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Abstract This paper proposes two new indices for measuring the difference between two 
probability distributions: one is named “distribution similarity index (DSI)” and the other is named 
“distribution discrepancy index (DDI)”.  These two indices are derived based on the concepts of 
informity and cross-informity in the recently proposed informity theory.  Both indices range 
between 0 and 1.  A low DSI value or a high DDI value indicates a large difference between two 
probability distributions.  A high DSI value or a low DDI value indicates a small difference.  Three 
examples are provided to compare the proposed indices with existing similarity and discrepancy 
indices. 
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1. Introduction 
 
Measuring the difference between two probability distributions is an important task in many fields 
of science and engineering, including statistics, data science, machine learning, and imaging 
processing.  There are two types of indices for measuring the difference: similarity index and 
discrepancy (or divergence) index.  A commonly used similarity index is the Bhattacharyya 
coefficient (Bhattacharyya 1943).  The Bhattacharyya coefficient was originally proposed by 
Bhattacharyya (1943), but was reinvented by Matusita (1955), so some authors referred to it as the 
Matusita measure (e.g. Dhaker et al. 2019).  Another commonly used similarity index is the 
overlapping index (Weitzman 1970).  Both the Bhattacharyya coefficient and the overlapping 
index tell us the degree of overlap between two distributions.  Both range between 0 and 1, where 
0 indicates that two distributions have no overlap and 1 indicates that the two distributions 
completely overlap.  Table 1 shows the calculation formulas of these two similarity indices 
 
Table 1. Two existing similarity indices for comparing two distributions 

 Two discrete distributions X1 and X2 Two continuous distributions Y1 and Y2 
Bhattacharyya 
coefficient 𝐵(𝑋!, 𝑋") ='(𝑃!(𝑥#)𝑃"(𝑥#)

$

#%!

	. 𝐵(𝑌!, 𝑌") = . (𝑝!(𝑦)𝑝"(𝑦)𝑑𝑦
&

'&

 

Overlapping 
index 𝛺(𝑋!, 𝑋") ='min[𝑃!(𝑥#)𝑃"(𝑥#)]

$

#%!

 𝛺(𝑌!, 𝑌") = . min[𝑝!(𝑦), 𝑝"(𝑦)] 𝑑𝑦
&

'&

 

 
A well-known discrepancy index is the Kullback–Leibler (KL) divergence (Kullback and Leibler 
1951) and its extension called population stability index (PSI) (e.g. Yurdakul 2018). According to 
Lopatecki (2023), “The advantage of PSI over KL divergence is that it is a symmetric metric. PSI 
can be thought of as the round trip loss of entropy – the KL Divergence going from one distribution 
to another, plus the reverse of that.”  The PSI is 0 if two distributions are identical.  However, the 
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PSI is not upper bounded, and its sensitivity can arise numerical issues in applications (Nielsen 
2019).  Two other discrepancy indices are the Hellinger distance and the total variation distance.  
The Hellinger distance is related to the Bhattacharyya coefficient.   The total variation distance is 
the complement of the overlapping index.  Both the Hellinger distance and the total variation 
distance range between 0 and 1.  Table 2 shows the calculation formulas of these two discrepancy 
indices (Hellinger distance and total variation distance).  The Kullback–Leibler (KL) divergence 
and the PSI are not shown in the table because we do not consider them in this study (remark: they 
are calculated in the log-transformed probability space and therefore cannot be compared with the 
other two indices). 
 
Table 2. Two existing discrepancy indices for comparing two distributions 

 Two discrete distributions X1 and X2 Two continuous distributions Y1 and Y2 
Hellinger 
distance 

𝐻(𝑋!, 𝑋") = 9
1
2'<(𝑃!(𝑥#) − (𝑃"(𝑥#)>

"
$

#%!

= (1 − 𝐵(𝑋!, 𝑋")	 

𝐻(𝑌!, 𝑌") = ?
1
2. <(𝑝!(𝑦) − (𝑝"(𝑦)>

"
𝑑𝑦

&

'&

= (1 − 𝐵(𝑌!, 𝑌") 

Total 
variation 
distance 

∆(𝑋!, 𝑋") =
1
2'|𝑃!(𝑥#)−𝑃"(𝑥#)|

$

#%!
= 1 − 𝛺(𝑋!, 𝑋") 

∆(𝑌!, 𝑌") =
1
2 . |𝑝!(𝑦) − 𝑝"(𝑦)|𝑑𝑦

&

'&
= 1 − 𝛺(𝑌!, 𝑌") 

 
 
In this paper, we derive two new indices for measuring the difference between two probability 
distributions: one is named “distribution similarity index (DSI)” and the other is named 
“distribution discrepancy index (DDI)”, based on the concepts of informity and cross-informity in 
the recently proposed informity theory.  In the following sections, section 2 reviews the concepts 
of informity and cross-informity.  Sections 3 defines a quantity called informity divergence.  
Section 4 presents the distribution similarity index (DSI) and the distribution discrepancy index 
(DDI).  Section 5 presents discussion.  Section 6 gives three application examples and compares 
the proposed DSI and DDI with the existing indices shown in Tables 1 and 2.  Section 7 presents 
conclusion.  
 
2. The concepts of informity and cross-informity 

 
The concepts of informity and cross-informity were introduced in the recently proposed informity 
theory (Huang 2023).  For a discrete random variable X with its probability mass function 
(PMF)	𝑃(𝑥), each outcome xi has a probability 𝑃(𝑥#).  The discrete informity of X, denoted 
by	𝛽(𝑋), is defined as (Huang 2023) 
 
 𝛽(𝑋) = ∑ [𝑃(𝑥#)]"$

#%! = E[𝑃(𝑥)],              (1) 
 
where N is the number of all passible outcomes. 

For a continuous random variable Y with the probability density function (PDF) 𝑝(𝑦), the 
continuous informity of Y, denoted by 𝛽(𝑌), is defined as (Huang 2023) 
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 𝛽(𝑌) = ∫[𝑝(𝑦)]" 𝑑𝑦 = E[𝑝(𝑦)].              (2) 
 
Informity is a measure of the overall informativeness of an information-probability system 
represented by the PMF or PDF of a random variable.  It has the opposite meaning of the 
information entropy (Huang 2023). 

The cross-informity between two discrete random variables X1 and X2 is defined as 
(Huang 2023) 
 
 𝛽(𝑋! ∩ 𝑋") = ∑ 𝑃!(𝑥#)𝑃"(𝑥#) =$

#%! E(![𝑃"(𝑥)] = E)"[𝑃!(𝑥)]. (3) 
 
The discrete cross-informity is symmetric, i.e. 𝛽(𝑋! ∩ 𝑋") = 𝛽(𝑋" ∩ 𝑋!). 

On the other hand, the cross-informity between two continuous random variables Y1 and 
Y2 is defined as (Huang 2023) 
 
 𝛽(𝑌! ∩ 𝑌") = ∫𝑝!(𝑦)𝑝"(𝑦)𝑑𝑦 = E)![𝑝"(𝑦)] = E)"[𝑝!(𝑦)]. (4) 

 
The continuous cross-informity is also symmetric, i.e. 𝛽(𝑌! ∩ 𝑌") = 𝛽(𝑌" ∩ 𝑌!). 
 The cross-informity measures the similarity of two distributions.  
 
3. Informity divergence 
 
We define “informity divergence” as a measure of the difference between two probability 
distributions.  For two discrete random variables X1 and X2, informity divergence is denoted by 
𝐷(𝑋!, 𝑋") and written as 
 
 𝐷(𝑋!, 𝑋") = ∑[𝑃!(𝑥) − 𝑃"(𝑥)]" = 𝛽(𝑋!) − 2𝛽(𝑋! ∩ 𝑋") + 𝛽(𝑋"). (5) 

 
For two continuous random variables Y1 and Y2, informity divergence is denoted by 𝐷(𝑌!, 𝑌") 
and written as  
 
 𝐷(𝑌!, 𝑌") 	= ∫[𝑝!(𝑦) − 𝑝"(𝑦)]"𝑑𝑦 = 𝛽(𝑌!) − 2𝛽(𝑌! ∩ 𝑌") + 𝛽(𝑌"). (6) 

 
Note that Eg. (5) can be rewritten as 
 
 !

"
𝐷(𝑋!, 𝑋") =

!
"
[𝛽(𝑋!) + 𝛽(𝑋")] − 𝛽(𝑋! ∩ 𝑋"), (7) 

 
and Eg. (6) can be rewritten as 
 
 !

"
𝐷(𝑌!, 𝑌") =

!
"
[𝛽(𝑌!) + 𝛽(𝑌")] − 𝛽(𝑌! ∩ 𝑌"). (8) 

 
This shows that one-half of the informity divergence is the average of the two informities after 
removing the cross-informity. 
 
4. Distribution similarity index (DSI) and distribution discrepancy index (DDI) 
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We define the “distribution similarity index (DSI)” as the square root of the ratio between the 
cross-informity of two distributions and the average informity of the two distributions.  For 
comparing two discrete distributions of X1 and X2, the DSI is denoted by 𝜑(𝑋!, 𝑋") and written as 
 
 𝜑(𝑋!, 𝑋") = J

*(,!∩,")
!
"[*(,!)0*(,")]

.               (9) 

 
For comparing two continuous distributions of Y1 and Y2, the DSI is denoted by 𝜑(𝑌!, 𝑌") and 
written as 
 
 𝜑(𝑌!, 𝑌") = J

*(2!∩2")
!
"[*(2!)0*(2")]

	.               (10) 

 
Furthermore, we define “distribution discrepancy index (DDI)” as the square root of the ratio 
between the informity divergence of two distributions and the sum of the two informities.  For 
comparing two discrete random variables X1 and X2, the DDI is denoted by 𝜙(𝑋!, 𝑋") and written 
as 

 
 

𝜙(𝑋!, 𝑋") = J 3(,!,,")
[*(,!)0*(,")]

= J*(,!)'"*(,!∩,")0*(,")
[*(,!)0*(,")]

.               
(11) 

 
For comparing two continuous random variables Y1 and Y2, the DDI is denoted by 𝜙(𝑌!, 𝑌") and 
written as 
 
 

𝜙(𝑌!, 𝑌") = J 3(2!,2")
[*(2!)0*(2")]

= J*(2!)'"*(2!∩2")0*(2")
[*(2!)0*(2")]

.               
(12) 

 
The author noticed through internet search that the squared DSI for discrete distributions is the 
same as the Morisita (1959) index for measuring the similarity between communities in 
comparative ecological studies, and the squared DSI for continuous distributions is the same as 
the modified Morisita index of Horn (1966).  Therefore, the proposed DSI can be considered as a 
modification of the Morisita index.  The modification using the square root is necessary to make 
the DSI comparable to other two similarity indices: the Bhattacharyya coefficient and the 
overlapping index.  This is also to be consistent with the DDI. 
 The DSI is related to the DDI.  It is readily to show that DSI = (1 − (DDI)" and DDI =
(1 − (DSI)". 

 
5. Discussion 
 
Note that both the DSI and DDI are standardized quantities, ranging between 0 and 1.  They have 
opposite meanings.  A low DSI value or a high DDI value is interpreted to mean that the two 
distributions are highly dissimilar or their discrepancy is large.  On the other hand, a high DSI 
value or a low DDI value is interpreted to mean that the similarity between the two probability 
distributions is high or their discrepancy is small.  When DSI=0 and DDI=1, the two distributions 
in question are widely separated without overlap.  When DSI=1 and DDI=0, the two distributions 
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are identical and completely overlap.  However, there is no universal rule to define small, moderate, 
and high levels of the similarity or discrepancy.  Intuitively and tentatively, we suggest that DSI 
values 0.25, 0.5, and 0.75 be interpreted as indicating small, moderate and high levels of similarity 
between the two distributions, whereas DDI values 0.25, 0.5, and 0.75 be interpreted as indicating 
small, moderate and high levels of discrepancy between the two distributions.  These proposed 
benchmarks are similar to the I2 values of 25%, 50%, and 75%, which are interpreted as indicating 
small, moderate, and high levels of heterogeneity in meta-analysis (where I2 is the heterogeneity 
index, Borenstein et al. (2017)).  These benchmarks are thought to provide a convenient context 
for discussing the results of the similarity or discrepancy analysis. 
 The proposed DDI can be thought of as a standardized Euclidean distance (L2 norm).  It 
satisfies four requirements (conditions) of a distance metric.  Consider the DDI for two discrete 
distributions:  𝜙(𝑋!, 𝑋").  It is readily to show that 𝜙(𝑋!, 𝑋") satisfies (a) 𝜙(𝑋!, 𝑋") ≥ 0 (non-
negativity), (b) 𝜙(𝑋!, 𝑋") = 0  if and only if 𝑋! = 𝑋"  (identity), (c) 𝜙(𝑋!, 𝑋") = 𝜙(𝑋", 𝑋!) 
(symmetry), and (d) 𝜙(𝑋!, 𝑋") ≤ 𝜙(𝑋!, 𝑋5) + 𝜙(𝑋5, 𝑋") (triangle inequality).  These conditions 
are also satisfied by the DDI for two continuous distributions:  𝜙(𝑌, 𝑌").   

Note that the total variation distance is a standardized Manhattan distance (L1 norm).  
However, the Hellinger distance is neither a L1 nor L2 norm. 

 
6. Comparison examples 
 
In this section, we consider three examples and compare the proposed DSI with two existing 
similarity indices (the Bhattacharyya coefficient and the overlapping index).  We also compare 
the proposed DDI with two existing discrepancy indices (the Hellinger distance and the total 
variation distance). 
 
6.1 Example 1: grade distribution of credit scores 
 
Yurdakul (2018) showed an example of the calculation of the population stability index (PSI) for 
grade distribution of credit scores.  His data are shown in Table 3.  Our calculation results for 
this example are shown in Table 4. 
 
Table 3. Data for grade distribution of credit scores (Yurdakul 2018) 

Grade Base Target 
A 0.253 0.177 
B 0.302 0.262 
C 0.204 0.285 
D 0.134 0.158 
E 0.072 0.088 
F 0.026 0.025 
G 0.008 0.006 

 
Table 4. Results for measuring the difference between two distributions (example 1) 

Similarity measure Discrepancy measure 
DSI	𝜑(base, target) =	0.9829 DDI	𝜙(base, target) =	0.1842 
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Bhattacharyya coefficient B(base, target) = 0.9916 Hellinger distance: 𝐻(base, target) = 0.0919 
Overlapping index 𝛺(base, target) =	 0.8800 Total variation distance: ∆(base, target) = 0.1200 

 
 
6.2 Example 2: comparison of two non-unimodal distributions  
 
Kang and Wildes (2015) presented an example of comparing two non-unimodal distributions f(x) 
and g(x) using the Bhattacharyya coefficient.  Their data are shown in Table 5.  They obtained the 
Bhattacharyya coefficient 𝐵(𝑓, 𝑔) = 0.8124.  Our calculation results for this example are shown 
in Table 6. 
 
Table 5. Data for comparison of two non-unimodal distributions (Kang and Wildes 2015) 

x f(x) g(x) 
0 0 0 
1 0.075 0.05 
2 0.35 0.23 
3 0.075 0.05 
4 0 0.085 
5 0 0.17 
6 0 0.085 
7 0.075 0.05 
8 0.35 0.23 
9 0.075 0.05 
10 0 0 

 
 
Table 6. Results for measuring the difference between two distributions (example 2) 

Similarity measure Discrepancy measure 
DSI	𝜑(base, target) =	0.9083 DDI	𝜙(base, target) =	0.4183 
Bhattacharyya coefficient B(base, target) = 0.8124 Hellinger distance: 𝐻(base, target) = 0.4331 
Overlapping index 𝛺(base, target) =	 0.6600 Total variation distance: ∆(base, target) = 0.3400 

 
 
6.3 Example 3: comparison of two normal distributions 
 
Consider Y1 and Y2 are normally distributed: 𝑁(𝜇!, 𝜎!") and 𝑁(𝜇", 𝜎"").  The informity of Y1 is 
 
 𝛽(𝑌!) =

!
"6!√8

. (13) 

 
The informity of Y2 is 
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 𝛽(𝑌") =
!

"6"√8
. (14) 

 
The cross-informity of Y1 and Y2 is 
 
 𝛽(𝑌! ∩ 𝑌") =

!

9"8(6!"06"")
exp d− (:!':")"

"(6!"06"")
e. (15) 

 
Note that in the special case where 𝜇! = 𝜇" and 𝜎! = 𝜎" = 𝜎, the cross-informity reduces to the 
informity.  That is, 𝛽(𝑌! ∩ 𝑌") =

!
"6√8

= 𝛽(𝑌!)	(or	𝛽(𝑌")).  
It is readily to show that the DSI for comparing two normal distributions is  

 
 𝜑(𝑌!, 𝑌") =

*(2!∩2")
!
"[*(2!)0*(2")]

= "√"6!6"

(6!06")9(6!"06"")
exp d− (:!':")"

"(6!"06"")
e	.               (16) 

 
The Bhattacharyya coefficient (BC) for comparing two normal distributions is (Mathoverflow 
2022) 
 
 𝐵(𝑌!, 𝑌") = exp g− !

;
ln d!

;
<6!

"

6""
+ 6""

6!"
+ 2>e + !

;
(:!':")"

6!"06""
i.               (17) 

 
We consider two scenarios, A: 𝜎! = 𝜎" = 1, |𝜇! − 𝜇"| ranges from 0 to 6, and B: 𝜇! = 𝜇", 𝜎! =
1, 𝜎" ranges from 0.1 to 6.   

When 𝜎! = 𝜎", the overlapping index 𝛺(𝑌!, 𝑌") = 2Φ<− |:!':"|
"

>.  When 𝜇! = 𝜇", the 
overlapping index is (Mulekar and Mishra 1994) 
 
 𝛺(𝑌!, 𝑌") = 	 k

1 − 2Φ(𝑏) + 2Φ(𝐶𝑏)											𝑖𝑓	0 < 𝐶 < 1,
1 + 2Φ(𝑏) − 2Φ(𝐶𝑏)																			𝑖𝑓	𝐶 ≥ 1,               

(18) 

 
where 𝑏 = (−ln	(𝐶"/(1 − 𝐶") and 𝐶 = 𝜎!/𝜎". 

Figure 1 shows the comparison of the three similarity indices for Scenario A.  It can be 
seen from Figure 1 that, in this special case that 𝜎! = 𝜎" = 1, the proposed DSI is the same as the 
Bhattacharyya coefficient and both are greater than the overlapping index.  As expected, when the 
difference between the two means is zero (𝜇! − 𝜇" = 0), the three similarity indices are equal to 
1 because the two distributions completely overlap.  When the difference between the two means 
is large (say |𝜇! − 𝜇"| = 6), the three similarity indices are close to 0 because the two distributions 
are widely separated.   
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Figure 1.  Comparison of the of the three similarity indices as a function of the difference 
between the means of two normal distributions with 𝜎! = 𝜎" = 1 (Scenario A) 
 
 
Figure 2 shows the comparison of the three similarity indices for Scenario B.  Note that, as 
expected, when 𝜎" = 𝜎! = 1 , the three similarity indices are equal to 1 because the two 
distributions completely overlap.  The proposed DSI is slightly greater than the Bhattacharyya 
coefficient.  The overlapping index is the smallest among the three similarity indices. 
 

 
Figure 2.  Comparison of the three similarity indices for the two normal distributions with 𝜇! =
𝜇", 𝜎! = 1, and 𝜎" ranges from 0.1 to 6 (Scenario B) 
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Figure 3 shows the comparison of the three discrepancy indices for Scenario A.  Note that, as 
expected, when the difference between the two means is zero ( |𝜇! − 𝜇"| = 0 ), the three 
discrepancy indices are equal to 0 because the two distributions completely overlap.  When the 
difference between the two means is large (say |𝜇! − 𝜇"| = 6), the three discrepancy indices are 
close to 1 because the two distributions are widely separated.  
 

 
 
Figure 3.  Comparison of the three discrepancy indices as a function of the difference between 
the means of two normal distributions with 𝜎! = 𝜎" = 1 (Scenario A) 
 
 
Figure 4 shows the comparison of the three discrepancy indices for Scenario B.  Note that, as 
expected, when 𝜎" = 𝜎! = 1, the three discrepancy indices are zero because the two distributions 
completely overlap.  The proposed DDI is the greatest among the three discrepancy indices. 
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Figure 4.  Comparison of the three discrepancy indices for two normal distributions with equal 
means (𝜇! = 𝜇"), 𝜎! = 1, and 𝜎"=0.1–6 (Scenario B) 
 
 
7. Conclusion 
 
The proposed distribution similarity index (DSI) and the distribution discrepancy index (DDI) 
quantify the difference between two probability distributions from different perspectives.  The DSI 
and the DDI have opposite meanings.  The three examples show that among the three similarity 
indices, the DSI and the Bhattacharyya coefficient are consistent; the overlapping index is not 
consistent with the DSI or the Bhattacharyya coefficient.  On the other hand, among the three 
discrepancy indices, the proposed DDI seems to be almost always larger than the Hellinger 
distance or the total variation distance.  Further research is needed to examine the performance of 
the proposed DSI and DDI using more application examples or different distributions.   
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