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Abstract

This technical note proposes a new index for measuring the difference between two probability distributions, named

distribution discrepancy index (DDI). The proposed distribution discrepancy index is derived based on the concepts of

informity, cross-informity, and informity divergence in the recently proposed informity theory. It is defined as the ratio

between the informity divergence of two probability distributions and the sum of the two informities. The proposed

distribution discrepancy index ranges between 0 and 1, which makes its interpretation intuitive, simple, and meaningful.

A low DDI value (e.g. close to 0) indicates that the difference between the two probability distributions is small. A high

DDI value (e.g. close to 1) indicates that the difference is large. Two examples are presented to demonstrate the

application of the proposed distribution discrepancy index.
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1. Introduction

There are two types of indices for comparing two probability distributions: similarity index and divergence index.

Bhattacharyya coefficient and overlapping index (Pastore and Calcagni 2019, Mulekar and Mishra 1994) are two well-

known similarity indices. The Bhattacharyya coefficient was originally proposed by Bhattacharyya (1943), but Matusita

(1955) seemed to have reinvented it, so some authors referred to it as the Matusita measure (e.g. Dhaker et al. 2019).

Huang (2023) proposed an informity-based index for measuring the similarity between two distributions, named

distribution similarity index (DSI). The DSI for discrete distributions is the same as the Morisita (1959) index for measuring

the similarity between communities in ecological studies, and the DSI for continuous distributions is the same as the

Qeios, CC-BY 4.0   ·   Article, April 15, 2024

Qeios ID: ABGI6D   ·   https://doi.org/10.32388/ABGI6D 1/8

https://www.qeios.com/read/ABGI6D#reviews
https://www.qeios.com/profile/86384


modified Morisita index of Horn (1966).

A well-known divergence index is Kullback–Leibler (KL) divergence (Kullback and Leibler 1951) and its extension called

population stability index (PSI) (e.g. Yurdakul 2018). According to Lopatecki (2023), “The advantage of PSI over KL

divergence is that it is a symmetric metric. PSI can be thought of as the round trip loss of entropy – the KL Divergence

going from one distribution to another, plus the reverse of that.”

In this technical note, we propose a new index for measuring the difference between two distributions, named distribution

discrepancy index (DDI). In the following, section 2 reviews the concepts of informity and cross-informity. Sections 3

defines informity divergence and distribution discrepancy index. Section 4 presents discussion. Section 5 presents two

examples. Section 6 presents conclusion.

2. The concepts of informity and cross-informity

Huang (2023) recently introduced the concepts of informity and cross-informity. For a discrete random variable X with its

probability mass function (PMF) P(x), each outcome xi has a probability P xi  associated with it. The discrete informity of

X, denoted by β(X), is defined as (Huang 2023)

β(X) =

N

∑
i=1 [P xi ]2 = E[P(x)].

where N is the number of all passible outcomes.

For a continuous random variable Y with the probability density function (PDF) p(y), the continuous informity of Y, denoted

by β(Y), is defined as (Huang 2023)

β(Y) = ∫ [p(y)]2dy = E[p(y)].

Informity is a measure of the overall informativeness of an information-probability system represented by a PMF or PDF of

a random variable. It has the opposite meaning of the information entropy (Huang 2023).

The cross-informity between two discrete random variables X1 and X2 with PMFs P1(x) and P2(x) is defined as (Huang

2023)

β X1 ∩ X2 =

N

∑
i=1 P1 xi P2 xi = EP1

P2(x) = Ep2
P1(x)

The discrete cross-informity is symmetric, i.e. β X1 ∩ X2 = β X2 ∩ X1 .

On the other hand, the cross-informity between two continuous random variables Y1 and Y2 with PDFs p1(y) and p2(y) is

defined as (Huang 2023)

( )

( )

( ) ( ) ( ) [ ] [ ]
( ) ( )
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β Y1 ∩ Y2 = ∫p1(y)p2(y)dy = Ep1
p2(y) = Ep2

p1(y) .

The continuous cross-informity is also symmetric, i.e. β Y1 ∩ Y2 = β Y2 ∩ Y1 .

The cross-informity measures the similarity of two distributions.

3. Informity divergence and distribution discrepancy index (DDI)

3.1. Informity divergence

We define “informity divergence” as a measure of the difference between two probability distributions. For two discrete

random variables X1 and X2, informity divergence is denoted by D(X1, X2) and written as

D(X1, X2) =
∑

[P1(x) − P2(x)]2 = β X1 − 2β X1 ∩ X2 + β X2 .

For two continuous random variables Y1 and Y2, informity divergence is denoted by D(Y1, Y2) and written as

D(Y1, Y2) = ∫ [p1(y) − p2(y)]2dy = β Y1 − 2β Y1 ∩ Y2 + β Y2 .

Note that Eg. (5) can be rewritten as

1
2D(X1, X2) =

1
2 [β X1 + β X2 ] − β X1 ∩ X2 ,

and Eg. (6) can be rewritten as

1
2D(Y1, Y2) =

1
2 [β Y1 + β Y2 ] − β Y1 ∩ Y2 .

This shows that one-half of the informity divergence is the average of the two informities after removing the cross-

informity.

3.2. Distribution discrepancy index (DDI)

Furthermore, we define “distribution discrepancy index (DDI)” as the ratio between the informity divergence of two

distributions and the sum of the two informities. For comparing two discrete random variables X1 and X2, the distribution

discrepancy index (DDI), denoted by ϕ(X1, X2), is written as

( ) [ ] [ ]
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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ϕ X1, X2 =

D X1, X2

β X1 + β X2
= 1 − φ X1, X2 ,

where φ(X1, X2) is the distribution similarity index (DSI) for comparing two discrete distributions of X1 and X2 (Huang 2023)

φ(X1, X2) =

β X1 ∩ X2

1
2 [β X1 + β X2 ]

=

2∑N
i=1P1 xi P2 xi

∑N
i=1[P1 xi ]2 + ∑N

i=1[P2 xi ]2
 .

For comparing two continuous random variables Y1 and Y2, the distribution discrepancy index (DDI), denoted by ϕ(Y1, Y2),

is written as

ϕ Y1, Y2 =

D Y1, Y2

β Y1 + β Y2
= 1 − φ Y1, Y2 ,

where φ(Y1, Y2) is the distribution similarity index (DSI) for comparing two continuous distributions of Y1 and Y2 (Huang

2023)

φ(Y1, Y2) =

β Y1 ∩ Y2

1
2 [β Y1 + β Y2 ]

=

2∫∞−∞p1(y)p2(y)dy

∫∞−∞[p1(y)]2dy + ∫∞−∞[p2(y)]2dy
 .

4. Discussion

It is important to note that the proposed distribution discrepancy index (DDI) ranges between 0 and 1. This makes the

interpretation of the DDI is intuitive, simple, and meaningful. A low DDI value is interpreted to mean that the difference

between the two probability distributions is small. A high DDI value is interpreted to mean that the difference is large. For

example, DDI values 0.25, 0.5, and 0.75 can be interpreted as representing small, moderate and high levels of the

difference between the two probability distributions.

Moreover, the distribution discrepancy index (DDI) is related to the distribution similarity index (DSI): DDI=1-DSI. This

relationship is a good property of both indices. In the case that DDI=0, the two distributions in question are identical and

DSI=1. On the other hand, in the case that DDI=1, the two distributions in question are widely separated and DSI=0.

5. Application examples

( )

( )
[ ( ) ( )] ( )

( )

( ) ( )
( ) ( )

( ) ( )
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5.1. Grade distribution of credit scores

Yurdakul (2018) showed an example of the calculation of the population stability index (PSI) for grade distribution of credit

scores. His data are shown in Table 1.

Grade Base Target

A 0.253 0.177

B 0.302 0.262

C 0.204 0.285

D 0.134 0.158

E 0.072 0.088

F 0.026 0.025

G 0.008 0.006

Table 1. Data for

grade distribution of

credit scores

(Yurdakul 2018)

Yurdakul (2018) calculated the population stability index PSI(base, target)=0.068. We calculated informity divergence 

D(base, target) = 0.015 and the distribution discrepancy index ϕ(base, target) = 0.034. Thus, the difference between the

target and the base is small.

5.2. Comparison of two normal distributions

Consider Y1 and Y2 are normally distributed: N(μ1, σ2
1) and N(μ2, σ2

2) with PDFs p1(y) and p2(y) respectively. The informity

of Y1 is

β Y1 =

1
2σ1√π

.

The informity of Y2 is

β Y2 =

1
2σ2√π

.

The cross-informity of Y1 and Y2 is

β Y1 ∩ Y2 =

1

2π(σ2
1+σ2

2)
exp −

(μ1 − μ2)2

2(σ2
1+σ2

2)
.

( )

( )

( ) √ [ ]
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The distribution discrepancy index (DDI) for comparing the two normal distributions is

ϕ Y1, Y2 = 1 − φ Y1, Y2 = 1 −

2√2σ1σ2

(σ1 + σ2) (σ2
1+σ2

2)
exp −

(μ1 − μ2)2

2(σ2
1+σ2

2)
 .

We consider two scenarios: (a) σ1 = σ2 = 1, |μ1 − μ2 |  ranges from 0 to 6, and (b) μ1 = μ2, σ1 = 1, σ2 ranges from 0.1 to 6.

Figure 1 shows the distribution discrepancy index (DDI) for scenario (a). Note that, as expected, when the difference

between the two means is zero ( |μ1 − μ2 |=0), DDI=0 because the two distributions are identical. When the difference is

large (say |μ1 − μ2 |=6), the DDI value is close to 1 because the two distributions are widely separated.

Figure 1. Distribution discrepancy index (DDI) as a function of the difference between the means of two normal distributions with 

σ1 = σ2 = 1

Figure 2 shows the distribution discrepancy index (DDI) for scenario (b). Note that, as expected, when σ2 = σ1 = 1, the

DDI value is zero because the two distributions are identical.

( ) ( ) √ [ ]
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Figure 2. Distribution discrepancy index (DDI) for two normal distributions with equal means (μ1 = μ2), σ1 = 1, and σ2=0.1–6

6. Conclusion

The proposed distribution discrepancy index (DDI) is the ratio between the informity divergence of two distributions and

the sum of the two informities. It provides an appropriate measure of the difference between two probability distributions.

Since the distribution discrepancy index (DDI) ranges between 0 and 1, its interpretation is intuitive, simple, and

meaningful. DDI values 0.25, 0.5, and 0.75 can be interpreted as representing small, moderate and high levels of the

difference between the two probability distributions. Moreover, the distribution discrepancy index (DDI) is related to the

distribution similarity index (DSI): DDI=1-DSI. This relationship is a good property of both indices.
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