non-informative.

By applying this interaction attribution method to sample samples from the training set, we could capture the complex

interactions between feature �elds across the entire dataset. Therefore, summing the absolute values of interaction

maps   for all samples yields a comprehensive matrix that highlights the most signi�cant feature interactions in the

whole dataset, irrespective of whether their impacts on the output are positive or negative:

Interaction values above a threshold, de�ned by a hyper-parameter  , are then clustered to delineate independent and

non-independent feature groups, further re�ning data alignment:
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where the    function aggregates all pairs with overlapping feature �elds to form a feature group    (e.g., 

) with several feature �elds, resulting in   groups   where   is determined by

the aggregation process, ensuring  .

In this study, our objective is to align the distribution of the dataset    with that of the original dataset  .

Consequently, the feature groups are derived from    and are utilized for calculating the distribution probability of

samples in both   and  . This methodology facilitates a re�ned understanding of the underlying feature interactions,

thus enhancing model interpretability and improving alignment between datasets.

2.5.2. Obtaining Discriminant Probability

As a dataset, each tabular sample contains not only a set of features but also a label. Therefore, another critical challenge

in calculating the probability of a sample is obtaining the discriminant probability   for each sample 

. In SampleLLM, this is achieved by training a task-speci�c predictive model    on the

corresponding dataset:

For a speci�c task (e.g., binary classi�cation), two predictive models    and    are trained to predict the sample

discriminant probabilities on   and  , respectively.

2.5.3. Calculating Sample Weights

After obtaining the feature groups   and discriminant models   and  , the importance weights of samples can be

derived using the following formula:

where the �rst term is an alternative expression of Equation (8), and the second term is used to calculate the importance

weights based on the sample’s distribution probability in both the original and the synthetic datasets.    is the

frequency of related features in dataset  .

Finally, after obtaining all synthetic samples’ weights, the �nal synthetic tabular dataset    is created through an

importance sampling on  . The overall pseudo-code is also provided in Appendix A to further clarify the overall �ow of

SampleLLM.

3. Experiments

In this section, we conduct experiments on three recommendation datasets to address the following research questions:

RQ1: How does SampleLLM perform in comparison to other tabular data synthesis methods?

RQ2: How e�ective is the generated tabular data when used as a replacement for the original tabular data?
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RQ3: What impact do cluster sampling and feature attribution-based importance sampling in SampleLLM have in the

process of generating synthetic tabular data?

Moreover, two extensive general datasets are also applied to validate SampleLLM’s e�ectiveness in general tabular data-

related tasks. In the following sections, we �rst describe the experimental setup used in this study in the following

subsections. Subsequently, detailed analyses are provided for each research question based on our experimental results.

3.1. Experimental Setup

3.1.1. Dataset

We conducted experiments on three commonly used recommendation datasets with Click-Through Rate (CTR)

prediction tasks[34][35]  to verify the validity of SampleLLM, i.e., ML-1M1, Amazon2 and Douban3. In addition, a binary

classi�cation dataset HELOC4 and a multi-classi�cation dataset Covertype5 are further applied for extended

experiments to verify the potential of SampleLLM in general tasks. In accordance with previous studies[36][37], each

dataset is divided into training/validation/test sets in an 8:1:1 ratio. Data statistics could be found in Table 1.

Dataset Train Validation Test

ML-1M 800,167 100,020 100,022

Amazon 658,827 82,353 82,354

Douban 1,348,399 168,549 168,551

HELOC 8,367 1,045 1,047

Covertype 464,809 58,101 58,102

Table 1. Data Statistics.

3.1.2. Baselines

To verify the e�ectiveness of SampleLLM, a comprehensive comparison is conducted between SampleLLM and various

baseline approaches:

CTGAN[26]  utilizes a conditional generator and a mode-speci�c normalization method in synthetic tabular data

generation to address the complexities of tabular data, including mixed data types and imbalanced categories.

TVAE[26], a Variational AutoEncoder (VAE) adapted for synthetic tabular data generation, leverages specialized

preprocessing and a modi�ed loss function to handle mixed data types.

TabDDPM[38]  leverages a denoising di�usion probabilistic model to handle the inherent heterogeneity of tabular

data, providing superior generative performance across benchmarks.
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PATE-GAN[39]  leverages the Private Aggregation of Teacher Ensembles (PATE) framework to introduce di�erential

privacy guarantees into the Generative Adversarial Network (GAN) setting. By modifying the GAN discriminator with

the PATE mechanism, PATE-GAN ensures that the synthetic data generated maintains privacy while preserving data

utility.

ADS-GAN[40]  is designed to generate synthetic data that closely approximate the joint distribution of variables in

original datasets. Utilizing a conditional Generative Adversarial Network (GAN) framework, ADS-GAN ensures data

anonymization by minimizing identi�ability based on the probability of re-identi�cation.

GReaT[8]  leverages an auto-regressive generative LLM to synthesize realistic tabular data. This method e�ciently

models tabular data distributions by conditioning on any subset of features, allowing for �exible and authentic data

generation.

REaLTabFormer[27] generates high-quality synthetic data for both non-relational and relational datasets. It employs an

autoregressive model for parent tables and a sequence-to-sequence model for related child tables with GPT-2 LLM as

backbone modules, ensuring realistic data relationships and preventing data copying through target masking and

statistical bootstrapping.

3.1.3. Implementation Details

For ML-1M, Amazon, Douban and HELOC datasets, the widely used metrics of AUC and Logloss are deployed for

evaluation[41][42]. For Covertype whose task is multi-class classi�cation, the widely used metrics of weighted Precision,

Recall, and F1 score[43] are deployed for evaluation. For a fair comparison and clearly illustrate the e�ectiveness of each

module in SampleLLM. A simple Deep Neural Network (DNN) is selected as the predictive model for all tasks. Speci�cally,

for di�erent datasets and tasks, we �rst carried out a grid search for network parameters to ensure prediction

performance, in which the search range for the number of layers is {1-4} and the search range for the number of neurons

per layer is {16,32,64,128}. The simple grid search is also applied in selecting other hyper-parameters such as learning

rate and dropout rate in training. Meanwhile, the INT4 quantized version of Llama-3-70b-instruct-awq[44] is applied as

the LLM backbone for the �rst stage of SampleLLM. In addition, we ran each experiment 10 times and reported the

average performance.

3.2. Overall Performance (RQ1, 2)

This section gives overall performance comparisons between SampleLLM and various baselines on the augmentation

utility and MLE utility as illustrated in Section 2.1 to answer the RQ1 and RQ2.

3.2.1. Augmentation Utility

As illustrated in Equation  (3), the utility of synthetic data could be evaluated by the data enhancement e�ect after

injecting synthetic data into the original data[10][28]. Speci�cally, we generate 10% synthetic data for the training set

using di�erent baselines, and integrate them with the original training set for training. The performance of the �nal
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predictive model could, therefore, serve as evidence to measure the utility of the synthetic data. The experimental results

are presented in Table 2. A case study is also provided in Appendix C for visualization analysis.

Approach

ML-1M Amazon Douban HELOC CoverType

AUC  Logloss  AUC  Logloss  AUC  Logloss  AUC  Logloss  Precision  Recall  F1 

Original 0.8173 0.5163 0.7075 0.4602 0.8016 0.5158 0.7638 0.6445 0.7395 0.7339 0.7250

PATE-GAN 0.8154 0.5153 0.7022 0.4620 0.8010 0.5162 0.7648 0.6461 0.7388 0.7350 0.7258

ADS-GAN 0.8147 0.5157 0.7026 0.4619 0.8016 0.5151 0.7672 0.6451 0.7414 0.7413 0.7312

CTGAN 0.8148 0.5156 0.7027 0.4631 0.8016 0.5150 0.7677 0.6419 0.7417 0.7366 0.7295

TVAE 0.8143 0.5162 0.7031 0.4616 0.8019 0.5146 0.7701 0.6455 0.7422 0.7378 0.7305

TabDDPM 0.8141 0.5159 0.7036 0.4619 0.8020 0.5150 0.7704 0.6424 0.7418 0.7388 0.7299

GReaT 0.8153 0.5198 0.7040 0.4616 0.8021 0.5147 0.7703 0.6444 0.7423 0.7440 0.7317

REaLTabFormer 0.8156 0.5182 0.7041 0.4611 0.8022 0.5145 0.7707 0.6417 0.7428 0.7351 0.7264

SampleLLM 0.8180* 0.5140* 0.7082* 0.4601* 0.8027* 0.5139* 0.7732* 0.6403* 0.7445* 0.7437 0.7364*

Table 2. Augmentation utility. The boldface denotes the best score. The underline indicates the second-best score. The

“Original” method indicates training without synthetic data and is not considered in scoring.  : higher is better;  : lower is

better. “*” indicates the statistically signi�cant improvements (i.e., two-sided t-test with  ) over the best baseline.

From Table 2 we can conclude that:

For baselines without LLM in modeling, TabDDPM and TVAE outperform GAN-based models in most cases, verifying

the e�ectiveness of more detailed modeling for distribution alignment in di�usion probabilistic models and VAE

models.

For the ML-1M, Amazon, and Douban datasets, traditional models generally struggle to match the performance seen

on the original data. However, they tend to perform better on the HELOC and Covertype datasets. This disparity

highlights the importance of complex feature associations in recommendation modeling, which traditional models

fail to capture due to their inability to understand semantic relationships. GReaT and REaLTabFormer outperform

other baselines, showcasing LLMs’ strength in modeling feature relations through semantic comprehension.

Additionally, by utilizing alignment methods, SampleLLM achieves superior AUC and Logloss across all datasets.

SampleLLM outperforms all baselines in most cases, illustrating the e�ectiveness of LLM’s semantic understanding

in modeling feature relations and data distributions and the e�ectiveness of the feature attribution-based importance

sampling method in further aligning the feature correlations and data distribution of the generated data with the

original data.

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↑ ↑

↑ ↓

p < 0.05
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3.2.2. MLE Utility

As illustrated in Equation (2), the utility of synthetic data could also be evaluated by supplanting the real data in training

a predictive model. The corresponding evaluation method is referred to as Machine Learning E�cacy (MLE) utility[26]

[27]. Speci�cally, to reduce the cost of training time, we generate 10% synthetic data for the training set using di�erent

baselines and directly use them as the training sets for model training. The performance of the �nal predictive model

could, therefore, serve as evidence to measure the utility of the synthetic data. The experimental results are presented in

Table 3.

Approach

ML-1M Amazon Douban HELOC Covertype

AUC  Logloss  AUC  Logloss  AUC  Logloss  AUC  Logloss  Precision  Recall  F1 

Original 0.8173 0.5163 0.7075 0.4602 0.8016 0.5158 0.7638 0.6445 0.7395 0.7339 0.7250

PATE-GAN 0.4944 0.9450 0.5800 0.5001 0.7560 0.5600 0.6215 0.6906 0.7126 0.7152 0.7006

ADS-GAN 0.5590 0.6771 0.5802 0.5819 0.7548 0.5624 0.7211 0.9640 0.7069 0.7115 0.6953

CTGAN 0.5602 0.6774 0.5775 0.6092 0.7551 0.5603 0.6289 0.6817 0.7055 0.7132 0.6991

TVAE 0.5622 0.6776 0.5828 0.5981 0.7552 0.5610 0.7627 0.5856 0.7070 0.7091 0.6906

TabDDPM 0.5334 0.6806 0.5853 0.5005 0.7556 0.5603 0.7388 0.6028 0.7105 0.7132 0.6993

GReaT 0.5596 0.8181 0.5881 0.4986 0.7562 0.5615 0.7444 0.5987 0.7111 0.7134 0.7010

REaLTabFormer 0.5574 0.7718 0.5900 0.4992 0.7567 0.5604 0.7628 0.5826 0.7175 0.7103 0.7023

SampleLLM 0.5668* 0.6758* 0.5922* 0.4977* 0.7590* 0.5571* 0.7652* 0.5799* 0.7196* 0.7159* 0.7086*

Table 3. MLE utility. The boldface denotes the best score, and the underline indicates the second-best score. The “Original”

method indicates training with the original training set and is not considered in scoring.  : higher is better;  : lower is better.

“*” indicates the statistically signi�cant improvements (i.e., two-sided t-test with  ) over the best baseline.

From Table 3 we can conclude that:

Almost all methods exhibit poorer performance compared to directly using the original training set (“Original”). This

result is intuitive, as synthetic data cannot fully replicate or substitute the nuances of the original data. Interestingly,

SampleLLM surpasses “Original” on the HELOC dataset, likely due to the dataset’s data scarcity. The model’s

convergence rate may remain similar on HELOC whether trained on the original training set or synthetic data.

The performance degradation across all methods is most pronounced on the ML-1M dataset. This is likely due to the

discrete, sparse, and strongly correlated nature of the features in ML-1M. Notably, SampleLLM outperforms other

baselines across all datasets on both augmentation and MLE utility measures, demonstrating its suitability for tabular

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↑ ↑

↑ ↓

p < 0.05
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data synthesis on recommendations and even more various downstream tasks such as binary classi�cation and

multi-class classi�cation.

3.3. Ablation Study (RQ3)

This section veri�es the e�ectiveness of each module in SampleLLM through ablation experiments to answer RQ3.

Speci�cally, we compare the augmentation utility of SampleLLM on the Douban dataset with the following substitutions:

w/o LLM (-LLM): with TabDDPM, a non-LLM baseline as the alternative of the LLM in the �rst stage of SampleLLM;

w/o cluster sampling (-CS): without cluster sampling in the �rst stage of SampleLLM. The exemplars are selected

randomly.

w/o importance sampling (-IS): without the feature attribution-based importance sampling in the second stage of

SampleLLM.

We also calculate their SDV similarity[45], a score measuring distribution similarity considering column shapes and pair

trends. The result is shown in Table 4.

Figure 4. Ablation study of augmentation utility on Douban.

Models SampleLLM -LLM -CS -IS

SDV Similarity 94.83% 92.32% 94.13% 93.26%

Table 4. SDV Similarity Score with the original dataset.

Based on Figure 4 and Table 4, we could conclude that:

Replacing the LLM backbone in the �rst stage of SampleLLM with the TabDDPM results in a signi�cant performance

decline for SampleLLM. This decline may be attributed to LLM’s superior ability to model feature relations and joint

distributions at the semantic level, which allows it to better approximate the sample distribution of the original data
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compared to baseline methods. This characteristic is crucial for ensuring the e�ectiveness of feature attribution-

based importance sampling in the second stage of SampleLLM, as the distribution similarity between the two datasets

positively impacts the e�ectiveness of the importance sampling method[46] when the sample amount is �xed.

Without the cluster sampling method in selecting exemplars at the �rst stage, SampleLLM also su�ers from

performance decline, indicating that selecting diverse exemplars is essential in LLM’s few-shot learning process.

Without the feature attribution-based importance sampling in the second stage, SampleLLM’s performance

degenerates signi�cantly, indicating that re�ning sample distribution and feature relation is vital in LLM-based

tabular data synthesis.

In order to further intuitively illustrate the e�ectiveness of di�erent modules, a visualization analysis is conducted

through the T-Distributed Stochastic Neighbor Embedding (TSNE) method for the synthetic tabular data generated by

the above alternatives, as shown in Figure 5. From these sub�gures, we could observe that:

As depicted in Figure  5(b), substituting the TabDDPM baseline model for the LLM in the �rst stage fundamentally

results in a worse synthetic data distribution (especially in the middle part), despite the integration of feature

attribution-based importance sampling in the subsequent stage. This observation substantiates our initial analysis.

As shown in Figure  5(c), the selection of random exemplars over those derived from cluster sampling leads to an

overly concentrated synthetic data distribution in comparison with Figure 5(a) when generated through the LLM.

Although Figure 5(d) shows a relatively similar shape, the point density in di�erent regions di�ers greatly from the

original dataset. This demonstrates that, in the absence of feature attribution-based importance sampling, achieving

a comprehensive alignment with the original dataset is challenging.
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Figure 5. Visualization analysis of the ablation study.

4. Online A/B Test

The Huawei app advertising platform contends with the challenge of low recall rates for cold-start apps, primarily due to

the sparse user interaction data resulting from limited exposure. This scarcity hinders existing models from achieving

global optimality. To address this challenge, we implemented SampleLLM to generate synthetic interactions between

users and cold-start apps. In the user pro�le generation phase, clustering sampling was employed to iteratively select

user pro�le seeds, which were then utilized by the LLM to synthesize diverse user pro�les, simulating app exposure

across a wide range of user groups. The LLM further integrated these pro�les with the cold-start app’s features and

descriptions to predict user click behaviors, preserving the result as a raw dataset for distribution alignment.

Subsequently, we decomposed the complete feature sets into several strong interaction feature clusters using Hessian-

based methods on a previously trained recommendation model. The distributions of these feature clusters were

calculated based on occurrence frequency. This allows us to determine the importance weights of each synthetic sample,

which serves as augmenting data to improve training for cold-start apps.

For deployment, we downsampled one day’s user data and clustered it into 1,000 groups using Spark. From each cluster,

samples were selected as seeds according to cluster size for subsequent data synthesis. The selected user pro�les,

combined with app descriptions, served as seeds for Qwen2.5 to simulate user click behaviors on the apps. The

synthesized samples were then assigned importance weights based on statistics extracted from the current day’s
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recommendation model, ensuring alignment with real user behavior for non-cold-start apps. These synthetic samples

are utilized as augmentation for the following week without further updates.

We integrated the model trained with synthetic data as a new pipeline in the user-item recalling module. During the

experimental phase, real cold-start samples were updated daily, while synthetic data received incremental updates

weekly. The experiment lasted a total of one week and exhibited a 2% improvement in RPM (Revenue Per Mille), a

1.86% improvement in ECPM (E�ective Cost Per Mille) in our cold-start scenario, thereby validating the method’s

e�ectiveness.

5. Related Work

Tabular data synthesis has evolved to address diverse needs across domains, initially through probabilistic models like

the Synthetic Data Vault (SDV)[45]  that focused on privacy and statistical integrity. The introduction of deep learning

approaches, including GANs[26][40][39] and VAEs[26], has furthered this �eld, o�ering solutions to issues such as data

scarcity and privacy. Models like CTGAN and TVAE[26] e�ectively handle speci�c challenges, including mixed data types,

signi�cantly enhancing the quality of synthetic datasets. Specialized techniques, such as TabDDPM[38], leverage models

like denoising di�usion probabilistic models for better generative performance across benchmarks[30][47]. However,

these methods often require large datasets, limiting their e�ectiveness in data-scarce contexts, especially in

recommendation scenarios[48][49][50][51]. Moreover, they fail to capture the semantic associations between features[52]

[53], which are increasingly important in recommendation modeling.

The rise of transformer[54]  architectures[55]  and LLMs[56][57][58][59]  has introduced new possibilities for tabular data

synthesis, thanks to LLMs’ few-shot learning[16][60][61]  and semantic understanding capabilities[62]. Methods like

GReaT[8]  and REaLTabFormer[27]  have explored converting tabular data into natural language to leverage LLM

strengths. Despite promising outcomes, these approaches often fail to address alignment issues between LLMs and

target datasets, leading to distribution divergence. Instead, our proposed method, SampleLLM, addresses these

shortcomings by combining few-shot learning with alignment techniques to better match distributions and feature

relationships of generated and original datasets, thereby enhancing data utility and downstream task performance in

recommendations.

6. Conclusion

In this paper, a two-stage LLM-based framework SampleLLM is proposed to integrate LLM with sampling methods for

optimizing tabular data synthesis in recommendations. Speci�cally, a manually designed instruction, together with a

group of exemplars generated through a cluster sampling method serves as the input prompt for few-shot learning via

LLM. Then a novel feature attribution-based importance sampling method is proposed to serve as a second stage for

further feature relation modeling and distribution alignment. By doing so, SampleLLM is able to generate synthetic

tabular data with semantic understanding, higher utility, and distribution similarity. Experiments on three public
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recommendation datasets, two general datasets, and an online application demonstrate the e�ectiveness of the

proposed SampleLLM.

Appendix A. Pseudo-code of SampleLLM

To elucidate the overall process of SampleLLM, we present the pseudo-code in Algorithm 1. Speci�cally, SampleLLM

operates in two distinct stages. The �rst stage (i.e., lines 1-7) employs a cluster sampling technique for exemplar

selection in LLM’s few-shot learning, aimed at generating an initial synthetic tabular dataset, denoted as  . In the

second stage (i.e., lines 8-12), a novel feature attribution-based importance sampling method is proposed to enhance the

modeling of feature relationships and achieve distribution alignment between the synthetic dataset   and the original

tabular dataset  . This process results in the �nal synthetic tabular dataset,  .

Appendix B. Overall Interaction Map and Feature Groups

In this section, we present the overall interaction maps and feature groups for all �ve experimental datasets, as

illustrated in Figure 6, and Table 5. It is important to note that the interaction maps and feature groups may exhibit

slight variations from the provided �gures and tables due to �uctuations in the performance of the predictive model

trained on each dataset.

Ds′

Ds′

Do Ds
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Figure 6. Interaction maps for di�erent datasets. The numbers on the axes

represent the indices of the feature �elds.
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Dataset Feature Group

ML-1M [1, 2, 3]

Amazon [1, 2]

Douban [1, 2, 5]

HELOC [1, 8]

Covertype [1, 7, 8]

Table 5. Feature groups. Note that only groups with more than one feature �eld are shown in the table for simplicity.

Appendix C. Case Study

This section presents a case study using TSNE visualizations and SDV similarity[45], a score measuring distribution

similarity considering column shapes and pair trends, to analyze the synthetic tabular data generated by high-

performance baselines such as TVAE, TabDDPM, and REaLTabFormer, thereby highlighting the advantages of

SampleLLM. As shown in Figure 7 and Table 6, TVAE and TabDDPM struggle to e�ectively replicate the original data

distribution. Even with the incorporation of LLM, REaLTabFormer’s distribution remains concentrated in several central

regions, as noted in Figure 1. In contrast, SampleLLM demonstrates signi�cant improvements in aligning with the

original sample distribution by leveraging the few-shot learning capabilities of LLM and employing a novel two-stage

alignment strategy.
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Figure 7. Case study on HELOC dataset.

Models SampleLLM TVAE TabDDPM REaLTabFormer

SDV Similarity 90.10% 85.96% 84.84% 87.23%

Table 6. SDV Similarity Score with the original dataset.
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Footnotes

1 https://grouplens.org/datasets/movielens/1m/

2 https://jmcauley.ucsd.edu/data/amazon/

3 https://www.kaggle.com/datasets/fengzhujoey/douban-datasetratingreviewside-information
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4 https://huggingface.co/datasets/mstz/heloc

5 https://archive.ics.uci.edu/dataset/31/covertype
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