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Enhancing cryogenic electron microscopy (cryo-EM) 3D density maps at intermediate resolution (4-8
R) is crucial in protein structure determination. Recent advances in deep learning have led to the
development of automated approaches for enhancing experimental cryo-EM density maps. Yet, these
methods are not optimized for intermediate-resolution maps and rely on map density features alone.
To address this, we propose CryoSAMU, a novel method designed to enhance 3D cryo-EM density
maps of protein structures using structure-aware multimodal U-Nets and trained on curated
intermediate-resolution density maps. We comprehensively evaluate CryoSAMU across various
metrics and demonstrate its competitive performance compared to state-of-the-art methods. Notably,
CryoSAMU achieves significantly faster processing speed, showing promise for future practical

applications. Our code is available at https://github.com/chenwei-zhang/CryoSAMU.

Correspondence: papers@team.qeios.com — Qeios will forward to the authors

1. Introduction

Cryogenic electron microscopy (Cryo-EM) has become one of the most prevalent techniques in structural
biology for determining protein structures, thereby accelerating structure-based drug discovery!2],
Cryo-EM projects a series of 2D images, which are then reconstructed into 3D electron density maps,
providing voxelized representations of proteins. While cryo-EM 3D maps serve as the basis for molecular

structure determination, using raw maps is usually not possible as they often lack contrast due to various
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factors, including molecular motion and heterogeneity, imaging artifacts, and incoherent averaging of
image datal3l. To address these limitations, various approaches have been developed to enhance map
quality by sharpening or modifying map densitieslBUOITIBIONIO0N Traditional methods rely on B-factor
correction, which can be applied globallyElEl and locallyml@. However, these methods struggle with

maps exhibiting varying signal-to-noise ratios and lacking prior knowledge (e.g. local resolution)19L,

With recent advancements in deep learning (DL), fully data-driven methods have been developed to
automatically enhance raw cryo-EM maps for protein structure modeling. Leveraging neural networks
such as convolutional neural networks (CNNs)@, generative adversarial networks (GANS)@, and
Transformers3 these methods achieved promising results in map enhancement. Yet, they are not
optimized for intermediate-resolution maps (i.e., 4-8 A9y and rely solely on a single modality—the
density map itself—during neural network training, overlooking other relevant modalities such as
structural information. This limitation restricts their ability to generalize across diverse protein
structures and prevents them from fully leveraging complementary biological information. To address
these shortcomings, we thus introduce CryoSAMU, a novel approach that combines 3D map features with
structural embeddings derived from the pretrained protein language model ESM-IF122l to enhance 3D

Cryo-EM density maps with Structure-Aware Multimodal U-Nets.

Our main contributions are:

» We propose the first multimodal network that integrates structural information into a 3D U-Net
model using cross-attention mechanisms for cryo-EM map enhancement.

* We develop a self-attention-based post-processing procedure for ESM-IF1’s structural embeddings,
effectively preserving both chain and residue relationships while maintaining structural integrity.

e We train CryoSAMU on a curated dataset of joint density maps at intermediate resolution and
associated protein structures, optimizing it for map enhancement.

» We benchmark CryoSAMU against state-of-the-art approaches across various evaluation metrics over
diverse tested samples. We achieve competitive level of performance but with significantly faster
processing speeds (approximately 4.2 to 16.7 times), making our method well-suited for large-scale
and practical applications.

¢ Our ablation study demonstrates significant improvement brought from integrating structural

information.
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2. Related Work

2.1. Existing map enhancement methods

Conventional map enhancement (sharpening) approaches, including Phenix Autosharpen and RELION
postprocessing(2), are based on global B-factor correction. This technique enhances the amplitude of
high-frequency Fourier components in raw cryo-EM maps. However, global B-factor-based methods
encounter difficulties with maps exhibiting heterogeneous local resolutions, often leading to over- or
under-sharpening in specific regions. Despite local B-factor-based sharpening algorithms‘[—-—‘ have
been developed to alleviate this limitation, these methods still suffer from poor accuracy in estimating

the local resolution of maps, which is crucial for precise local B-factor sharpening.

DeepEMhancer!Z! is a pioneering DL-based fully automatic method that leverages a 3D U-Net model to
mimic local sharpening effects and enhance map features. Subsequently, CryoFEM(E! that employs
convolutional neural networks (CNNs) and EM-GAN! that utilizes generative adversarial networks
(GANs) have been introduced to further enhance cryo-EM maps. Most recently, with the emergence of
vision transformers, EMReady@]‘, which adopts a Swin transformer architecture‘[&]‘, has shown superior

performance in enhancing map quality for accurate protein structure modeling.

2.2. Protein large language models

The advancement of protein large language models (pLLMs) has enabled unprecedented insights into
protein structure, function, and evolution1Z18]19)13)(20](21 22] 1 analogy to human texts, protein
sequences are treated as “biological texts” and input into pLLMs to capture contextual information

(18119) which are

inherent in the sequences. Notable examples of such models include the ESM family[1—7]
pretrained on vast datasets of protein sequences using the masked language modeling strategy, allowing

them to develop rich representations that encapsulate evolutionary information.

Addressing the inverse problem of predicting protein sequences from given structures, ESM-IF112] has
been developed. Trained on 12 million protein structures derived from AlphaFold2(23], ESM-IF1 predicts
protein sequences from backbone atom coordinates. It is specifically designed to encode both sequence
and structural information, including backbone geometry, side chain orientations, and secondary
structure elements. These traits make ESM-IF1 a compelling choice for generating structure-aware

embeddings that complement the map-only modality.
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3. Method

3.1. Dataset of protein structures and density maps

Our dataset was built with a set of cryo-EM density maps at resolutions from 4.0 A to 79 A from the
EMDB databank24! and their associated protein structures from the PDB databank22. To ensure that
density maps are properly aligned with their corresponding PDB structures, we excluded maps and PDBs
from the dataset if: (i) maps contain extensive regions without or misaligned corresponding PDB
structures; (ii) maps contain other macromolecules except proteins; (iii) PDB structures contain backbone
atoms only and/or unknown residues. Furthermore, to enhance training efficiency, we measured the
correlation between map-PDB pairs using ChimeraX[29), and removed pairs with correlation score lower
than 0.65. To avoid data redundancy, we measured the sequence identity between PDB structures, and
retained only one if identity is greater than 30 %. As a result, a total of 384 pairs of cryo-EM maps and
associated PDB structures remained. Among these data, 247 (~65 %), 62 (~15 %), and 75 (~20 %) map-
PDB pairs were selected as training, validation, and test sets, respectively. Details are listed in

Supplementary Tables 1-3.
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Figure 1. Overview of the CryoSAMU framework. a) Generating protein multimodal representations: structure
features are derived from a frozen pretrained ESM-IF1 model with self-attention weighting for a fixed-size
representation; map voxel features are simulated via resolution-lowering point spread function and
partitioned into smaller cubes. b) The CryoSAMU architecture. The experimental map is partitioned into
smaller cubes and processed by a U-Net with residual blocks and linear attention modules. Structural
embeddings are integrated into the bottleneck layer with cross-attention mechanism. The output cubes are

reconstructed into the full-size enhanced map.

3.2. Multimodal representations of protein structures

Generating 3D target maps from protein structures For input experimental maps (denoted as ExpMaps)
in training and validation sets, we simulated the corresponding target maps (denoted as TgtMaps) from
associated protein structures using the StructureBlurrer package in TEMPy2[27. The simulation was
performed with a grid interval of 1 A and a resolution cutoff at 2 A, based on the convolution of atom
points with resolution-lowering point spread functions. Given a PDB structure with M atoms, the

simulated density p at grid point x is calculated by:
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M
plx) =)0z, (1)
i=1

where Z; and r; refer to the atomic number and the position vector of the i-th heavy atom, respectively.

Here, 6 is a scaling factor and k is defined based on resolution[12128]

Resampling 3D maps We first resampled both ExpMaps and TgtMaps to 1 Ajvoxel since the cryo-EM
maps vary in voxel size. Subsequently, we normalized the density values to a range of 0 to 1 using the
99.9th percentile density value of each map. Due to GPU memory constraints, we partitioned ExpMaps
and TgtMaps into smaller 3D subvolume pairs (denoted as exp.3D-images and tgt.3D-images) with size of
64 x 64 x 64, the largest feasible size that allows for a sufficient batch size (See Figure 1a.). To mitigate
boundary artifacts during truncation, we applied zero-padding of 64 voxels on each side along all
dimensions. As a result, a total of 29829 exp-tgt image pairs were yielded for network training and 4642

for validation.

Generating structural embeddings We employed ESM-IF122l to generate protein structural embeddings,
which will serve as an additional modality for network training. Specifically, we derived the embeddings
by first extracting backbone coordinates (N, Ca, and C atoms) from a PDB file, ensuring that only
standard residues with complete backbone information are included. We then fed these coordinates into
ESM-IF1 to generate embeddings for each protein chain. Since the lengths of chains varied, we applied

zero-padding to standardize the embeddings.

Fixed-size representation with attention weighting Following the generation of embeddings, we
implemented self-attention weighting to create fixed-size representations while preserving the intrinsic
relationships between chains and residues. To this end, we computed attention weights based on
embedding similarity to identify the most informative regions. Specifically, given a PDB structure
containing C chains and R residues per chain, its structural embedding derived from ESM-IF1 is denoted
as E € RF*? where d = 512 is the embedding dimension. We carried out the refinement process in

several steps. First, we computed chain-level embeddings by averaging across residues:

1
R

R
ZE:,]',:) Echain € RCXd' (2)

J=1

Echain

Next, we computed the similarity matrix to determine the relative importance of each chain:

S = Echain . ET

chain’

S € R9¥¢, (3)
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where each element S;; represents the similarity between chain ¢ and chain j: S;; = Ecpain, - Ealain, ;- To
derive attention weights, we applied a column-wise softmax function to S:

~_ exp(8y) (4)

T RC ey

21 exp(Sir)
We then aggregated these weights across chains to assign a single importance weight per chain:
1 &
WiZE;W”’ i=12,...,C. (5)

These weights w = [w1, W, .., W] reflect the relative importance of each chain, and we leveraged them

to aggregate chain-level embeddings into a unified representation:
c
EP001€d = Z wiEi,:,:y Epooled € RRXd- (6)
=1

We further measured the importance of each residue in Epqleq Using a residue-level similarity matrix.
Following the same procedure as the chain-level weighting, we obtained a scalar weight o; for each
residue j, where j=1,2,...,R. Finally, we applied min-max normalization and resampled the

embedding E...q based on the attention weights to a fixed-size representation, Egna € RExd

, Where
L = 800. When the input length R > L, we selected the top-L residues with the highest attention
weights. Conversely, when R < L, we sorted the residues by their attention weights and repeated them

[L/R] times to reach the target length, ensuring each resulting embedding maintains rich

representations and consistent dimensions.

3.3. The model architecture

We proposed a structure-aware multimodal 3D U-Net, as depicted in Figure 1b. The network contains an

encoder, bottleneck, and decoder, interconnected by skip connections.

Encoder

The input to the encoder is a 3D volume with a single channel. The encoder comprises four hierarchical
layers. The first three layers each consist of two residual blocks, with each block incorporating a group
normalization, a SiLU activation2?], and a dropout (p=0.2), followed immediately by a linear self-
attention module with 4 heads29 to capture long-range (global) dependencies across voxels. The
channel depth progressively increases as features are abstracted. In the fourth layer, only residual blocks

are employed, producing a higher-level feature representation without the addition of attention modules.
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Bottleneck

At the bottleneck layer, the feature representation is first refined by a residue block and then by a linear
self-attention module. Subsequently, a cross-attention block is introduced to fuse and align the
volumetric features with structural embeddings using multi-head attention with 4 heads, where queries
are derived from the volume features and keys/values from structural embeddings. This process enables
structural conditioning while preserving spatial relationships. A second residual block is then applied to

further fuse the combined features from both modalities.

Decoder

The decoder follows a symmetric architecture to the encoder. Feature maps are progressively upsampled
using nearest-neighbor interpolation combined with 3D convolutions, and skip connections incorporate
corresponding features from the encoder. Finally, a group normalization, a SiLU activation, and a

concluding 3D convolution project the processed features to a single output channel.

34. Network training and inference

Protein structural embeddings provide an additional modality containing structure information, serving
as key-value pairs in the attention mechanism when training. However, since these embeddings are
unavailable during validation and inference, we implemented a specialized mode in which the network
bypasses the cross-attention operation. In this mode, the network relies exclusively on feedforward
transformations with residual connections. This design maintains consistency between training and

validation/inference phases while preserving the learned feature representations.

Training

During training, CryoSAMU accepts an exp.3D-image and its corresponding structural embedding as
input and generates an enhanced 3D image (denoted as pred.3D-image). Previous studies have shown that
L1 loss performs well in similar tasksZ8l. However, to improve training stability in the presence of noisy
data and outliers that are common in cryo-EM maps, we employed the smooth L1 loss to encourage the
generator to minimize the difference between the output pred.3D-image, X, and the target tgt.3D-image,

Y:

0.5(X-Y)?, if|X-Y|<]1,

SmoothL1Loss(X,Y) = { |X —Y]|—0.5, otherwise. (M
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Moreover, to enhance the network’s robustness, we employed TorchloBU for data augmentation,

including random Gaussian noise, anisotropy, and blurring.

Inference

During inference, the input experimental map was first zero-padded and divided into smaller cubes (
64 x 64 x 64), following the same strategy used for training data. Each cube was then individually
processed by the trained neural network to generate the enhanced cube. These enhanced cubes were
subsequently reassembled to reconstruct the map as its original dimensions. To prevent loss of spatial

information and ensure smooth transition between cubes, only the central 50 x 50 x 50 voxels from

each enhanced cube were used in the final reconstruction, following the method proposed by Si et al.32],

Implementation

The network was implemented in PyTorch 2.6.0 with CUDA 12.4, running under Python 3.12.8. Training
was conducted using a distributed data parallel (DDP) strategy across two computational nodes
connected via NVLink, with each node equipped with four NVIDIA A100 GPUs of 40 GB VRAM. This setup
supported a maximum batch size of 18 per GPU. The network was trained over 95 epochs, requiring
approximately 63 computational hours. The Adamw(33 optimizer was used with an initial learning rate
of 0.0001, along with a cosine annealing learning rate scheduler. To improve training performance while
maintaining accuracy, automatic mixed precision training was applied. Additionally, gradient clipping

(set to 0.5) was applied to prevent gradient explosion.
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4. Experiments and Results

CryoSAMU
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Figure 2. Visual and quantitative comparison of deposited (blue) and CryoSAMU-enhanced (green) maps,
with superimposed corresponding PDB structures (brown). a, b: Maps are shown at two contour levels. Left:
recommended contour level (volume = 85.74¢e3). Right: higher contour level (volume = 22.57e3). c: RSCC
comparisons between deposited and CryoSAMU-enhanced maps. The example protein is a CX3CL1-US28-

G11iN18-scFv16 in TL-state (PDB-7RKF, EMDB-24496, reported resolution of 4.00 A)24]

We conducted a comprehensive study to assess the performance of CryoSAMU using a test set of 75
intermediate-resolution cryo-EM density maps and associated PDB structures across a wide range of

evaluation metrics.

4.1. Visualization and quantification of map enhancement

We first visualized a CryoSAMU-enhanced map alongside its associated deposited map using UCSF
ChimeraX[28l, For a fair comparison, both sets of maps were illustrated with the same volume, which
requires contour level adjustments owing to differences in their volume ranges. Specifically, we first
presented the deposited map at its recommended contour level and volume, then adjusted the contour
level of the corresponding CryoSAMU-enhanced map to match the recommended volume. In addition, we

also visualized both maps at a higher contour level with the same volume.
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As displayed in Figure 2b, CryoSAMU significantly suppressed noise in the lip nanodisc regions
(highlighted by dashed boxes in Figure 2a) of the deposited map for EMDB-24496 (PDB-7RKF). Moreover,
the deposited map at a smaller volumes missed certain structural regions corresponding to the protein
structures, as highlighted by black boxes in Figure 2a. In contrast, the CryoSAMU-enhanced maps
exhibited better alignment with the corresponding protein structures, revealing more structural details,
as demonstrated by black boxes in Figure 2b. Similar visual results were observed for another protein
structure (see Supplementary Figure 1). Furthermore, residue-level real-space correlation coefficient
(RSCC) measurements!22l in Figure 2c suggested significant improvements. Specifically, Chains A, B, and
C exhibit RSCC increases compared to the deposited map, with correlations rising from 0.835 to 0.860,
0.848 to 0.865, and 0.801 to 0.836, respectively. In addition, 84.9%, 73.5%, and 90.6% of resiudes in Chains
A, B, and C, respectively, showcased higher RSCC scores. Consistent RSCC improvements were also

observed in other samples (see Supplementary Figure 2).

4.2. Benchmark I: improvement of real and Fourier space correlations

CryoSAMU
Metric Deposit | Autosharpen DeepEMhancer EMReady CryoSAMU(ours)

(w/o struct.)

CC box 0.731 0.679 0.618 0.862 0.834 0.751
CC_peaks 0.750 0.722 0.611 0.774 0.753 0.698
CC.volume 0.594 0.542 0.534 0.729 0.691 0571
FSCO5 6.124 6.147 5.283 4.668 5.108 6.434

Table 1. Comparison of different methods across various metrics. See Section 4.2.
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Figure 3. The violin plots for comparison of different methods across four evaluation metrics (see Section 4.2)

over 75 test samples.

We then benchmarked CryoSAMU against other state-of-the-art methods, including Autosharpen(4],
DeepEMhancer!Z], and EMReady!!?), in terms of both real-space and reciprocal-space (i.e., Fourier-space)
correlations, across a test set of 75 primary maps. For real-space correlation, we computed three
correlation metrics using phenix . map_model_cc[32! for each map-model pair (where the model refers to
a protein structure): CC_box, CC_volume, and CC_peaks. These metrics differ based on the choice of map
regions used in the calculations. CC box considers the entire map. CC volume and CC_peaks focus on
regions with the highest density values. However, CC volume selects grid points only around atomic
centers, while CC_peaks selects points located anywhere within the volume. For all three metrics, higher
values indicate better map performance. For Fourier-space correlation, we computed Fourier shell
correlation (FSC) using phenix. mtriage[ﬁ], and reported the unmasked map-model FSC05 values. FSC
values are typically represented as a function of the inverse map resolution, where lower value indicates

better map resolution.

The average real-space CC and FSC values are listed in Table 1. According to the violin plots shown in
Figure 3, CryoSAMU-enhanced maps demonstrated significant improvements over the deposited maps in
terms of CC_box and CC_volume, with average values increasing from 0.731 to 0.834 and from 0.594 to
0.691, respectively. The average CC_peaks score showed a slightly increase from 0.750 to 0.753. These
results indicate that CryoSAMU effectively enhances deposited maps in both the entire region and the
highest-density regions. In contrast, maps processed by Autosharpen and DeepEMhancer exhibited
lower scores across all three metrics. EMReady showed slightly better improvements than CryoSAMU
across all three metrics. For FSCO5 scores, CryoSAMU outperformed the deposited map, Autosharpen,
and DeepEMhancer, achieving an average value of 5108 A. However, it slightly underperformed compared

to EMReady, which achieved an average value of 4.668 A. These results demonstrate that both CryoSAMU
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and EMReady consistently enhance the deposited maps in terms of correlations in both real and Fourier

spaces.

4.3. Benchmark II: improvement of protein structure modeling

As the goal of enhancing cryo-EM density maps is to improve the performance of protein structure
modeling from density maps (i.e., map interpretability), we benchmarked protein structures constructed
from CryoSAMU-enhanced maps against those processed by other methods. Specifically, we used a
standard structure modeling tool, known as phenix.ma p_to_model[26) to construct protein structures
from 20 maps enhanced by the different tested methods. These maps were randomly selected from the
test dataset to ensure that they were not exposed during training, as listed in Supplementary Table 4. To
evaluate these structures, we used phenix. chain_comparison‘[3—6]‘ to compare the constructed structures
against their corresponding ground-truth PDB protein structures. We reported two metrics: residue
coverage and sequence match. The residue coverage indicates the fraction of residues in the query
structure that match the corresponding residues in the target structure within 3.0 A, regardless of residue
type. The sequence match indicates the percentage of matched residues that share identical residue types

between the query and target structures.

Residue Sequence
Method
Coverage (%) Match (%)
Deposit 3171 8.42
Autosharpen 16.00 8.13
DeepEMhancer 24.31 10.0
EMReady 31.61 1138
CryoSAMU(ours) 38.03 933
CryoSAMU(w/o struct.) 8.08 8.13

Table 2. Comparison of average residue coverage and sequence match across different methods.
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Figure 4. a-b: The polar plots for comparison of protein structures constructed from deposited (blue) and
CryoSAMU-enhanced (green) maps, using metrics of (a) residue coverage and (b) sequence match. c-d: The
box-whisker plots for comparison of different methods across two evaluation metrics over 20 test samples.

See Section 4.3.

The average metric scores from all methods are listed in Table 2. Figure 4a and b provide a detailed
comparison for each individual test examples in terms of residue coverage and sequence match,
respectively. The polar plots clearly showcase that after CryoSAMU enhancement, 19 out of 20 samples
exhibited an improvement in residue coverage on deposited maps, with the average score increasing from
31.71% to 38.03%; and 55% of samples exhibited an improvement in sequence match, with the average
score increasing from 8.42% to 9.33%. Furthermore, we benchmarked CryoSAMU against other methods,
as shown in Figure 4c and d. CryoSAMU achieved the highest residue coverage score among all methods,
although its correlation scores were slightly lower than those of EMReady. The sequence match score of
CryoSAMU was slightly lower than EMReady and DeepEMHancer, while still better than the deposited
maps. These results demonstrate that CryoSAMU enhancement boosts protein structure modeling

performance.

4.4. Benchmark III: processing time

To evaluate the scalability of CryoSAMU in practice, we recorded the time required to generate each
enhanced map of all 75 test samples and compared it against the processing time of other methods.
Figure 5 shows the wall-clock time plotted against the volume size of input experimental maps, ranging
from the order of 105 to 108 \AA®. For a fair comparison, all methods were run on the same workstation
equipped with an AMD Ryzen Threadripper 2950X Processor of 32 CPUs and an NVIDIA GeForce RTX
2080 Ti of 12 GB VRAM. Each method was executed with the maximum batch size that our GPU can

accommodate: approximately 12 for DeepEMhancer, 64 for EMReady, and 24 for CryoSAMU.
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Figure 5. The scatter plot of map processing time against map volume. Each dot represents the
processing time for an individual map based on its volume. The shaded area around the regression

line denotes the confidence interval of the regression estimate.

CryoSAMU (shown in green) displayed the minimum processing time across maps of varying volumes.
Its weak linear dependency on map volume and tight confidence interval around its fit line indicate that
CryoSAMU has both optimal scalability and consistent performance. In contrast, DeepEMhancer
exhibited a strong linear correlation between processing time and map volume, indicating poor
scalability as volume size increases. EMReady showed a wider confidence interval in its linear fit,
reflecting high variability in processing time. Notably, several outliers at lower volumes showed
significantly longer processing time compared to other methods. For a significantly large map with a
volume size of 1.25 x 108 A*, CryoSAMU took only 116.48 seconds for generating an enhanced map, while
Autosharpen, DeepEMHancer, and EMReady took 552.19, 2963.10, and 1731.719 seconds, respectively. Table
3 lists the average processing time for each method. CryoSAMU achieved an average processing time of
32.49 seconds, approximately 13.6 times faster than EMReady, while generating comparably enhanced
maps. These results suggest that CryoSAMU scales efficiently with increasing map volume, making it a

promising tool for practical applications.
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Autosharpen DeepEMhancer EMReady CryoSAMU

138+118 5444+517 441500 32+23

Table 3. Average processing time in seconds of different methods.

4.5. Ablation study

We finally conducted an ablation study to evaluate the impact of integrating structural modality. We
compared CryoSAMU with (w/) and without (w/o) structural embeddings using 75 test samples for

correlation evaluation and 20 test samples for protein structure modeling assessment.
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Figure 6. Pairwise comparison of enhanced/deposited ratios for CryoSAMU (w/) and (w/o). Each point

represents a single map. Point colors encode the deposited map quality.

Figure 6 shows that CryoSAMU (w/) outperforms CryoSAMU (wj/o) in both CC box and FSC05, with
improvements of 98.7% and 77.3%, respectively, as indicated by scatter points above the diagonal line.
Moreover, the most significant gains (points far from 1.0) were observed in poorer-quality deposited
maps (colored in purple), which tend to have lower deposited CC_box or higher FSCO5 values. Table 1 lists
the average real- and Fourier-space metrics, indicating that incorporating structural embeddings derived
from ESM-IF1 led to a significant improvement of map enhancement, as also reported in Figure 3. In
terms of protein structure modeling, residue coverage significantly raised from 8.08% to 38.03%, while
sequence match raised from 8.13% to 9.33% with the integration of structural embeddings. This suggests

that structural information helps complement map regions with poor resolutions, artifacts, or noise,

geios.com doi.org/10.32388/ADIF5A


https://www.qeios.com/
https://doi.org/10.32388/ADIF5A

thereby increasing the completeness (higher residue coverage) and improving accuracy (higher sequence
match) during structure modeling. These findings underscore the importance of integrating structural
modality to enable the network to develop structural awareness beyond learning solely from 3D density

maps.

5. Conclusion and Discussion

In this work, we introduce CryoSAMU, the first structure-aware multimodal network for enhancing cryo-
EM density maps at intermediate resolution of protein structures. Our approach combines 3D map
features with corresponding structural features through cross-attention mechanisms. In addition, we
develop a self-attention weighting algorithm to produce fixed-size representations of structural
embeddings derived from the pretrained ESM-IF1 model, preserving inter-chain and residue
relationships while maintaining structural integrity. Our benchmark results demonstrate that CryoSAMU
preforms competitively with existing cutting-edge methods, closely approaching the performance of
EMReady, the current leading tool for cryo-EM density map enhancement. Notably, CryoSAMU achieves
the fastest processing speed among all tested methods, positioning it as a promising solution for large-
scale and practical applications. Furthermore, our ablation study reveals that incorporating an additional
structural modality significantly boosts CryoSAMU’s performance across all evaluation metrics,
suggesting a new avenue for future cryo-EM research to explore the effective integration of multimodal

data during network training.

Despite CryoSAMU demonstrating superior performance in enhancing cryo-EM maps, its current
architecture—based on residual convolutions within a U-Net framework—is primarily designed to
capture local information. In practice, capturing global context and long-range dependencies across map
voxels could further improve performance. This could be addressed by adopting more hierarchical
architectures, such as the Swin Transformer[@, which facilitates feature extraction over larger receptive
fields. Moreover, incorporating supplementary loss terms, such as the Structural Similarity Index
Measure (SSIM) loss, could mitigate overfitting and enhance training efficiency”—ol. These will be
explored in our future work. Furthermore, we plan to expand our dataset by including high-resolution

maps, which could increase the robustness of the model and further elevate its performance.
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Figure S1. Visualizations of deposited (blue) and CryoSAMU-enhanced (green) maps. The corresponding PDB
structures (brown) are superimposed on the maps. a Human Dispatched-1 (PDB-6XE6, EMDB-22144, reported
resolution of 4.53 A)27), a-b: Maps displayed at the recommended contour level. c-d: Maps displayed at a
higher contour level. Visualizations were produced by UCSF Chimerax[28l. The protein structure modeling
completeness and accuracy improved after CryoSAMU enhancement. For instance, residue coverage increased

from 53.5% to 64.5%, as well as sequence match increased from 6.1% to 7.7%.
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enhanced maps. Top: a transmembrane nanopore TMH4C4 (PDB-6M6Z, EMDB-30126, reported resolution of

59 )38l Bottom: a yeast cytoplasmic exosome (PDB-5G06, EMDB-3366, reported resolution of 4.2 BB m

the first example of PDB-6M6Z, both Chain B and Chain D exhibited significant RSCC improvements
compared to the deposited maps, increasing from 0.706 to 0.768 and from 0.739 to 0.777, respectively. In

addition, 85.2% of residues in Chain B and 70.9% of residues in Chain D showed an increase in their RSCC

scores. In the second example of PDB-5G06, the average RSCC scores increased from 0.601 to 0.635 for Chain

B, with 82.9% of 240 residues showing improvement; and increased from 0.581 to 0.615 for Chain E, with

76.2% of 265 residues perform better.

geios.com

doi.org/10.32388/ADIF5A

19


https://www.qeios.com/
https://doi.org/10.32388/ADIF5A

PDB_ID
6vVU8
6ROW
6USF
5WSN
6VFI
6NY1
8BTZ
7KSR
7YR6
6M66
6IXH
7Q3Y
6EL1
7Y1Q
6Y5K
312w
6BOA
5Z2QZ
6PW9O
6SIH
6S5T
7BG)
6MZC
6P6F
7M07
8EKI
5FLC

7BE9
6WBI
eucv
6JSH
5ZAL
50F4
3J9P
7A1D
6K9K
6PPB
8GP3
620S
6UC2
7Q55
602M
62QJ
7K2v
7QJo
6SSM
5Y3R
6EGX
7)W1
7CA3
6BBM
SW1R
7CTF
6KNB
500
6C21

geios.com

EMDB_ID
21388
4975
20696
6685
21173
8994
16244
23024
34047
30114
9747
13797
3885
33570
10700
5577
7122
6940
20501
10210
10100
12181
9298
20261
23919
28204
3213

12154
21590
20729
9881
6905
3802
6267
11606
9949
20432
34188
11022
20725
13826
0608
11366
22647
14005
10298
6803
3866
22513
30323
7076
8751
30463
0723
4061
7332

Resolution(A)

4.14
4.5
4.35
4.3
4.5
4.2
5.39
4.1
4.8
4.1
4
4.34
6.1
5.03
4.2
5
4.2
4.2
4
4.7
4.15
6.9
4.5
4.5
4.8
4.5
5.9

4.2
4.4
4.1
5.1
47
4.4
4.2
4.19
7.8
4.3
4.8
5.7
4.5
5.7
6.3
4.2
6.6
5.32
4.3
6.6
4.1
4.2
4.5
4.1
4.4
4.8
6.9
4.9
5.2

PDB_ID
6B0O4
6T6V
6AJ2
7KXY
6WYK
8l4T
7)GG
6ZN2
6WCZ
6Ji1
6V8P
7R7T
7PTS
7024
SKEL
5NG5
7ELE
6R3B
6N1Q
6F2D
7042
6ZYY
5LY6
6Uz2
6W1C
7L30
6TEB

60F)
7NTF
7K1v
6ZPI
6BP7
6M1D
5H64
5LC5
6RGL
6G2D
60KR
6CE7
7KS3
50AF
6JT0
6XYE
7KEU
7B6D
6VEF
6Xov
72)4
4BTG
6R5K
6E15
6W1S
7B6H
6KLE
6CFZ
5TQW

EMDB_ID
7118
10387
9631
23067
21967
35183
22326
11309
21618
9832
21108
24304
13636
12698
8240
3636
31182
4717
9317
4173
12716
11581
4118
20950
21509
23147
10479

20047
12588
22630
11340
7125
30041
6668
4032
4876
4342
20102
7461
23015
3773
9883
10649
22233
12052
21156
21985
14740
2364
4728
8954
21514
12054
0709
7469
8436

Resolution(A)
4
4.5
4
4.4
4
5.2
4.9
4.3
4
4.1
4.1
4.5
5.71
4.8
4.3
6.5
4.9
4.5
5.2
4.2
41
4.4
4.5
4.2
5.3
44
4.1

4.5
5.32
4.6
4.5
4.9
4.5
4.4
4.35
54
5.4
4.2
7.4
5.8
4.1

4.3

4.3
4.08
4.5
4.43
4.4
4.8
5.1
4.02
5.4
4.5
4.5
5.6

doi.org/10.32388/ADIF5A

PDB_ID
6RWA
3J1P
5)ZT
6D3R
6LXE
6ZP0O
7BG4
6VFK
6C14
2Y9)
7CG3
6GZV
6NYB
5Uz7
6VE)
7PTX
5LVC
6ALF
6BVF
6SCT
7073
60MA
7KAL
6NT8
7ND2
7YMX
6USE

5FN2
7FIF
6XPE
6V85
7AL3
60LM
8BAH
6H3L
2YEW
7B6E
4UQQ
6D83
6D7L
6S2E
6LBA
60CE
6HZ5
6POF
5XMK
6MRW
8J5Z
5FKX
6S8F
5N8Y
S5VFR
7MOB
8S91
5GRS
6UWM

EMDB_ID
10036
5410
8187
7793
30006
11342
12170
21185
7328
1874
30349
0103
0541
8623
21363
13642
4112
8585
7294
0126
13119
20122
22774
0505
12273
33946
20695

3237
31595
22286
21095
11815
20117
15948
0135
1886
12053
2685
7453
7823
10088
0868
20017
0311
20414
6734
9214
35996
3204
10120
3602
8665
23923
40234
9537
20924

Resolution(A)
4
6.5
7.4
4.3
42
4
4.2
4.3
45
6.4
5.1
4
4.1
4.1
4.3
4.03
4.2
4.05
4
4.69
4.46
7.2
4
6.5
4
4.44
4.2

4.2
6.5
41
4.4
4.8
4.4
4.13
4.2

4.5
7.6
4.3

4.2
4.1
4.9
4.2
4.3
4.2
4.3
4.75
6.1

4.7
4.9

4.3
5.4
5.9

20


https://www.qeios.com/
https://doi.org/10.32388/ADIF5A

72C6
7KTT
e6usy
8HMF
819)
4PT2
6TQE
8l6Q
8Ci1C
612T
8CA1
6ZGD
5VHW
6ZLU
8A5Y
6U1S
6VOH
6C05
7Q58
6ZPG
7D7R
6LQl
6PYH
60J3
6VOA
6ZY4

Table S1. List of all EMDB/PDB examples in training sets.

geios.com

14622
23029
20692
34898
35274
5917

10549
35203
16378
4400

16515
11202
8685

11274
15199
20613
21120
7322

13846
11338
30610
0946

20524
20086
21259
11549

4.27
4.17

4.6
6.39
4.6
4.3
4.23
4.1
5.7
4.3
4.1
7.8
4.2
4.9
76
4.1
5.15
4.47
4.6

4.5
4.3
4.5

4.1

5KGF
5Z1F
8FTK
8POG
50YG
6B5B
6V69
6LT4
6Dev
8FNW
5Y5Y
5N9Y
6SGY
8ECI
5FVM
6ZVT
8HEU
6TGB
394
7NBN
6SZA
5WCO0
6W4P
6SHS
6HCG
31zl

doi.org/10.32388/ADIF5A

8246
6875
29439
17791
3861
7055
21060
0967
7821
29328
6811
3605
10188
28016
3329
11470
34692
10497
6204
12260
10351
8794
21536
10204
0193
5245

4.54
4.8
4.56
4.15
4.1
5.2
4.2
4.5
4.8
6.73
4.7
4.2
4.6

6.1

4.6
5.5
4.2

4.4
6.6
4.4
4.3
6.7

60GD
6YTV
7PTQ
7R0J
50WX
7DNS
6DVW
7MDI
7YL9
7VH1
7sQT

5YZ0
6PWP
6Vvol
6VXH
7R9E
6EZ8
7DXK
5TCP
7DL2
8GAA
6A69
6CA0
60UA

20053
10924
13633
14223
3856
30781
8919
23773
33215
31983
25394
6859
6862
20510
21121
21437
24324
3984
30912
8398
30708
29849
6987
7439
20200

4.4
4.4
4.08
4.23
5.2
4.11
4.3
4.3
4.7
4.2

4.2
4.7
4.1
5.2

4.1
4.3
4.4
4.24
4.1
5.75
4.2

21


https://www.qeios.com/
https://doi.org/10.32388/ADIF5A

PDB_ID EMDB_ID Resolution(A) PDB_ID EMDB_ID
5MDX 3491 5.3 7JTH 22473
6RKW 4913 6.6 6QD0 4515
7071 13118 4 6EOH 8948
3117 5376 4.1 8cov 16372
5ZFU 6927 6.7 8JNS 36450
6B40 7046 4.3 6VF] 21174
525U 6952 4.3 7CCS 30341
3)22 5465 6.3 6QVB 4646
5G4F 3436 7 5MKF 3524
6FSZ 4301 4.6 6V3G 21036
6QXM 4669 4.1 6R22 4707
6TSW 10567 4 6XJX 22216
6YRK 10890 41 6POD 20412
5FJ9 3179 46 6AYE 7018
6HS7 0264 4.6 37V 6034
5GQH 9535 4.5 4Viw 2788
5KBT 8230 6.4 7AHE 11784
6N52 0346 4 6WC) 21611
6CES 7464 4 6M5V 30094
5080 3761 6.8 6BX3 7303
6R40 4721 4.2 5G5L 3439
7Y59 33613 4.51 6Q0X 20555
7E8G 31018 4.5 3J6X 5942
3lY) 5155 4.2 7RD8 24415
7277 15042 4.1 3IBC 5888
6MBA 30117 5 5FJ6 3186
7JPU 22423 5 6TY3 10615
6IBC 4447 4.4 6NI2 9375
6JXA 9892 4.3 60R5 9032
6NTS 0502 4.1 7BST 30166
6DMW 7967 4.4 5ZBO 6746

Table S2. List of all EMDB/PDB examples in validation sets.
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Table S3. List of all EMDB/PDB examples in test sets.
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Table S4. List of all EMDB/PDB examples for protein

structure modeling.
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