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Abstract

Interpreting quantum mechanics is a hard problem basically because it means
explaining why and how the mathematics exploited to formulate wave-particle
duality are related to observations or reality in classical physics (due to Newto-
nian mechanics, special relativity, gravity and entropy). Here, we first prove the
limitation of the Heisenberg uncertainty principle by invoking the wave-particle
duality and apply it to revise and/or extend the Copenhagen postulates. In par-
ticular, even though the said uncertainty exists due to non-commuting operators,
but these operators do not commute simply because one of the operators is well-
defined in classical physics (particle-like), while the other is wave-like (well-defined
in quantum mechanics), or the eigenvalue is not at all defined in classical physics.
We also construct a new quantum mechanical postulate (Postulate 9) to de-
duce why the forbidden gap between discrete energy levels should exist in atoms,
molecules and condensed matter phases. In fact, we tackle all the problems aris-
ing from the Copenhagen interpretation without violating established experiments
and without proposing ideas that violate physical reality.

Keywords: Observables in quantum and classical physics; Wave-particle duality;
Heisenberg uncertainty principle; Electron’s orbital; Copenhagen interpretation.
PACS: 03.65.Ta, 03.65.Ca, 04.20.Cv, 05.20.Gg.

1 Introduction

Due to unsettled issues within the foundations of quantum mechanics, we have three
main options for scientists to choose from when asked about the position of a ‘quan-
tum’ particle before measurement [1]. A quantum particle here usually means an
electron or a photon, which can be detected as free particles. The first is the realist
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position—After the measurement, it is found that the particle was at some point A.
But quantum mechanics is incomplete because it clearly lacks the ability to predict
that the particle was at point A before the measurement. This realist position was
advocated by Einstein himself, but he was unable to defend it in an unambiguous
manner where one such attempt is the well-known Einstein-Podolsky-Rosen (EPR)
paradox [2]. However, the realist position exposed here does not imply wavefunc-
tion realism, but implies observable or eigenvalue realism. The second position is
known as the orthodox position—Before the measurement, the particle was not
really anywhere such that quantum mechanics can only predict the probability dis-
tribution of the particle’s possible position. This probability distribution is unique
in a sense that it implies the act of measurement forced the particle to take a stand
and exposed its position at point A. Here, ‘taking a stand’ refers to the notion of
wavefunction collapse (whatever the mechanism for this collapse is). This is the
core Copenhagen-interpretation that was advocated, and enforced to be the truth
by von Neumann and Dirac [3, 4]. Bohr [5] on the other hand, advocated that the
quantum property did not exist and the measurement produces it somehow, but not
due to wavefunction collapse. This wavefunction collapse is theoretically ambiguous
because it is manually activated [1], and this collapse remains experimentally not
observable. Consequently, we do not rely nor invoke such a concept here where we
relied on the so-called wavefunction transformation theory proposed in Ref. [6].

Anyway, the third view is called the agnostic position. This is also a valid posi-
tion because where is the point in taking a side when quantum mechanics is unable
to predict the position of that particle. Raman was an advocate of this position.
This is the current situation with the foundations of quantum mechanics, and in the
absence of additional technical arguments, we are not entirely sure which position
is viable, let alone the truth. Even though Ogilvie [7] has argued that quantum me-
chanics is largely irrelevant in the general practice of chemistry, but we will expose
the existence of two new postulates (New Postulates 9 and 13) that are directly rel-
evant to the time-irreversible processes and the foundations of photochemistry and
biochemistry (photosynthesis, vision and formation of vitamin D). In particular, we
provide the physical meaning of discrete energy levels and/or electron orbitals in
atoms that is valid for molecules and condensed matter (including solids) based on
quantum mechanics that is technically well-defined and experimentally observable.

The primary aim of this work is to expose the new rules contained in this con-
sistent interpretation systematically, including the proper and correct physics and
mathematics needed to take a firm stand on only one of the positions listed above.
This will lead us to the application of these postulates in both physics and chem-
istry. We begin by revisiting the primary notion that is related to the wave-particle
duality, which is the core quantum mechanical idea embedded in the Copenhagen
interpretation that is responsible for the Heisenberg uncertainty principle. However,
we shall not revisit the well-known Copenhagen postulates one-by-one, which can be
obtained from Refs. [1, 8, 9], instead, we shall re-evaluate and completely reconstruct
the Copenhagen postulates with additional physics. Here, Copenhagen postulates
1, 4, 5, 6 and 8 are replaced by the revised postulates, while the remaining Copen-
hagen postulates, 2, 3 and 7 stay unchanged. There are five additional (and new)
postulates from the classical physics (four) and quantum mechanics (one), which
give a total of 13 postulates to interpret the foundations of physics and chemistry
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in a straightforward manner.
Before embarking on constructing the postulates, we shall first start elaborat-

ing the Heisenberg uncertainty principle. Physically, the Heisenberg uncertainty
principle is a consequence of wave-particle duality. Here, we should note that the
Heisenberg uncertainty principle only applies for r ≤ ∆r, or when the observation
scale, r is within the probability distribution of a quantum particle, ∆r. Therefore,
if r > ∆r, then the Heisenberg uncertainty principle is inapplicable because we can
identify the position of the particle or the position of the wave packet or the po-
sition of the particle’s or wave packet’s distribution function is well-defined. Here,
we elaborate and apply this Heisenberg uncertainty principle and describe how it is
actually related to one’s ability to know both the momentum and the position of a
quantum particle. However, unlike the momentum–position Heisenberg uncertainty
principle discussed above and elsewhere, we cannot determine or predict all the spin
components of a quantum particle for all or any scales or range of observation, either
for r ≤ ∆r or for r > ∆r.

For example, r is the range of observation or the region of observation that is
defined within |l and |r. In particular, |l � |r implies � is an atomic hydrogen with
its outer circle (with radius r) representing an electron wave packet surrounding
the proton, · in the center. In this case, ∆r = πr2, while r denotes the region
between |left and |right. For a photon, ∆r denotes the size of a single photon. Here,
the size of a single photon should be defined by its wave packet. Therefore, for
r > ∆r, we can know the position of an electron, which is defined by the Bohr
radius, or the position of a photon, but these positions are not known at a given
Cartesian coordinate (x,y,z) because such a point-like position does not exist for
any electron nor photon. The above new interpretation of Heisenberg uncertainty
principle, which limits its validity, belongs to the revised interpretation that shall
be properly exposed after the summary. The above limitation of the Heisenberg
uncertainty principle is easily understood by noting the fact that r ≤ ∆r implies
the quantum state cannot be defined, and only for r > ∆r the quantum state is
properly defined by a wavefunction or distribution function. If the quantum state or
the wavefunction cannot be defined, then the probability distribution is not defined
as well.

The quantum mechanical observables (calculated from the wavefunctions) do ex-
ist in a real physical sense, but they are subject to these two physical conditions, C1
and C2.
(C1) The Heisenberg uncertainty principle.
(C2) Whether the said quantum mechanical observables are also observable in classi-
cal physics. Observable in classical physics means a quantum mechanical observable
is well-defined at any given time, tn.
These two conditions exist entirely due to wave-particle duality of quantum particles.
All quantum mechanical observables, regardless of whether they are also observable
in classical physics or not, are guaranteed to satisfy the Heisenberg uncertainty prin-
ciple if and only if r ≤ ∆r. For those quantum mechanical observables that are

also observable in classical physics, are not subject to the Heisenberg un-
certainty principle for r > ∆r. In this range of observation, the quantum-classical
observables are subject to classical uncertainties. On the other hand, for all quan-
tum mechanical observables that are not observable in classical physics,
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the Heisenberg uncertainty principle is always valid for all range of observation,
0 ≤ r ≤ ∞. Therefore, C2 limits the applicability or validity of the Heisenberg
uncertainty principle.

2 Revised and new postulates

The interpretation presented here is complete because it incorporates both classical
and quantum mechanics consistently, which is another unique feature that is absent
in the Copenhagen interpretation. The special relativity and the second law of
thermodynamics within classical physics have been worked out in Refs. [10, 11].
The core problem resides in the interpretation of wave-particle duality, whether the
particles are massive or massless, and whether a physical quantity is observable
(measurable) or not, in classical physics.

Let us now provide further details on this wave-particle duality so as to properly
expose the limitation of the Heisenberg uncertainty principle. We can calculate the
probability of finding the ground state electron (n = 1, l = 0) at r/a = 1 and again
at r/a = 4 using the suitable spherical harmonics. For example [9],

a[R10]
2r2 = 4

(r
a

)2

exp
(
− 2

r

a

)
= 0.54
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r
a
=1
, (1)

= 0.02
∣∣∣

r
a
=4
. (2)

Apparently, 0.54 and 0.02 are the probabilities of finding the electron at radii, r/a =
1 and r/a = 4, respectively, for the ground state electron (n = 1, l = 0).

Now comes the interesting part, the interpretation. What do we make of these
probabilities? Does this probability for each r/a means that we could also make
the measurement for each r/a as in a Cartesian coordinate, (x,y,z)? The answer
is definitely NO because each r/a refers to a radius, not a point in (x,y,z). As a
matter of fact, even though we can calculate the probability of an electron for a
given point-like position, r/a from the radial distribution function, but we cannot
measure the position confined to a point, r/a. What we can measure is the whole
radial distribution function curve (for a given radius r) in one go, not as individual
r/a points as in Cartesian coordinate points, (x,y,z).

The above measurement of the whole distribution function curve is supposed
to mean that if we were to pin-point the detector at a particular Cartesian point,
(xa

1, y
a
1 , z

a
1) on an atomic hydrogen Bohr radius, then the intensity of detection (for

that ground state electron) is maximum. This does not mean the electron was in-
deed at that particular (xa
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a
1 , z

a
1) point at the moment of detection. If we repeat

this measurement for eternity and for whatever shortest time interval as allowed
by technology, we would obtain the same intensity for (xa
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a
1 , z

a
1), (xa
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a
2), and

so on. Here, measuring the same intensity at a given cartesian point implies with
certain classical uncertainty about the values of (xa
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2), and so on.

If we now move a little away from the Bohr radius to k > a (at point, (xk
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by the electron distribution function for an atomic hydrogen. Again, the intensi-
ties shall stay the same for all (xk
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2 ), · · ·, and for all (xq
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2), · · ·, respectively. We would never encounter a zero or negligible inten-

sity of detecting the electron for any (xa
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1,2,···) for as long as k, a and q are within the electron distribution

function. Therefore, the electron is not a point-like particle that moves around a
nucleus, or a proton in the case of atomic hydrogen.

This whole-curve measurement (for a given radius) ‘in one go’ that represents the
electron’s position as a radial function would reproduce the probability distribution
of that electron, depending on the electron’s orbital. Hence, our new interpretation
here is that the electron’s charge, e and mass, mel are distributed in the shape of the
probability distribution curve such that the mass and charge of this ground state or
excited-state electron is never ‘fractionalized’ nor can it be broken into smaller pieces
or parts. This interpretation is invoked from the measurement elaborated above with
respect to point-like particle that cannot be detected at a Cartesian (x, y, z) point.
In this case, the mass and charge of an electron remain the same and their respective
values, mel and e are definite. However, the distribution of charge and mass of an
electron does not imply they depend on the electron distribution function. In fact,
the mass and charge of an electron stay the same for different electron distribution
functions, for example, when the electron makes a transition from the ground to
an excited state. Consequently, there should not be any relationship between mass
or charge with the shape and size of the electron distribution function. In other
words, the electron has a certain size, and its size and shape can change due to
interaction with its surrounding such that the electron’s definite mass and charge
are distributed within the electron’s size and shape (for whatever size and shape).
This does not modify either the definite mass nor the definite charge of that electron.
Therefore, the electron remains as an indivisible fundamental particle. The group
velocity of an electron, that is bound to a given principal quantum number, n
cannot be defined if r ≤ ∆r. The reason for this is that the mass and charge,
as well as the group and phase velocities of an electron are always defined by the
‘whole probability distribution curve’, which is then defined by the wavefunction
(see Revised Postulate 5).

However, the charge (not the mass) is the one that gives rise to wave-like property
for an electron with Pancharatnam phase velocity that is adjusted upon interaction
as we have learned earlier [12]. The group velocity of an electron bound to a given
principal quantum number, n cannot be defined if r ≤ ∆r due to its relation with
mass distribution according to the probability distribution curve or function. The
probability distribution function or the wave function is not properly defined for
r ≤ ∆r, and definitely undefined for r < ∆r. The phrase, ‘cannot be defined’
here and elsewhere does not mean ‘do not exist’ or ‘does not exist’. Here, r ≤ ∆r
refers to the range of observation (r) with respect to the size of the electron or
electron’s distribution function (∆r). Thus, the electron cannot be observed (as a
point particle) if r ≤ ∆r because the electron is never a point-like particle, but is
defined by the distribution function.

Note this, we do not know (and we can only guess) the physics that is in play
within or inside an electron, and this particular ‘hidden’ or ‘unknown’ physics also
stays unknown for all other elementary quantum particles like quarks and photons. I
have been careful with these two words, ‘hidden’ (unknown and cannot be observed
even indirectly) and ‘unknown’ (exists but cannot be observed directly) because we
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have to admit that we do not even know what we do not know about such physics.
Here, hidden physics does not imply the existence of hidden variables. Hidden
physics means that we do not know the physics of charge within an electron such
that we do not invoke any hidden variables (that cannot be measured or determined
even indirectly) to define the charge. In view of this revised interpretation, we have
a situation that the Born’s statistical interpretation cannot be entirely correct and
needs to be replaced with the one that is compatible with the revised interpretation.

Before revising the Born’s statistical interpretation, let us understand what it
says first. The Born’s original interpretation states that the position of an elec-
tron can only be measured for each r/a with a probability, and therefore, we can-
not predict the electron’s position, r/a with certainty. This uncertainty is due to
Heisenberg’s uncertainty principle. There are two physical problems with Born’s
interpretation. The first problem is related to the assumption that the electron
can be confined within a point-like position, r/a, and the second problem is that
even though the position of the electron cannot be determined with certainty due
to uncertainty principle, but this uncertainty is assumed to be true for all range of
observation, namely, for 0 < r <∞. Both of these assumptions are problematic that
are derived from Born’s own interpretation, which are false. The standard quantum
formalism accepts these two false assumptions by activating the notion of particle
for all r.

In this revised interpretation, the notion of point-like particle makes sense only
when r > ∆r due to finite range of distribution function for an electron, while for
r < ∆r the electron as a particle or as a wave cannot be defined because wavefunction
or the electron distribution function is undefined. On the other hand, the defined
distribution function does not and cannot locate the electron as a particle as in a
(x, y, z) coordinate for r < ∆r. Therefore, whether an electron or a photon is a
wave or particle does not make sense for all r. What we can postulate affirmatively
is that an electron has particle-like property for r > ∆r and a wave-like property
for r < ∆r, while for a photon, it has both particle-like and wave-like properties for
r > ∆r. The photons are undefined for r < ∆r and relevant postulates cannot be
constructed.

This revised interpretation also states that the mass and charge of an electron
is distributed following the probability distribution function such that the point-
like position of an electron, r/a cannot be defined properly for all r ≤ ∆r and
within this range, Heisenberg’s uncertainty principle is valid. Here, ∆r is defined
as the range for a[Rnl]

2r2 6= 0, while a[Rnl]
2r2 = 0 is for r > ∆r. Moreover,

the revised interpretation implies that the said uncertainty principle is inapplicable
for r > ∆r. For an electron in the free space or vacuum, ∆r refers to the size of
the electron’s distribution function. The electron’s path (defined by ∆r) that was
detected in a cathode-ray tube (CRT) or in the bubble-chamber experiment [13, 14],
respectively, are possible simply because r > ∆r where r here refers to the size of
the CRT tube and its screen or the size of the bubble chamber that detects the
electron’s path. In other words, the range of measurement (or observation) is much
larger than that of the electron’s size or the space occupied by the ‘shape-shifting’
electron. This shape-shifting notion refers to different orbitals for an electron in an
atomic hydrogen, which is true for all electrons, regardless of whether the electron
is bounded (in atoms) or free (in vaccum).
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Therefore, we should be able to identify the fact that the electron is correctly
represented by a probability-distribution-shifting (or shape-shifting) function that
can be determined from the wavefunction that could change due to wavefunction
transformation. For example, the wavefunction transformation is needed when the
electron in an atomic hydrogen is excited from the ground state (ψn=1,l=0) to an
excited state (ψn=2,l=1). We should be able to deduce that the revised interpretation
also automatically rules out the existence of Feynman’s nonclassical paths. We have
given unequivocal exposition with quantitative analysis on this matter in Ref. [15].

Anyway, if ∆r is the size of the crystal, then r ≤ ∆r means our range of obser-
vation is smaller than the size of the crystal and therefore, the electron’s position
is subject to Heisenberg uncertainty principle. Of course the situation is infinitely
complex to determine the position of any single electron in a crystal because there
are at least of the order of 1023 interacting valence electrons in a crystal. Whereas,
for larger observation range, r > ∆r, we are certain that the electrons can always
be found within the crystal, while the probability to find any electron beyond the
surface of the crystal is zero.

Let us now begin constructing the revised postulates as listed below. We first
recall the first Copenhagen Postulate and reconstruct it as given below.

Revised Postulate 1: The state function, Ψ(r, t), which is a function
of time and space coordinates, is also known as the wavefunction. How-
ever, Ψ(r, t) for massive and charged quantum particles does contain
all the observable or measurable information about a system except for
the particle’s mass, charge and the interactions in that system. We also
demand that Ψ(r, t) to be single-valued (uniquely determines the eigen-
value), continuous and quadratically integrable. For continuum states,
quadratic integrability should be excluded. The Hamilton operators con-
tain the remaining information about charge, mass and interactions. For
massless and chargeless photons however, we cannot invoke the state
function to represent photons where photons themselves are treated as
waving wave packets [15], which are subject to wave equation.

The complete information about a system can be obtained from the
Schrödinger equation,

ih
∂Ψ(r, t)

∂t
= HΨ(r, t), (3)

where we also need to know the state function, Ψ(r, t) and H is the
Hamiltonian that is composed of the relevant kinetic (K), potential (V )
and other interaction (Hint) energy operators. Here, Ψ(r, t) alone does
not contain all or the complete information about a system.

On the other hand, the electric and magnetic field components of an
electromagnetic wave do contain all the information about photons and
these components are subject to the wave equation,

∂2(E,B)

∂t2
= c2

∂2(E,B)

∂x2
, (4)
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where c is the speed of light. Therefore, the rest of the postulates do
not apply for photons primarily because V = 0 = Hint and its energy is
defined by,

Ephoton = hν =
hc

λ
, (5)

where h is Planck constant, ν denotes the frequency, λ is the wavelength
of an electromagnetic wave and Ephoton is 100% kinetic energy.

Here, the state function cannot be a physical wave for two reasons—(i) Ψ(r, t)
is the linear combination of many eigenfunctions, ψi and (ii) the particle-property
cannot be incorporated into Ψ(r, t) nor into the eigenfunctions, ψi. We need the
constants (mel and −e) attached to the relevant physical operators (kinetic energy
and potential energy operators, respectively) to do that, to give particle-property
such as mass and charge to an electron. Note this, acoustic or mechanical waves with
waving mass do not satisfy or cannot represent the wave function of any quantum
particles because the wave function should be independent of mass. If mass can be
incorporated into the wave function, then Heisenberg uncertainty principle cannot
exist. The wave function or the state function in the Broglie-Bohm theory [16]
also does not incorporate the particle property (the mass). As for the Feynman
non-classical paths, regardless of whether there is a protocol-to-observe [17] or not,
it has never been observed or confirmed. The existence of this protocol does not
imply the observation has been made and/or confirmed. In fact, the physics of
the double-slit experiment exposed in Ref. [15] with new experimental observation
already demonstrated that the Feynman paths are physically false. Whereas, the
electric field (E) nor the magnetic field (B) component of an electromagnetic wave
cannot be a physical wave for the second reason, (ii). In particular, the particle-
property of a photon cannot be incorporated into the said wave-property of the
magnetic- and electric-field components.

The second and third Copenhagen Postulates remain the same in the revised
interpretation. Therefore, we just reproduce them below.

Copenhagen Postulate 2: Each linear Hermitian operator corresponds
to a physical observable. To find this operator, we can exploit the cor-
respondence rules, i~ ∂

∂t
−→ E, ~

i
∂
∂x
−→ p and − ~2

2m
∂2

∂x2 −→ p2

2m
= K.

In Copenhagen Postulate 2, we did not specify whether the total energy, E, the
momentum, p nor the kinetic energy K refers to a particle or a wave or both. The
proper specification is given in the revised Postulate 6 and in the discussion after
the revised Postulate 8.

Copenhagen Postulate 3: The physically observable property, A pro-
duces measurable eigenvalues, ai subject to the following eigenvalue
equation, Âψi = aiψi where Â is the Hermitian operator corresponding
to the observable property, A and eigenvalues, ai. The eigenfunctions,
ψi are of course required to be well-behaved as stated in the first revised
Postulate.

The fourth Copenhagen Postulate [9] is ad hoc and is limited in its validity.
Therefore, we reconstruct it so as to make it suitable for the revised interpretation.
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Revised Postulate 4: The Hermitian operator, Â of an eigenvalue equa-
tion, Âψi = aiψi is also a linear operator, and is responsible for a phys-
ically observable property, A. Its eigenvalues, ai are all real and their
respective eigenfunctions, ψi transform to a new set of eigenfunctions
upon measurement of the physical property A. This transformation is
subject to the new Postulate 9, and the paragraphs that come after the
new Postulate 9.

Here, we do not require the eigenfunctions to form a complete set because during
each measurement, there is this thing called the wavefunction transformation such
that the complete set for the eigenfunctions before the measurement is no longer
valid during the measurement. Therefore, it is more meaningful to evaluate the
wavefunction transformation during a measurement than to assume completeness
before and after a measurement. Moreover, in quantum mechanical calculations,
the guessed wavefunctions or eigenfunctions are constructed and adjusted to obtain
eigenvalues that are comparable to experimental values, without any regard as to
whether the constructed and adjusted eigenfunctions form a complete set or not.

Revised Postulate 5: If Ψ(r, t) is orthonormalized and well-behaved,
and if it is the state function of a system, then the physical observable,
A at time t is,

〈A〉 =

∫ ∞
−∞

Ψ∗ÂΨd3r, (6)

where Ψ(r, t) = Ψ. Here the physical property, A of an electron can only
be measured for a range of r with a probability such that we cannot pre-
dict A with certainty if the range of observation, (−∞,+∞) is replaced
with [−a,+a] and ∞ � |2a|. This uncertainty is due to Heisenberg’s
uncertainty principle.

The Born’s modified statistical interpretation reads,∫ +b

−b

Ψ∗Ψd3r ≈ 1 =

∫ +∞

−∞
Ψ∗Ψd3r, (7)

where ∞� |2b| > ∆r > |2a| such that the following integral,∫ +a

−a

Ψ∗Ψd3r, (8)

cannot be defined if 2a < ∆r and ∆r refers to the size of the electron’s
distribution function or the size of the wave packet determined by the
wavefunction. Therefore, the physical property A (including position,
momentum or any other observable physical properties) of an electron
cannot be defined if the range of observation 2a < ∆r.

Here, the average value, 〈A〉 of an arbitrary physical property, A of an electron
cannot be defined for r = 2a < ∆r because the electron does not have a point-
like position, (x, y, z). Therefore, for r = 2a < ∆r, the position of the electron
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cannot be determined with certainty due to Heisenberg uncertainty principle, while
for r = 2b ≥ ∆r, the position is not subject to Heisenberg uncertainty principle,
especially when r = 2b > ∆r, and definitely when r = 2b � ∆r. However, the
intrinsic spin (or spin angular momentum) of a quantum particle is not subject to
the revised Postulate 5 because the spin is classically undefined for all r. In fact,
even within the standard quantum mechanics, we do not exploit Eq. (6) to calculate
the probability of finding ±1

2
.

The original Copenhagen Postulate 6 is redundant for the revised interpretation
because it has been incorporated in the revised Postulate 1. Therefore, our next
postulate is related to the applicability of Heisenberg uncertainty principle for certain
physical observables that are also captured or observable in classical physics.

Revised Postulate 6: The state function, Ψ(r, t) that is subject to
time-dependent Schrödinger equation captures the time evolution of a
quantum mechanical system that is free from any external disturbances.
This equation is given in Revised Postulate 1. The state function is
separable into products, which means,

Ψ = Ψ(r, t) = R(r)Yml
l (θ, φ)χ(ms) exp

(
− iEt

~

)
, (9)

where R(r) is the radial wavefunction, Yml
l is the orbital angular mo-

mentum eigenfunction or angular wavefunction or sometimes known as
the spherical harmonics, χ(ms) = |sms〉 is the spin eigenstate (not an
eigenfunction), and finally, exp (−iEt/~) is the time-dependent phase
factor that takes the effect of time evolution of the state function subject
to the Schrödinger equation. Note this, ms = ±1

2
. The above separable

product solution implies that the quantum mechanical physical observ-
ables are physically separable from the observables in classical physics.
Therefore, the Heisenberg uncertainty principle has limited application
such that the said uncertainty is not and cannot always be true for all
quantum mechanical observables and for all range of observation.

In Ref. [18], you can find the details on how the usual Hamilton operators operate
on Eq. (9), as well as to learn why the spherical harmonics and the spin eigenstates
can be taken as constants. Let us now elaborate on this Postulate 6 further. The
momentum eigenvalue in quantum mechanics is physically different from the momen-
tum in classical mechanics to the extent that the quantum mechanical momentum
refers to the wave-property of an electron, while in classical physics, the momentum
refers to the particle-property of the same electron. In addition, there are quantum
mechanical observables such as orbital angular momentum states, ml = 0,±l and
spin angular momentum states, ms = 0,±s, which are not observable in classical
physics entirely because orbital and spin angular momenta states in quantum me-
chanics refer to the wave-property of an electron and there are no particle-property
for these angular momenta states in classical physics.

The group velocity of an electron, that is bound to a given principal quantum
number, n cannot be defined if r ≤ ∆r due to its relation with mass distribution
according to the probability distribution curve defined by the wavefunction (see the
Revised Postulate 5).
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The original Heisenberg uncertainty principle is activated for all quantum me-
chanical physical observables if and only if the pairs of the physical operators are
non-commuting. However, the said uncertainty has limited application for certain
quantum mechanical physical observables even if the pairs of the relevant operators
are non-commuting. In particular, Heisenberg uncertainty principle has limited ap-
plicability for quantum mechanical observables that are also observable in classical
physics. Since, ml = 0,±l and ms = 0,±s are not observable in classical physics,
then the Heisenberg uncertainty principle is always valid for all range of observa-
tion, r for these observables. Whereas, for the momentum, p and position, x, the
same uncertainty principle has limited application because both x and p are also
observable in classical physics. What this means is that for r > ∆r, the Heisenberg
uncertainty principle does not apply because the electron can be considered to be
a particle, while for r < ∆r, one has to invoke the said principle because x and p
refer to the wave-property of the electron such that x is always undefined, while p
is the momentum of the wave-property, which is well-defined.

For example, the position operator, r̂, even though it does not commute with
the momentum operator, p̂, but both the position and momentum eigenvalues can
be observed simultaneously if the range of observation, r > ∆r. Here, r and p refer
to particle-like position and momentum of a massive electron in classical physics.
However, the following eigenvalues, ml = 0,±l and ms = 0,±s are not observable in
classical physics, and therefore, ml = 0,±l and ms = 0,±s are subject to Heisenberg
uncertainty principle for all range of observation, 0 ≤ r ≤ ∞.

Consequently, the Heisenberg uncertainty principle is always true only for phys-
ical observables that are not observable in classical physics, and if the pairs of the
operators for those observables are non-commuting. Whereas, for quantum me-
chanical physical observables that can also be observed in classical physics are not
subject to Heisenberg uncertainty principle if r > ∆r, even if the pairs of quantum
mechanical operators are non-commuting.

Let us now apply the revised Postulate 6. This postulate means that for r ≤ ∆r,
the quantum mechanical momentum operator refers to the momentum of a wave-like
electron, while for r > ∆r the observable momentum refers to classical momentum
of a particle-like electron with mass, mel and velocity, v. Subsequently, we can
apply the revised Postulate 6 to understand why the wave-like momentum of a
photon remains wave-like for all range of observation (0 ≤ r ≤ ∞), which is because
photons are not subject to Schrödinger equation, instead, they obey the massless
wave equation. For example, classical momentum cannot exist for massless photons
and is denied by the wave equation. Finally, the revised Postulate 6 provides the
physical justification as to why the Heisenberg uncertainty principle is not always
true for physical properties that are observable in both quantum mechanics and
classical physics as exposed above. It is apparent that the revised Postulate 6 makes
use of the fact that EPR paradox is false [19].

Let us continue with the remaining two postulates related to spin. The seventh
postulate stated in the Copenhagen interpretation section stays the same in the
revised interpretation.

Copenhagen Postulate 7: The wavefunction of a system of electrons or
particles with half-integral spins, must be antisymmetric with respect to
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interchange of particles with half-integral spins, including electrons.

As for the final postulate on the intrinsic spin, we need to reconstruct it, and is
given below.

Revised Postulate 8: The intrinsic spin (s = 0, 1
2
, 1, 3

2
, · · ·) or the spin

angular momentum is unique, specific and is immutable for each species
or type of quantum particle. The said spin has no corresponding physical
observable in classical mechanics and therefore, the Heisenberg uncer-
tainty principle is always valid such that we cannot observe more than
one (Sz or Sx or Sy) component of a quantum particle’s spin simultane-
ously for all range of observation, 0 ≤ r ≤ ∞.

The revised Postulate 8 establishes the fact that classically, the spin components
(similar to orbital angular momentum components, Lx, Ly and Lz) cannot be defined
because they are not observable physical properties in classical physics or the said
observables are subject to Heisenberg uncertainty principle. In particular, Sx,y,z

and Lx,y,z are associated to the wave-property of the quantum particle, which is
not related to any particle-property in classical physics. Hence, Sx,y,z and Lx,y,z are
subject to Heisenberg uncertainty principle for all range of observation, 0 ≤ r ≤ ∞.
Here, we have to be aware that s = 0, 1

2
, 1, 3

2
, · · · 6= l where l = 0, 1, 2, · · · as proved

in Ref. [20].
Having said that, we can now state that the revised Postulates (1, 4, 5, 6 and

8) listed above do not require Bohr’s philosophy that reads a particle takes a stand
only upon measurement [5]. The above revised (1, 4, 5, 6 and 8) and Copenhagen
(2, 3 and 7) postulates strictly imply that quantum mechanics is an ontic theory
that deals with ‘real’ existing objects, but subject to the Heisenberg uncertainty
principle or wave-particle duality. Here, wave-particle duality implies Heisenberg
uncertainty principle. However, the wavefunction does not represent any sort of real
physical wave. Consequently, we can rule out the idea that quantum mechanics is
an epistemic theory (based on Bohr’s philosophy), which defines that all quantum
mechanical observables cannot exist (in whatever physical forms), until one measures
them. This is simply because the wavefunction is not a real physical wave anyway.

Consequently, we can now deduce unequivocally that the orthodox position has
got to be false. We are left with the realist and agnostic positions as the only
possible and viable candidates. As a matter of fact, quantum mechanics is in favor
of both realist and agnostic positions because even though the wavefunction is not
a real physical wave (due to wave-particle duality, and from the definition of Ψ(r, t)
given in the revised Postulate 1) but the wavefunction, together with the Hamilton
operators, correctly represent the observables such that the observables are real and
they do exist before the measurement.

2.1 New quantum-mechanical postulate

Let us now elaborate on the electron transition exposed above. The time-dependent
state function (defined in the revised Postulate 1) evolution does not include the
transition between energy levels because such transitions involve the existence of
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‘stateless’ wavefunction, which is not captured by any other Copenhagen nor by the
revised postulates of quantum mechanics exposed thus far. In particular, we have
no other choice but to accept the following facts as truths, which are straightforward
to be understood physically and technically.
F1: An electron does not disappear from one initial state and then reappear on
another state by not occupying the forbidden energy gap.
F2: The time-evolution of Ψ(r, t) does not capture the transition between energy
levels because the moment we define Ψ(r, t) to be so, then we do not need to guess
the eigenfunctions for each energy level, where the time-evolution of Ψ(r, t) can
be exploited to derive all the eigenfunctions for all the energy levels, including the
‘stateless’ eigenfunctions from the Schrödinger equation. We know for certain that
this is never the case.
We know for certain that both F1 and F2 are absolutely true, and these facts lead
us to the ninth Postulate, which is new.

New Postulate 9: When an electron makes a transition from one energy
level (E1) to another (E2), then Ψ(r, t) evolves in such a way that this
particular evolution is not captured by the Schrödinger equation. During
this time-dependent evolution, the energy of the electron, E ′ is defined to
exist between E1 and E2 such that E ′ 6= E1, E

′ 6= E2 and in addition, n′,
l′ and m′l no longer represent the initial state wavefunction, Ψ(r, t)n,l,ml

.
Therefore, the wavefunction during the transition is known as the state-
less wavefunction, Ψ(r, t)n′,l′,m′

l
such that n′, l′ and m′l are undefined

because Ψ(r, t)n′,l′,m′
l

is not subject to the Schrödinger equation where
the electron is either in the process of emitting one (spontaneous) or two
(stimulated) photons (if E1 > E2) or absorbing a photon if E1 < E2.
Obviously, E ′ exists in the forbidden gap and this gap exists because
the Schrödinger equation is blind-by-definition to the existence of E ′,
but not to the existence of E1 and E2. Hence, we can always recover
the quantum predictions for E1 and E2 as permitted by the Schrödinger
equation.

In the revised Postulate 8 stated earlier, the technical reason why Ψ(r, t) cannot
represent a stateless wavefunction is due to the fact that Ψ(r, t) is not a physical
wave in the first place. Secondly, the changes to n′, l′ and m′l refer exclusively
to wave-like properties of the electron that is making the transition by emitting
or absorbing photons with appropriate energy. The changes to the position and
momentum of an electron during the transition are observable if r > ∆r, and these
changes to the position and momentum implies that one can indeed stop an electron
from making a transition between energy levels as recently observed by Z K Minev
et al. [21]. Recall here that ∆r is the size of the electron or the radial distribution
of the electronic wavefunction subject to the revised Postulate 5. The existence of
this stateless wavefunction, Ψ(r, t)n′,l′,m′

l
also strictly implies the electron can never

be a point-like particle because the excitation of an electron implies transformation
of the wavefunction. Therefore, we can detect the disturbance to this wavefunction
by switching on or off the disturbance during an electronic transition between two
energy levels, which has been reported by Z K Minev et al. [21] recently. If an
electron is a point-like particle, then stopping an electron from making the transition
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is like flipping a coin—now you can, now you cannot.

2.2 New postulates from classical physics

We have to acknowledge that Bohr was correct in respecting classical physics such
that quantum mechanics is not and cannot be independent of classical physics. For
example, we have to find the link between quantum mechanics and classical physics,
which we did when we discuss the quantum mechanical observables and under what
circumstances that such observables are also observable in classical physics. For
example, the classical position and momentum of an electron refers to the particle-
property of an electron, while the momentum in quantum mechanics exclusively
refers to the wave-property of an electron (see the correspondence rules in Copen-
hagen Postulate 2 and the discussion after that). Now, we shall introduce how
special relativity comes into quantum physics.

We can construct the tenth postulate, which is new and is associated to time
dilation effect.

New Postulate 10: Time dilation is always the effect that does not
affect any physical processes, regardless of whether the processes are
classical or quantum mechanical.

Here, the connection between time dilation and spacetime curvature can be captured
by the fact that we cannot stretch the space without time dilation effect, nor permit
time dilation without space stretching. In addition, time dilation effect implies non-
universal ticking of time, in other words, consistent time dilation effect connects
special relativity to gravity.

Postulate 10 also means that the relativistic effect solely implies correction to the
non-relativistic value by adjusting its magnitude. Therefore, we can obtain the so-
called ‘truthful’ value of a measurement by letting the observer and the observed to
reside in the same frame of reference, and in this case, there is no need for relativistic
correction. The value that does not require relativistic correction can be defined to
be the truthful value. In contrast, if the observer and the observed reside in different
frames of reference, then the measured value is nothing but the corrected value from
the ‘truthful’ value due to relativistic effect. This leads us to the eleventh postulate
that is new.

New Postulate 11: Truthful value either measured or observed means,
a value without any relativistic correction.

A measured value with relativistic correction becomes the correct value from our
frame of reference. Now to demonstrate that the physics stays the same even in the
presence of time dilation effect is to show that the energy of the photons emitted by
two hydrogen atoms (when the respective electrons make a jump from the triplet to
singlet state) at different elevations (or gravitational potentials) or velocities is the
same or identical. In particular, the famous 21-cm line due to hyperfine splitting
in atomic hydrogen remains the same for the two atomic hydrogen, which should
explain why the 21-cm radiation is one of the most ubiquitous forms of radiation
in the universe. Of course, changes to the frequency of this emitted radiation can
occur due to Doppler effect.
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New Postulates 10 and 11 together give rise to the possibility that relativity and
gravity do not introduce new physics. There is one more postulate that validates
Galileo’s relativity postulate, which is given below.

New Postulate 12: If the relativity postulate is violated, then the speed
of light cannot be a universal constant. This means that all physical laws
cease to be invariant if the speed of light is not a constant.

We have proved the correctness of this new Postulate 12 in Ref. [10], which en-
forces the fact that Galileo’s relativity postulate demands the speed of light to be a
constant.

Let us now derive the final postulate. It is worth noting that many researchers
falsely and implicitly assumed the physical interaction to be reversible in the same
way as time as recently reviewed in Ref. [22]. In particular, the following two false
statements are implicitly assumed.
(a) Time reversibility automatically implies reversible physical interaction.
(b) Each forward process is assumed to be reversible without any other changes.
Therefore, we can construct the final new postulate (given below) to invalidate the
above statements, (a) and (b), which are always assumed or activated a priori to
prove the possibility of the second law of thermodynamics violation.

New Postulate 13: Time reversibility never implies reversible physical
interaction and any forward physical process cannot be assumed to be
reversible without any other changes.

The new Postulate 13 has been formally proved in Ref. [11] for any timescale and
for any system size.

3 Conclusions

We have constructed a total of 13 postulates, 9 of which belong to quantum me-
chanics, while the last 4 are associated to classical physics. The primary conclusions
based on these postulates are listed here. (1) The realist position is the only valid
position in classical mechanics such that the agnostic position is meaningless, while
the orthodox position is simply nonsensical. (2) In quantum mechanics, indeter-
minism has its origin in wave-particle duality and it has got nothing to do with
indeterminism in classical physics, which is related to how accurate one measures
the observables. (3) In quantum mechanics, we have to adopt the agnostic position
for r ≤ ∆r because in this range of observation, both momentum and position of
an electron are undefined. For r > ∆r however, we can switch to realists position
because one can measure both the particle-like momentum and position of an elec-
tron, as well as the wave-like momentum. (4) Indeterminism in quantum mechanics
is not about how accurate one can measure the observables, but is determined by an
intrinsic property known as the wave-particle duality, which then gives rise to the
Heisenberg uncertainty principle. (5) The validity of this principle is shown to be
limited—whether an eigenvalue is observable in classical physics, and whether the
eigenvalue is confined (when r > ∆r) or spread beyond the range of our observation
(when r ≤ ∆r). Finally, (6) for both classical and quantum physics, the orthodox
position turns out to be physically unacceptable.
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