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Enhancing cryogenic electron microscopy (cryo-EM) 3D density maps at intermediate resolution (4-8

Å) is crucial in protein structure determination. Recent advances in deep learning have led to the

development of automated approaches for enhancing experimental cryo-EM density maps. Yet, these

methods are not optimized for intermediate-resolution maps and rely on map density features alone.

To address this, we propose CryoSAMU, a novel method designed to enhance 3D cryo-EM density

maps of protein structures using structure-aware multimodal U-Nets and trained on curated

intermediate-resolution density maps. We comprehensively evaluate CryoSAMU across various

metrics and demonstrate its competitive performance compared to state-of-the-art methods. Notably,

CryoSAMU achieves significantly faster processing speed, showing promise for future practical

applications. Our code is available at https://github.com/chenwei-zhang/CryoSAMU.

Correspondence: papers@team.qeios.com — Qeios will forward to the authors

1. Introduction

Cryogenic electron microscopy (Cryo-EM) has become one of the most prevalent techniques in structural

biology for determining protein structures, thereby accelerating structure-based drug discovery[1][2].

Cryo-EM projects a series of 2D images, which are then reconstructed into 3D electron density maps,

providing voxelized representations of proteins. While cryo-EM 3D maps serve as the basis for molecular

structure determination, using raw maps is usually not possible as they often lack contrast due to various
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factors, including molecular motion and heterogeneity, imaging artifacts, and incoherent averaging of

image data[3]. To address these limitations, various approaches have been developed to enhance map

quality by sharpening or modifying map densities[4][5][6][7][8][9][10]. Traditional methods rely on B-factor

correction, which can be applied globally[4][5]  and locally[11][6]. However, these methods struggle with

maps exhibiting varying signal-to-noise ratios and lacking prior knowledge (e.g. local resolution)[10].

With recent advancements in deep learning (DL), fully data-driven methods have been developed to

automatically enhance raw cryo-EM maps for protein structure modeling. Leveraging neural networks

such as convolutional neural networks (CNNs)[12], generative adversarial networks (GANs)[13], and

Transformers[14], these methods achieved promising results in map enhancement. Yet, they are not

optimized for intermediate-resolution maps (i.e., 4-8 Å[10]) and rely solely on a single modality—the

density map itself—during neural network training, overlooking other relevant modalities such as

structural information. This limitation restricts their ability to generalize across diverse protein

structures and prevents them from fully leveraging complementary biological information. To address

these shortcomings, we thus introduce CryoSAMU, a novel approach that combines 3D map features with

structural embeddings derived from the pretrained protein language model ESM-IF1[15]  to enhance 3D

Cryo-EM density maps with Structure-Aware Multimodal U-Nets.

Our main contributions are:

We propose the first multimodal network that integrates structural information into a 3D U-Net

model using cross-attention mechanisms for cryo-EM map enhancement.

We develop a self-attention-based post-processing procedure for ESM-IF1’s structural embeddings,

effectively preserving both chain and residue relationships while maintaining structural integrity.

We train CryoSAMU on a curated dataset of joint density maps at intermediate resolution and

associated protein structures, optimizing it for map enhancement.

We benchmark CryoSAMU against state-of-the-art approaches across various evaluation metrics over

diverse tested samples. We achieve competitive level of performance but with significantly faster

processing speeds (approximately 4.2 to 16.7 times), making our method well-suited for large-scale

and practical applications.

Our ablation study demonstrates significant improvement brought from integrating structural

information.
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2. Related Work

2.1. Existing map enhancement methods

Conventional map enhancement (sharpening) approaches, including Phenix Autosharpen[4] and RELION

postprocessing[5], are based on global B-factor correction. This technique enhances the amplitude of

high-frequency Fourier components in raw cryo-EM maps. However, global B-factor-based methods

encounter difficulties with maps exhibiting heterogeneous local resolutions, often leading to over- or

under-sharpening in specific regions. Despite local B-factor-based sharpening algorithms[11][6]  have

been developed to alleviate this limitation, these methods still suffer from poor accuracy in estimating

the local resolution of maps, which is crucial for precise local B-factor sharpening.

DeepEMhancer[7]  is a pioneering DL-based fully automatic method that leverages a 3D U-Net model to

mimic local sharpening effects and enhance map features. Subsequently, CryoFEM[8]  that employs

convolutional neural networks (CNNs) and EM-GAN[9]  that utilizes generative adversarial networks

(GANs) have been introduced to further enhance cryo-EM maps. Most recently, with the emergence of

vision transformers, EMReady[10], which adopts a Swin transformer architecture[16], has shown superior

performance in enhancing map quality for accurate protein structure modeling.

2.2. Protein large language models

The advancement of protein large language models (pLLMs) has enabled unprecedented insights into

protein structure, function, and evolution[17][18][19][15][20][21][22]. In analogy to human texts, protein

sequences are treated as “biological texts” and input into pLLMs to capture contextual information

inherent in the sequences. Notable examples of such models include the ESM family[17][18][19], which are

pretrained on vast datasets of protein sequences using the masked language modeling strategy, allowing

them to develop rich representations that encapsulate evolutionary information.

Addressing the inverse problem of predicting protein sequences from given structures, ESM-IF1[15] has

been developed. Trained on 12 million protein structures derived from AlphaFold2[23], ESM-IF1 predicts

protein sequences from backbone atom coordinates. It is specifically designed to encode both sequence

and structural information, including backbone geometry, side chain orientations, and secondary

structure elements. These traits make ESM-IF1 a compelling choice for generating structure-aware

embeddings that complement the map-only modality.
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3. Method

3.1. Dataset of protein structures and density maps

Our dataset was built with a set of cryo-EM density maps at resolutions from 4.0 Å to 7.9 Å from the

EMDB databank[24]  and their associated protein structures from the PDB databank[25]. To ensure that

density maps are properly aligned with their corresponding PDB structures, we excluded maps and PDBs

from the dataset if: (i) maps contain extensive regions without or misaligned corresponding PDB

structures; (ii) maps contain other macromolecules except proteins; (iii) PDB structures contain backbone

atoms only and/or unknown residues. Furthermore, to enhance training efficiency, we measured the

correlation between map-PDB pairs using ChimeraX[26], and removed pairs with correlation score lower

than 0.65. To avoid data redundancy, we measured the sequence identity between PDB structures, and

retained only one if identity is greater than 30 %. As a result, a total of 384 pairs of cryo-EM maps and

associated PDB structures remained. Among these data, 247 ( 65 %), 62 ( 15 %), and 75 ( 20 %) map-

PDB pairs were selected as training, validation, and test sets, respectively. Details are listed in

Supplementary Tables 1-3.

∼ ∼ ∼
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Figure 1. Overview of the CryoSAMU framework. a) Generating protein multimodal representations: structure

features are derived from a frozen pretrained ESM-IF1 model with self-attention weighting for a fixed-size

representation; map voxel features are simulated via resolution-lowering point spread function and

partitioned into smaller cubes. b) The CryoSAMU architecture. The experimental map is partitioned into

smaller cubes and processed by a U-Net with residual blocks and linear attention modules. Structural

embeddings are integrated into the bottleneck layer with cross-attention mechanism. The output cubes are

reconstructed into the full-size enhanced map.

3.2. Multimodal representations of protein structures

Generating 3D target maps from protein structures  For input experimental maps (denoted as ExpMaps)

in training and validation sets, we simulated the corresponding target maps (denoted as TgtMaps) from

associated protein structures using the StructureBlurrer package in TEMPy2[27]. The simulation was

performed with a grid interval of 1 Å and a resolution cutoff at 2 Å, based on the convolution of atom

points with resolution-lowering point spread functions. Given a PDB structure with    atoms, the

simulated density   at grid point   is calculated by:

M

ρ x
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where   and   refer to the atomic number and the position vector of the i-th heavy atom, respectively.

Here,   is a scaling factor and   is defined based on resolution[10][28].

Resampling 3D maps   We first resampled both ExpMaps and TgtMaps to 1 Å/voxel since the cryo-EM

maps vary in voxel size. Subsequently, we normalized the density values to a range of 0 to 1 using the

99.9th percentile density value of each map. Due to GPU memory constraints, we partitioned ExpMaps

and TgtMaps into smaller 3D subvolume pairs (denoted as exp.3D-images and tgt.3D-images) with size of 

, the largest feasible size that allows for a sufficient batch size (See Figure 1a.). To mitigate

boundary artifacts during truncation, we applied zero-padding of 64 voxels on each side along all

dimensions. As a result, a total of 29829 exp-tgt image pairs were yielded for network training and 4642

for validation.

Generating structural embeddings  We employed ESM-IF1[15] to generate protein structural embeddings,

which will serve as an additional modality for network training. Specifically, we derived the embeddings

by first extracting backbone coordinates (N, C , and C atoms) from a PDB file, ensuring that only

standard residues with complete backbone information are included. We then fed these coordinates into

ESM-IF1 to generate embeddings for each protein chain. Since the lengths of chains varied, we applied

zero-padding to standardize the embeddings.

Fixed-size representation with attention weighting Following the generation of embeddings, we

implemented self-attention weighting to create fixed-size representations while preserving the intrinsic

relationships between chains and residues. To this end, we computed attention weights based on

embedding similarity to identify the most informative regions. Specifically, given a PDB structure

containing   chains and   residues per chain, its structural embedding derived from ESM-IF1 is denoted

as  , where    is the embedding dimension. We carried out the refinement process in

several steps. First, we computed chain-level embeddings by averaging across residues:

Next, we computed the similarity matrix to determine the relative importance of each chain:

ρ(x) = θ ,∑
i=1

M

Zie
−k|x−ri|

2
(1)

Zi ri

θ k

64 × 64 × 64

α

C R

E ∈ R
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= , ∈ .Echain
1

R
∑
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R
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T
chain R

C×C (3)
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where each element   represents the similarity between chain   and chain  :  . To

derive attention weights, we applied a column-wise softmax function to  :

We then aggregated these weights across chains to assign a single importance weight per chain:

These weights   reflect the relative importance of each chain, and we leveraged them

to aggregate chain-level embeddings into a unified representation:

We further measured the importance of each residue in    using a residue-level similarity matrix.

Following the same procedure as the chain-level weighting, we obtained a scalar weight    for each

residue  , where  . Finally, we applied min-max normalization and resampled the

embedding    based on the attention weights to a fixed-size representation,  , where 

. When the input length  , we selected the top-   residues with the highest attention

weights. Conversely, when  , we sorted the residues by their attention weights and repeated them 

  times to reach the target length, ensuring each resulting embedding maintains rich

representations and consistent dimensions.

3.3. The model architecture

We proposed a structure-aware multimodal 3D U-Net, as depicted in Figure 1b. The network contains an

encoder, bottleneck, and decoder, interconnected by skip connections.

Encoder

The input to the encoder is a 3D volume with a single channel. The encoder comprises four hierarchical

layers. The first three layers each consist of two residual blocks, with each block incorporating a group

normalization, a SiLU activation[29], and a dropout (p=0.2), followed immediately by a linear self-

attention module with 4 heads[30]  to capture long-range (global) dependencies across voxels. The

channel depth progressively increases as features are abstracted. In the fourth layer, only residual blocks

are employed, producing a higher-level feature representation without the addition of attention modules.

Sij i j = ⋅Sij Echain,i E
T
chain,j

S

= .Wij

exp( )Sij

exp( )∑
C
k=1 Sik

(4)

= , i = 1, 2, … ,C.wi
1

C
∑
j=1

C

Wij (5)

w = [ , , . . , ]w1 w2 wC

= , ∈ .Epooled ∑
i=1

C

wiEi,:,: Epooled R
R×d (6)

Epooled

αj
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L×d

L = 800 R > L L
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⌈L/R⌉
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Bottleneck

At the bottleneck layer, the feature representation is first refined by a residue block and then by a linear

self-attention module. Subsequently, a cross-attention block is introduced to fuse and align the

volumetric features with structural embeddings using multi-head attention with 4 heads, where queries

are derived from the volume features and keys/values from structural embeddings. This process enables

structural conditioning while preserving spatial relationships. A second residual block is then applied to

further fuse the combined features from both modalities.

Decoder

The decoder follows a symmetric architecture to the encoder. Feature maps are progressively upsampled

using nearest-neighbor interpolation combined with 3D convolutions, and skip connections incorporate

corresponding features from the encoder. Finally, a group normalization, a SiLU activation, and a

concluding 3D convolution project the processed features to a single output channel.

3.4. Network training and inference

Protein structural embeddings provide an additional modality containing structure information, serving

as key-value pairs in the attention mechanism when training. However, since these embeddings are

unavailable during validation and inference, we implemented a specialized mode in which the network

bypasses the cross-attention operation. In this mode, the network relies exclusively on feedforward

transformations with residual connections. This design maintains consistency between training and

validation/inference phases while preserving the learned feature representations.

Training

During training, CryoSAMU accepts an exp.3D-image and its corresponding structural embedding as

input and generates an enhanced 3D image (denoted as pred.3D-image). Previous studies have shown that

L1 loss performs well in similar tasks[7][8]. However, to improve training stability in the presence of noisy

data and outliers that are common in cryo-EM maps, we employed the smooth L1 loss to encourage the

generator to minimize the difference between the output pred.3D-image,  , and the target tgt.3D-image, 

:

X

Y

SmoothL1Loss(X,Y ) = {
0.5(X − Y ,)2

|X − Y | − 0.5,
if |X − Y | < 1,
otherwise.

(7)
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Moreover, to enhance the network’s robustness, we employed TorchIO[31]  for data augmentation,

including random Gaussian noise, anisotropy, and blurring.

Inference

During inference, the input experimental map was first zero-padded and divided into smaller cubes (

), following the same strategy used for training data. Each cube was then individually

processed by the trained neural network to generate the enhanced cube. These enhanced cubes were

subsequently reassembled to reconstruct the map as its original dimensions. To prevent loss of spatial

information and ensure smooth transition between cubes, only the central    voxels from

each enhanced cube were used in the final reconstruction, following the method proposed by Si et al.[32].

Implementation

The network was implemented in PyTorch 2.6.0 with CUDA 12.4, running under Python 3.12.8. Training

was conducted using a distributed data parallel (DDP) strategy across two computational nodes

connected via NVLink, with each node equipped with four NVIDIA A100 GPUs of 40 GB VRAM. This setup

supported a maximum batch size of 18 per GPU. The network was trained over 95 epochs, requiring

approximately 63 computational hours. The AdamW[33] optimizer was used with an initial learning rate

of 0.0001, along with a cosine annealing learning rate scheduler. To improve training performance while

maintaining accuracy, automatic mixed precision training was applied. Additionally, gradient clipping

(set to 0.5) was applied to prevent gradient explosion.

64 × 64 × 64

50 × 50 × 50
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4. Experiments and Results

Figure 2. Visual and quantitative comparison of deposited (blue) and CryoSAMU-enhanced (green) maps,

with superimposed corresponding PDB structures (brown). a, b: Maps are shown at two contour levels. Left:

recommended contour level (volume = 85.74e3). Right: higher contour level (volume = 22.57e3). c: RSCC

comparisons between deposited and CryoSAMU-enhanced maps. The example protein is a CX3CL1-US28-

G11iN18-scFv16 in TL-state (PDB-7RKF, EMDB-24496, reported resolution of 4.00 Å)[34].

We conducted a comprehensive study to assess the performance of CryoSAMU using a test set of 75

intermediate-resolution cryo-EM density maps and associated PDB structures across a wide range of

evaluation metrics.

4.1. Visualization and quantification of map enhancement

We first visualized a CryoSAMU-enhanced map alongside its associated deposited map using UCSF

ChimeraX[26]. For a fair comparison, both sets of maps were illustrated with the same volume, which

requires contour level adjustments owing to differences in their volume ranges. Specifically, we first

presented the deposited map at its recommended contour level and volume, then adjusted the contour

level of the corresponding CryoSAMU-enhanced map to match the recommended volume. In addition, we

also visualized both maps at a higher contour level with the same volume.
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As displayed in Figure 2b, CryoSAMU significantly suppressed noise in the lip nanodisc regions

(highlighted by dashed boxes in Figure 2a) of the deposited map for EMDB-24496 (PDB-7RKF). Moreover,

the deposited map at a smaller volumes missed certain structural regions corresponding to the protein

structures, as highlighted by black boxes in Figure 2a. In contrast, the CryoSAMU-enhanced maps

exhibited better alignment with the corresponding protein structures, revealing more structural details,

as demonstrated by black boxes in Figure 2b. Similar visual results were observed for another protein

structure (see Supplementary Figure 1). Furthermore, residue-level real-space correlation coefficient

(RSCC) measurements[35] in Figure 2c suggested significant improvements. Specifically, Chains A, B, and

C exhibit RSCC increases compared to the deposited map, with correlations rising from 0.835 to 0.860,

0.848 to 0.865, and 0.801 to 0.836, respectively. In addition, 84.9%, 73.5%, and 90.6% of resiudes in Chains

A, B, and C, respectively, showcased higher RSCC scores. Consistent RSCC improvements were also

observed in other samples (see Supplementary Figure 2).

4.2. Benchmark I: improvement of real and Fourier space correlations

Metric Deposit Autosharpen DeepEMhancer EMReady CryoSAMU(ours)
CryoSAMU

(w/o struct.)

CC_box 0.731 0.679 0.618 0.862 0.834 0.751

CC_peaks 0.750 0.722 0.611 0.774 0.753 0.698

CC_volume 0.594 0.542 0.534 0.729 0.691 0.571

FSC05 6.124 6.147 5.283 4.668 5.108 6.434

Table 1. Comparison of different methods across various metrics. See Section 4.2.
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Figure 3. The violin plots for comparison of different methods across four evaluation metrics (see Section 4.2)

over 75 test samples.

We then benchmarked CryoSAMU against other state-of-the-art methods, including Autosharpen[4],

DeepEMhancer[7], and EMReady[10], in terms of both real-space and reciprocal-space (i.e., Fourier-space)

correlations, across a test set of 75 primary maps. For real-space correlation, we computed three

correlation metrics using phenix.map_model_cc[35] for each map-model pair (where the model refers to

a protein structure): CC_box, CC_volume, and CC_peaks. These metrics differ based on the choice of map

regions used in the calculations. CC_box considers the entire map. CC_volume and CC_peaks focus on

regions with the highest density values. However, CC_volume selects grid points only around atomic

centers, while CC_peaks selects points located anywhere within the volume. For all three metrics, higher

values indicate better map performance. For Fourier-space correlation, we computed Fourier shell

correlation (FSC) using phenix.mtriage[35], and reported the unmasked map-model FSC05 values. FSC

values are typically represented as a function of the inverse map resolution, where lower value indicates

better map resolution.

The average real-space CC and FSC values are listed in Table 1. According to the violin plots shown in

Figure 3, CryoSAMU-enhanced maps demonstrated significant improvements over the deposited maps in

terms of CC_box and CC_volume, with average values increasing from 0.731 to 0.834 and from 0.594 to

0.691, respectively. The average CC_peaks score showed a slightly increase from 0.750 to 0.753. These

results indicate that CryoSAMU effectively enhances deposited maps in both the entire region and the

highest-density regions. In contrast, maps processed by Autosharpen and DeepEMhancer exhibited

lower scores across all three metrics. EMReady showed slightly better improvements than CryoSAMU

across all three metrics. For FSC05 scores, CryoSAMU outperformed the deposited map, Autosharpen,

and DeepEMhancer, achieving an average value of 5.108 Å. However, it slightly underperformed compared

to EMReady, which achieved an average value of 4.668 Å. These results demonstrate that both CryoSAMU
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and EMReady consistently enhance the deposited maps in terms of correlations in both real and Fourier

spaces.

4.3. Benchmark II: improvement of protein structure modeling

As the goal of enhancing cryo-EM density maps is to improve the performance of protein structure

modeling from density maps (i.e., map interpretability), we benchmarked protein structures constructed

from CryoSAMU-enhanced maps against those processed by other methods. Specifically, we used a

standard structure modeling tool, known as phenix.map_to_model[36], to construct protein structures

from 20 maps enhanced by the different tested methods. These maps were randomly selected from the

test dataset to ensure that they were not exposed during training, as listed in Supplementary Table 4. To

evaluate these structures, we used phenix.chain_comparison[36] to compare the constructed structures

against their corresponding ground-truth PDB protein structures. We reported two metrics: residue

coverage and sequence match. The residue coverage indicates the fraction of residues in the query

structure that match the corresponding residues in the target structure within 3.0 Å, regardless of residue

type. The sequence match indicates the percentage of matched residues that share identical residue types

between the query and target structures.

Method
Residue

Coverage (%)

Sequence

Match (%)

Deposit 31.71 8.42

Autosharpen 16.00 8.13

DeepEMhancer 24.31 10.0

EMReady 31.61 11.38

CryoSAMU(ours) 38.03 9.33

CryoSAMU(w/o struct.) 8.08 8.13

Table 2. Comparison of average residue coverage and sequence match across different methods.
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Figure 4. a-b: The polar plots for comparison of protein structures constructed from deposited (blue) and

CryoSAMU-enhanced (green) maps, using metrics of (a) residue coverage and (b) sequence match. c-d: The

box-whisker plots for comparison of different methods across two evaluation metrics over 20 test samples.

See Section 4.3.

The average metric scores from all methods are listed in Table 2. Figure 4a and b provide a detailed

comparison for each individual test examples in terms of residue coverage and sequence match,

respectively. The polar plots clearly showcase that after CryoSAMU enhancement, 19 out of 20 samples

exhibited an improvement in residue coverage on deposited maps, with the average score increasing from

31.71% to 38.03%; and 55% of samples exhibited an improvement in sequence match, with the average

score increasing from 8.42% to 9.33%. Furthermore, we benchmarked CryoSAMU against other methods,

as shown in Figure 4c and d. CryoSAMU achieved the highest residue coverage score among all methods,

although its correlation scores were slightly lower than those of EMReady. The sequence match score of

CryoSAMU was slightly lower than EMReady and DeepEMHancer, while still better than the deposited

maps. These results demonstrate that CryoSAMU enhancement boosts protein structure modeling

performance.

4.4. Benchmark III: processing time

To evaluate the scalability of CryoSAMU in practice, we recorded the time required to generate each

enhanced map of all 75 test samples and compared it against the processing time of other methods.

Figure 5 shows the wall-clock time plotted against the volume size of input experimental maps, ranging

from the order of   to  . For a fair comparison, all methods were run on the same workstation

equipped with an AMD Ryzen Threadripper 2950X Processor of 32 CPUs and an NVIDIA GeForce RTX

2080 Ti of 12 GB VRAM. Each method was executed with the maximum batch size that our GPU can

accommodate: approximately 12 for DeepEMhancer, 64 for EMReady, and 24 for CryoSAMU.

106 108 \AA
3
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Figure 5. The scatter plot of map processing time against map volume. Each dot represents the

processing time for an individual map based on its volume. The shaded area around the regression

line denotes the confidence interval of the regression estimate.

CryoSAMU (shown in green) displayed the minimum processing time across maps of varying volumes.

Its weak linear dependency on map volume and tight confidence interval around its fit line indicate that

CryoSAMU has both optimal scalability and consistent performance. In contrast, DeepEMhancer

exhibited a strong linear correlation between processing time and map volume, indicating poor

scalability as volume size increases. EMReady showed a wider confidence interval in its linear fit,

reflecting high variability in processing time. Notably, several outliers at lower volumes showed

significantly longer processing time compared to other methods. For a significantly large map with a

volume size of  , CryoSAMU took only 116.48 seconds for generating an enhanced map, while

Autosharpen, DeepEMHancer, and EMReady took 552.19, 2963.10, and 1731.719 seconds, respectively. Table

3 lists the average processing time for each method. CryoSAMU achieved an average processing time of

32.49 seconds, approximately 13.6 times faster than EMReady, while generating comparably enhanced

maps. These results suggest that CryoSAMU scales efficiently with increasing map volume, making it a

promising tool for practical applications.

1.25 × 108 Å3
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Autosharpen DeepEMhancer EMReady CryoSAMU

138 118 544 517 441 500 32 23

Table 3. Average processing time in seconds of different methods.

4.5. Ablation study

We finally conducted an ablation study to evaluate the impact of integrating structural modality. We

compared CryoSAMU with (w/) and without (w/o) structural embeddings using 75 test samples for

correlation evaluation and 20 test samples for protein structure modeling assessment.

Figure 6. Pairwise comparison of enhanced/deposited ratios for CryoSAMU (w/) and (w/o). Each point

represents a single map. Point colors encode the deposited map quality.

Figure 6 shows that CryoSAMU (w/) outperforms CryoSAMU (w/o) in both CC_box and FSC05, with

improvements of 98.7% and 77.3%, respectively, as indicated by scatter points above the diagonal line.

Moreover, the most significant gains (points far from 1.0) were observed in poorer‐quality deposited

maps (colored in purple), which tend to have lower deposited CC_box or higher FSC05 values. Table 1 lists

the average real- and Fourier-space metrics, indicating that incorporating structural embeddings derived

from ESM-IF1 led to a significant improvement of map enhancement, as also reported in Figure 3. In

terms of protein structure modeling, residue coverage significantly raised from 8.08% to 38.03%, while

sequence match raised from 8.13% to 9.33% with the integration of structural embeddings. This suggests

that structural information helps complement map regions with poor resolutions, artifacts, or noise,

± ± ± ±
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thereby increasing the completeness (higher residue coverage) and improving accuracy (higher sequence

match) during structure modeling. These findings underscore the importance of integrating structural

modality to enable the network to develop structural awareness beyond learning solely from 3D density

maps.

5. Conclusion and Discussion

In this work, we introduce CryoSAMU, the first structure-aware multimodal network for enhancing cryo-

EM density maps at intermediate resolution of protein structures. Our approach combines 3D map

features with corresponding structural features through cross-attention mechanisms. In addition, we

develop a self-attention weighting algorithm to produce fixed-size representations of structural

embeddings derived from the pretrained ESM-IF1 model, preserving inter-chain and residue

relationships while maintaining structural integrity. Our benchmark results demonstrate that CryoSAMU

preforms competitively with existing cutting-edge methods, closely approaching the performance of

EMReady, the current leading tool for cryo-EM density map enhancement. Notably, CryoSAMU achieves

the fastest processing speed among all tested methods, positioning it as a promising solution for large-

scale and practical applications. Furthermore, our ablation study reveals that incorporating an additional

structural modality significantly boosts CryoSAMU’s performance across all evaluation metrics,

suggesting a new avenue for future cryo-EM research to explore the effective integration of multimodal

data during network training.

Despite CryoSAMU demonstrating superior performance in enhancing cryo-EM maps, its current

architecture—based on residual convolutions within a U-Net framework—is primarily designed to

capture local information. In practice, capturing global context and long-range dependencies across map

voxels could further improve performance. This could be addressed by adopting more hierarchical

architectures, such as the Swin Transformer[16], which facilitates feature extraction over larger receptive

fields. Moreover, incorporating supplementary loss terms, such as the Structural Similarity Index

Measure (SSIM) loss, could mitigate overfitting and enhance training efficiency[10]. These will be

explored in our future work. Furthermore, we plan to expand our dataset by including high-resolution

maps, which could increase the robustness of the model and further elevate its performance.
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Supplementary Material

Figure S1. Visualizations of deposited (blue) and CryoSAMU-enhanced (green) maps. The corresponding PDB

structures (brown) are superimposed on the maps. a Human Dispatched-1 (PDB-6XE6, EMDB-22144, reported

resolution of 4.53 Å)[37]. a-b: Maps displayed at the recommended contour level. c-d: Maps displayed at a

higher contour level. Visualizations were produced by UCSF ChimeraX[26]. The protein structure modeling

completeness and accuracy improved after CryoSAMU enhancement. For instance, residue coverage increased

from 53.5% to 64.5%, as well as sequence match increased from 6.1% to 7.7%.
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Figure S2. The real-space correlation coefficient (RSCC) comparison between deposited and CryoSAMU-

enhanced maps. Top: a transmembrane nanopore TMH4C4 (PDB-6M6Z, EMDB-30126, reported resolution of

5.9 Å)[38]. Bottom: a yeast cytoplasmic exosome (PDB-5G06, EMDB-3366, reported resolution of 4.2 Å)[39]. In

the first example of PDB-6M6Z, both Chain B and Chain D exhibited significant RSCC improvements

compared to the deposited maps, increasing from 0.706 to 0.768 and from 0.739 to 0.777, respectively. In

addition, 85.2% of residues in Chain B and 70.9% of residues in Chain D showed an increase in their RSCC

scores. In the second example of PDB-5G06, the average RSCC scores increased from 0.601 to 0.635 for Chain

B, with 82.9% of 240 residues showing improvement; and increased from 0.581 to 0.615 for Chain E, with

76.2% of 265 residues perform better.
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Table S1. List of all EMDB/PDB examples in training sets.
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Table S2. List of all EMDB/PDB examples in validation sets.
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Table S3. List of all EMDB/PDB examples in test sets.
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Table S4. List of all EMDB/PDB examples for protein

structure modeling.
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