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Large multimodal models (LMMs) have achieved impressive progress in vision-language

understanding, yet they face limitations in real-world applications requiring complex reasoning over a

large number of images. Existing benchmarks for multi-image question-answering are limited in

scope, each question is paired with only up to 30 images, which does not fully capture the demands of

large-scale retrieval tasks encountered in the real-world usages. To reduce these gaps, we introduce

two document haystack benchmarks, dubbed DocHaystack and InfoHaystack, designed to evaluate

LMM performance on large-scale visual document retrieval and understanding. Additionally, we

propose V-RAG, a novel, vision-centric retrieval-augmented generation (RAG) framework that

leverages a suite of multimodal vision encoders, each optimized for speci�c strengths, and a dedicated

question-document relevance module. V-RAG sets a new standard, with a 9% and 11% improvement in

Recall@1 on the challenging DocHaystack-1000 and InfoHaystack-1000 benchmarks, respectively,

compared to the previous best baseline models. Additionally, integrating V-RAG with LMMs enables

them to ef�ciently operate across thousands of images, yielding signi�cant improvements on our

DocHaystack and InfoHaystack benchmarks. Our code and datasets are available at

https://github.com/Vision-CAIR/dochaystacks
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1. Introduction

Large Multimodal Models (LMMs)[1][2][3][4]  have made remarkable progress in the vision-language

understanding. However, these models still face challenges when tasked with reasoning over extensive

collections of images or documents[5], limiting their effectiveness in real-world applications, such as

visual search or querying over large sets of images or documents, like those stored on personal devices or

in photo albums. However, there lacks such proper benchmarks to evaluate these capabilities. To address

this gap, we introduce the DocHaystack and InfoHaystack benchmarks, designed to evaluate LMMs on

large-scale image retrieval and understanding capabilities, pushing the boundaries of LMM performance

in complex, real-world scenarios.

The existing multi-image retrieving and reasoning benchmarks are primarily constructed on a small

scale, as highlighted in works such as[6][7]. Each question in these benchmarks is paired with only up to

30 images as illustrated in Figure 1 (a). However, this limited scope does not align well with real-world

scenarios, which often require retrieval and reasoning across hundreds or thousands of images or

documents. In contrast, our established benchmarks, depicted in Figure 1 (b), allow for querying

questions from a large-scale collection of up to 1,000 documents, necessitating that models retrieve and

reason over an extensive set of documents for each question. This scale better simulates practical

applications and their demands.

The main challenge in constructing such benchmarks is collecting speci�c questions while ensuring

there are no ambiguous answers across a large set of images. Existing datasets, such as those in DocVQA

and InfographicVQA[8][9], contain numerous “general” questions, like “What is the table number?”, where

answers could be derived from multiple images, leading to non-unique responses. To address this, we

implemented a rigorous data �ltering pipeline. First, we employed both a large language model (LLM)

and human annotators to systematically �lter out “general” questions based on carefully de�ned criteria.

Additionally, we used the LLM to exclude questions relying on generic knowledge, such as “What is the

capital of Missouri?”, which can be answered without image context. This approach ensures that the

questions in the benchmark can only be answered through speci�c visual cues from the provided images,

maintaining the benchmark’s integrity for evaluating image-based understanding.

To enable the current LMMs effectively reason over a large number of images, we propose a vision-

centric retrieval-augmented generation (RAG) framework, named V-RAG. V-RAG combines multiple

multimodal vision encoders, leveraging each encoder’s unique strengths to enhance retrieval accuracy.
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Additionally, it incorporates an LMM-�lter module to assess the relevance of each document to the query,

re�ning the retrieval process by ensuring that only relevant documents are prioritized. This integrated

approach allows V-RAG to navigate extensive document collections ef�ciently. Experimental results

demonstrate that V-RAG achieves 9% and 11% improvement in Recall@1 on the DocHaystack-1000 and

InfoHaystack-1000 compared to previous best text-to-image retrieval methods. Additionally, we found

that integrating V-RAG brings GPT-4o over a 55% acc improvement on DocHaystack-200 and a 34% acc

improvement on InfoHaystack-200, indicating the effectiveness of our V-RAG.

Our contributions are as follows:

We introduce the Document Haystack benchmarks, including DocHaystack-100/200/1000 and

InfoHaystack-100/200/1000, with the most challenging setup consisting of 1,000 documents for each

inquiry. These benchmarks advance document retrieval and reasoning tasks by requiring models to

navigate and reason across extensive document collections, surpassing prior benchmarks limited to

smaller retrieval tasks.

We propose a vision-centric retrieval-augmented generation framework, V-RAG, which enhances the

retrieval capabilities of LMMs. V-RAG achieves substantial improvements over previous best text-to-

image retrieval methods by 9% and 11% on DocHaystack-1000 and InfoHaystack-1000, respectively.
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Figure 1. Comparison between previous and proposed benchmarks. Given a question as input, all

benchmarks aim to retrieve relevant images from an image pool to correctly answer the question. Unlike

prior benchmarks like RetVQA[6] and WebVQA[10], which structure their datasets by pairing each question

with a limited set of images (typically   30), our benchmarks, DocHaystack and InfoHaystack, map each

question to a substantially larger document collection, scaling up to 1,000 visual documents. This expanded

scope more accurately represents large-scale document retrieval scenarios and offers a greater challenge in

retrieval accuracy and visual question answering.

2. Related Works

VQA benchmarks.

VQA play a critical role in assessing a model’s ability to understand and reason across visual contexts[11]

[12][13]. Traditional VQA datasets typically measure a model’s comprehension of object attributes[14][15],

spatial relationships[14], as well as its understanding of documents[8][9], charts[16], mathematics[17][18][19],

and open knowledges[20][21]. Additionally, these benchmarks explore models’ knowledge across varied

�elds, including science and the arts[22][23]. This broad array of benchmarks has greatly advanced vision-

language models by cultivating diverse visual comprehension skills, particularly for modern foundation

models in vision-language understanding[24][1][2][25][26][22][4][27][28]. Notably, these benchmarks have

primarily focused on question answering within single image or document. In contrast, our benchmark

shifts the focus towards retrieval and comprehensive understanding across a large collection of visual

documents, presenting new challenges and expanding the scope of visual question answering.

≤
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Several previous efforts have tackled the challenge of visual question answering and reasoning across

multiple images[6][10][29][7][30][31]. For instance, datasets such as MultimodalQA[7] and ISVQA[29]  require

models to have multi-image reasoning abilities. Meanwhile, WebQA[10]  and RetVQA[6]  involve an

additional step where models must �rst retrieve relevant images from a limited image pool before

answering visual questions based on these results. However, these benchmarks are generally constrained

to relatively small image pools, where each question is paired with an image set containing up to 30

images. In contrast, our proposed benchmarks, DocHaystack and InfoHaystack, signi�cantly expand this

scope by requiring models to retrieve and reason from a much larger set of up to 1,000 documents,

presenting a notably greater challenge in retrieval and multi-image reasoning.

Large multimodal models (LMMs).

LMMs have achieved substantial advancements in understanding and reasoning across single or multiple

images[1][4][2][3][25][26]. These models have signi�cantly enhanced vision-language understanding across

numerous dimensions and applications[23][11][19][17]. LMMs bene�t primarily from large-scale image-text

alignment and extensive language modeling, which emerge them with advanced understanding and

reasoning abilities. However, despite these breakthroughs, LMMs still encounter challenges when

handling large-scale image or document sets[5]. This dif�culty is due to the inherent complexity of

processing such complex data. To address this, retrieval-based approaches have been developed to

extend the capacity of vision-language models, augmenting their ability to process and reason over a

larger number of images.

Retrieval-augmented generation (RAG).

RAG integrates retrieval systems[32][33][34][35][13], with generative models, enhancing them with

additional knowledge. While RAG has been extensively explored in language domains[36][37][38][39], its

application in vision-language contexts is also advancing. In vision-language RAG, models like

MuRAG[40]  leverage image-text memory to retrieve top-k neighbors by comparing inner-product

similarities. RetVQA[6]  uses an image-question relevance encoder, combining BERT[41]  and Faster R-

CNN[42] to �lter relevant images, while MIRAGE[5] employs a CLIP-based encoder[32] to train a retriever.

These frameworks extend model capabilities, enabling retrieval and reasoning across hundreds or

thousands of images. In contrast, we propose V-RAG, a vision-centric RAG framework that integrates

multiple vision encoders to more effectively capture image features, and introduces a LMM-based
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question-document relevance comparison module. Our results demonstrate that V-RAG surpasses

existing methods on our DocHaystack and InfoHaystack benchmarks, setting a new standard for large-

scale visual retrieval and reasoning.

3. DocHaystack and InfoHaystack Benchmarks

To support effective retrieval and reasoning across extensive document collections, we present two new

benchmarks—DocHaystack and InfoHaystack—designed to ensure each question yields a unique,

document-speci�c answer. Derived from DocVQA[8]  and InfographicVQA[9], these benchmarks address

the challenge of answer ambiguity by selectively curating questions that can only be answered by a single

document within a large dataset.

Benchmark construction pipeline.

There exists many general questions in the existing benchmarks and lead to multiple answers for

different document context. For example, general questions like “What is the table number?” may apply to

various documents and yield multiple valid answers, while a targeted question like “Who is the reviewer

for the article titled ‘An antithyroid factor in milk’?” is likely to produce a unique answer, as only a single

document or a limited set of documents would contain that information. Therefore, our benchmark

construction follows a structured three-step �ltering pipeline, illustrated in Figure 2, to ensure high-

quality, unique-answer questions. First, we employ a large language model (LLM) to �lter out general

questions that could generate multiple answers across documents. Next, a manual review step further

checks the questions to ensure the data quality. Finally, a generic-knowledge �ltering stage re�nes the

dataset further, retaining only questions closely tied to speci�c document content.

qeios.com doi.org/10.32388/AJMACY 6

https://www.qeios.com/
https://doi.org/10.32388/AJMACY


Figure 2. Data Curation Pipeline. Our benchmarks are curated based on the DocVQA and InfographicVQA

datasets, following a three-step �ltering process to obtain document-speci�c question-answer pairs. In Step

1, we �lter out general questions (e.g., “What is the table number?”), as these could be answered by multiple

documents and lack speci�city. Step 2 involves a manual review by human annotators to further remove

general questions. In Step 3, we eliminate generic-knowledge questions (e.g., “How many sports were in the

2008 Beijing Paralympic Games?”) that can be answered directly by large language models without requiring

image input.”

This carefully designed pipeline, combining LLM-based �ltering and human review, effectively curates

questions that drive accurate, document-speci�c retrieval. By focusing on reducing answer ambiguity,

DocHaystack and InfoHaystack enhance the precision of retrieval and reasoning in large-scale document

processing tasks, providing a valuable tool for the evaluation of retrieval systems. We discuss this data

curation pipeline in details as follows:

General-question LLM �ltering.

We begin by using the LLM, GPT-4o[1], to �lter out general questions through a set of well-crafted

instructions. Leveraging the LLM’s strong contextual understanding, this initial �ltering step allows us

to ef�ciently process large volumes of data, identifying broad or ambiguous questions that may yield

multiple answers across documents. This automated approach signi�cantly enhances the benchmark

construction’s ef�ciency and quality.

To guide the LLM, we �rst de�ne the task, providing clear distinctions between general and speci�c

questions along with illustrative examples. With this framework, the LLM can then assess each question

and determine if it is general or speci�c. The instructional format is as follows: LLM i

You are an evaluator tasked with identifying if a question is speci�c or general. A general question seeks

commonly known or widely applicable information without unique identi�ers, e.g., “Who is the person standing

in the ground?” A speci�c question, however, requests unique information about a particular individual, event, or
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object, e.g., “What is the Social Security Number of Charles Yarbrough?” Based on these de�nitions, determine if

the following question is general or speci�c: {question}.

Figure 3. The V-RAG pipeline work�ow. In the top section, a vision encoder ensemble is used, combining

multiple vision models—CLIP, SigLIP, and OpenCLIP—to process a large document haystack. Each encoder

computes similarity scores, which are averaged into  . The top m documents, based on these scores, are

selected for further analysis. In the bottom right, the LMM-Filter Module utilizes a pretrained LMM to assess

whether each selected document can potentially answer the posed question. This �ltering step removes

documents that do not match, retaining only relevant ones. Finally, the top k most relevant images are input

into the LMM along with the original question   to generate a speci�c answer.

General-question manual review.

After the initial LLM �ltering, we conduct a manual review of the questions that were classi�ed as

speci�c. This manual process involves two key steps to ensure answer uniqueness and benchmark

quality.

In the �rst step, we examine each question to con�rm it contains unique identi�ers—such as names,

dates, titles, or other speci�c attributes—suggesting a document-speci�c answer. This careful check

helps identify questions with clear, unique markers that direct the retrieval process to a single document.

In the second step, we verify the uniqueness of each answer to eliminate any remaining ambiguity.

Although speci�c identi�ers are present, questions may still be prone to ambiguity, such as with

common names or recurring book titles. To address this, we employ a re�ned veri�cation process. First,

Simavg

q
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we use Optical Character Recognition (OCR)[43]  to extract all text from images in the dataset. We then

search for occurrences of the unique identi�ers retained from the �rst step across other documents. If

matches are found, a manual review is conducted to ensure no alternative valid answers exist. This

comprehensive approach minimizes the possibility of a single question mapping to multiple answers,

enhancing the precision and reliability of our benchmarks.

Generic-knowledge �ltering.

In DocVQA and InfographicVQA tasks, certain questions—such as “How many sports were in the 2008

Beijing Paralympic Games?”—can be answered based on general knowledge accessible to a large language

model, without relying on the image content. This introduces a language bias when using LMMs for

visual question answering, as it shifts the focus away from image-based reasoning. To address this, we

�lter out these general-knowledge questions, ensuring that evaluation emphasizes vision-based

understanding and that models rely primarily on visual content to generate accurate answers.

To implement this, we developed an LLM-based evaluation pipeline that detects and excludes such

questions. For each question, we prompt an LLM with “{question}, answer brie�y.”. After receiving a

response, we compare it to the ground-truth answer using another LLM. If the response matches the

ground truth, we classify the question as general knowledge-related and remove it, thereby isolating

questions that truly require visual document understanding. As shown in Table 1, GPT-4o accurately

answers 26.4% of DocVQA questions and 54.9% of InfographicVQA questions directly, a rate signi�cantly

higher than that of open-source LLMs. Therefore, we select GPT-4o to �lter out the questions that can be

directly answered by the GPT-4o model. Overall, this process is to ensure that the evaluation re�ects the

necessity of vision-based comprehension.

qeios.com doi.org/10.32388/AJMACY 9

https://www.qeios.com/
https://doi.org/10.32388/AJMACY


GPT-4o LLaVA-OneVision Qwen2-VL

DocVQA 26.4% 4.7% 3.4%

InfographicVQA 54.9% 13.4% 11.3%

Table 1. Percentage of questions answerable by LMMs without vision input. We evaluate GPT-4o, LLaVA-

Onevision, and Qwen2-VL on their ability to answer questions directly from our dataset without requiring

vision input. The reported percentage re�ects the proportion of examples that can be answered solely

through language understanding.

Final dataset pro�le.

After a rigorous three-stage data �ltering process, we retained 109 questions from DocVQA and 155

questions from InfographicVQA, associated with 59 and 66 documents that provide the evidence,

respectively. To assess retrieval performance at scale, we introduce two benchmarks: DocHaystack-1000

and InfoHaystack-1000, where each question requires retrieving relevant content from a set of 1,000

documents. Given the challenge this scale presents to current LMMs, particularly in terms of context

length limitations, we also construct two smaller benchmarks: DocHaystack-100/200 and InfoHaystack-

100/200. These benchmarks allow direct input of all associated images into the context, enabling

evaluation of models’ long-context comprehension ability. For training set, we also construct a dataset

comprising 2,835 questions similarly, with 899 from DocVQA and 1,936 from InfographicVQA, to support

robust learning and generalization for the multi-image reasoning tasks.
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Figure 4. Question type analysis. We analyze the distribution of question types of DocHaystack

and InfoHaystack. Each benchmark categorizes the data into 5 different types.

Question type analysis.

The types of questions represent the types of the evidence required for accurate answers. In Figure 4, we

illustrate the distribution of question types across our dataset to provide insights into its structure.

Following the classi�cation system used in DocVQA and InfographicVQA, we categorize questions

accordingly (note that a single question may fall into multiple categories). As shown in the �gure, the

DocHaystack benchmark places a greater emphasis on Table/List and Layout understanding, whereas

InfoHaystack primarily targets Figure, Text, and Table comprehension.

4. Method

Current large multimodal models (LMMs) face substantial challenges when reasoning across hundreds or

thousands of images, due not only to context length limitations but also to the inherent complexity of the

task. This issue is particularly pronounced in our benchmarks, which contain 1k document �les

requiring high-resolution images to capture and interpret small-font text effectively. To enable LMMs to

perform reasoning over a substantial number of documents, we introduce a vision-centric retrieval-

augmented generation (V-RAG) framework. V-RAG ef�ciently retrieves a reduced set of relevant

documents, allowing the LMM to focus on a manageable subset for deeper understanding, as illustrated

in Figure 3. In the following section, we provide a detailed description of the V-RAG pipeline.
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Task de�nition.

Given a question   and a collection of   documents  , the V-RAG framework aims to

retrieve the top-   most relevant documents to support LMMs understanding and answering the

question  . V-RAG accomplishes this through a two-step retrieval process designed to effectively identify

and rank relevant documents for each question.

Vision encoder ensemble.

Document �les often contain a mix of text, symbols, and visual elements across various scales, requiring

vision encoders to capture a comprehensive understanding of these complex structures. To ef�ciently

handle this diversity, we represent each document as an image and utilize an ensemble of vision

encoders, including CLIP[32], SigLIP[33], and OpenCLIP[34], each bringing distinct strengths to the image

understanding, as depicted in Figure 3. For example, the ConvNext encoder[44]  from OpenCLIP[34]  is

particularly effective for high-resolution image encoding. We compute the similarity score between each

question   and all documents in the document set   according to Equation 1, with similarity scores from

each encoder represented as  ,  , and   respectively.

where    denotes the computing the similarity between the query    and a collection of documents  . 

 denotes the cosine similarity.   denotes the text encoder, and   denotes the vision encoder.

To derive a �nal relevance score, we calculate the average similarity   for each question-image pair

by combining  ,  , and  . We then rank the images based on    in descending order,

selecting the top-  most relevant images according to their similarity scores.

q N D = { , … , }D1 DN

k

q

q D

Simc Simo Sims

S(q,D) = cos( (q), ( )) ∣ ∈ D,ϕt ϕv Dj Dj (1)

S q D

cos ϕt ϕv

Simavg

Simc Simo Sims Simavg

m
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DocHaystack-100 DocHaystack-200 DocHaystack-1000

R@1 R@3 R@5 R@1 R@3 R@5 R@1 R@3 R@5

BM25 (OCR) 63.30 75.23 79.82 65.14 71.56 75.23 56.88 66.06 69.72

Jina-CLIP[45] 16.51 31.19 41.28 9.17 24.77 30.28 3.67 7.34 12.84

Nomic-Embed-Vision[46] 16.51 24.77 28.44 13.76 21.10 25.69 1.83 2.75 6.42

CLIP[32] 46.79 65.14 69.72 44.04 58.72 65.14 23.85 41.28 45.87

SigLIP[33] 51.38 67.89 76.15 47.71 63.30 70.64 33.03 49.54 57.80

OpenCLIP[34] 58.72 75.23 79.82 56.88 70.64 75.23 34.86 49.54 57.80

V-RAG (ours) 81.65 88.99 88.99 77.98 84.40 84.40 66.06 77.98 78.90

InfoHaystack-100 InfoHaystack-200 InfoHaystack-1000

R@1 R@3 R@5 R@1 R@3 R@5 R@1 R@3 R@5

BM25 (OCR) 56.77 65.81 70.97 51.61 65.16 69.03 38.71 51.61 58.06

Jina-CLIP 43.23 51.61 58.06 36.77 46.45 51.61 23.87 33.55 37.42

Nomic-Embed-Vision 34.84 50.32 56.77 30.97 43.23 48.39 20.65 30.97 35.48

CLIP 69.68 78.71 85.81 65.16 77.42 81.94 45.81 64.52 70.32

SigLIP 58.06 71.61 80.00 55.48 67.74 76.77 39.35 55.48 61.94

OpenCLIP 72.26 85.16 92.90 66.45 81.94 89.03 53.55 65.81 72.90

V-RAG (ours) 79.35 90.97 92.90 74.84 88.39 88.39 64.52 74.19 78.06

Table 2. Retrieval Results. We compare our V-RAG model with other text-to-image and text-to-text (using

OCR) retrieval methods across both benchmarks. V-RAG consistently outperforms baseline models on

Recall@1, Recall@3, and Recall@5 metrics. Notably, V-RAG leverages an ensemble of text-to-image models

along with a large multimodal model in a two-stage �ltering approach. Top-performing values in each

column are highlighted in bold.

LMM-�lter module. To re�ne the selection of top-  relevant images further, we introduce a LMM-basedm
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question-image relevance assessment module. This module evaluates the relevance between each

question and the top-  images identi�ed in the �rst �ltering step. Speci�cally, we pair each image with

the question text and input them into an open-source vision-language model, prompting, “Can this

image provide answers to this question? Respond only with yes or no”. We only retain the question-image

pairs that are identi�ed as ”yes” from LMM, and remove other irrelevant images.

LMM-VQA module. Achieving high top-1 ranking accuracy in image retrieval is challenging, so we retain

the top-  images from the LMM-�ltered ranking list and present them to the LMM-VQA to improve the

likelihood of including relevant images. We input these top-   images alongside the question into the

LMM-VQA (see Figure 3), which then generates the answer directly. To enhance robustness against visual

distractors, the LMM-VQA can be further optimized, as analyzed in the experiment section.

5. Experiments

In the experiments section, we will primarily describe our training setup, covering evaluation metrics,

baseline models, and the �ne-tuning procedure for the LMM-VQA model. We also present the main

experimental results along with an ablation study to provide further insights.

5.1. Training setup

Metric.

In our evaluation of the DocHaystack and InfoHaystack benchmarks, we employ a model-based

assessment by leveraging GPT-4o-mini[1] to accurately determine whether the model predictions match

target answers. This method uses a carefully structured prompt to facilitate GPT-4o-mini’s evaluation of

answer correctness. We empirically found that the model-based evaluation achieves higher consistency

and alignment with human judgment. Additional details on the prompt design are provided in the

Appendix.

For the document retrieval evaluation, we report the baseline results using Recall@1, Recall@3, and

Recall@5 metrics. These metrics enable a thorough assessment of retrieval accuracy across varying

levels of precision.

m

k

k
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Model

DocHaystack InfoHaystack

100 200 1000 100 200 1000

LLaVA-OV[4] - - - - - -

GPT-4o[1] 27.52 23.85 - 23.87 20.00 -

Gemini[2] 50.46 48.62 - 29.03 21.94 -

Qwen2-VL[3] 41.28 12.84 - 20.00 14.19 -

MIRAGE[5] 3.67 3.67 2.75 7.74 7.10 6.45

LLaVA-OV+V-RAG 69.72 65.14 55.05 43.22 41.94 36.77

GPT-4o+V-RAG 81.65 72.48 66.97 65.16 63.23 56.77

Gemini+V-RAG 73.39 65.14 58.72 57.42 57.42 47.10

Qwen2-VL+V-RAG 82.57 74.31 66.06 65.81 65.81 60.00

Qwen2-VL-f.t.+V-RAG 86.24 79.82 73.39 67.10 67.74 60.00

Table 3. The VQA results for the DocHaystack and InfoHaystack. We evaluate with many closed-source and

open-source multimodal model, and also integrating them with our V-RAG retrieval framework. - denotes

that those models can not be inferred due to their token context constraints. To enable GPT-4o and Qwen2-VL

to process hundreds of images, we employ low-resolution mode and adjust image size for compatibility.

Baselines.

In our experiment, we have evaluated several open and closed-sourced vision-language models on the

retrieval and VQA performance. For the large multimodal model, we used the gpt-4o-2024-08-06 version

of GPT-4o[1], the LLaVA-OneVision-Qwen2-7b-OV-HF version of LLaVA-OneVision[4], and the Qwen2-VL-

7B-Instruct version of Qwen2-VL[27]. For computing the text-to-image similarities, we employed the

Jina-CLIP-v1[45]  variant, Nomic-Embed-Vision-v1.5[46]  variant, CLIP[32]  ViT-L/14@336 variant, for

SigLIP[33], the ViT-SO400M/14@384 variant, and for OpenCLIP[34], the ConvNeXt-XXL@1024 variant as

well as text-based method, BM25.
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In our V-RAG setting, we apply LLaVA-OneVision-Qwen2-7b-OV-HF for the LMM-�lter module and

Qwen2-VL-7B-Instruct for the LMM-VQA module. We select   as 60 and   as 5 in our experiment.

Optimizing the LMM-VQA module.

To improve the robustness of the LMM-VQA model in handling visual question answering with multiple

distractor images, we further �ne-tune the model using our curated training data.

During this �ne-tuning process, we introduce 1–10 randomly sampled distractor images for each

question, creating a challenging setting that encourages the model to focus on relevant content amid a

mix of positive and negative images. The �ne-tuning is conducted with a batch size of 32 and a peak

learning rate of 1e-4 over a single epoch. Additionally, we leverage LoRA[47] with a rank of 8 to ef�ciently

adapt the model’s parameters during training.

5.2. Main Experimental Results

We evaluated a range of open-source and closed-source vision-language models for VQA tasks. We also

evaluate several text-to-image and text-to-text (with OCR) retrieval models to evaluate their retrieval

capabilities on our benchmarks. More detailed performance analysis are described in the following

sections.

Retrieving results.

The retrieval results in Table  2 demonstrate the superiority of our proposed V-RAG framework over

several baseline methods across both DocHaystack and InfoHaystack benchmarks. V-RAG consistently

achieves the highest Recall@1, Recall@3, and Recall@5 scores on most categories, indicating its robust

retrieval capabilities. Notably, V-RAG outperforms text-based retrieving models such as BM25 and also

the text-to-image retrieval models like jina-clip, CLIP, SigLIP, and OpenCLIP by substantial margins,

especially on the DocHaystack-100 subset, where it reaches Recall@1 of 81.65% and Recall@5 of 88.99%.

This pattern continues for larger datasets (DocHaystack-1000), where V-RAG remains competitive,

achieving Recall@1 of 66.06%. It achieves the top performance across all recall metrics on DocHaystack.

For InfoHaystack benchmarks, V-RAG also outperforms other models, particularly on InfoHaystack-100

and InfoHaystack-200, where it receives Recall@1 of 74.84% and 64.52%, higher than previous best by 8%

and 11%, respectively. This consistent performance advantage highlights the effectiveness of V-RAG’s

m k
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ensemble of multiple vision encoders, allowing it to capture more granular details and improve retrieval

accuracy over large multimodal models.

Figure 5. Top-k selection ablation analysis for LMM-VQA. We demonstrate the results for LLaVA, Qwen2-VL,

GPT-4o and also the �netuned Qwen2-VL model on the DocHaystack-100/1000 and InfoHaystack-100/1000

benchmarks. All the models are integrated with our V-RAG framework. We show the VQA accuracy

performance for each ablation.

CLIP SigLIP OpenCLIP VLM-�lter

DocHaystack-1000 InfoHaystack-1000

R@1 R@3 R@5 R@1 R@3 R@5

✓ ✗ ✗ ✗ 23.85 41.28 45.87 45.81 64.52 70.32

✗ ✓ ✗ ✗ 33.03 49.54 57.80 39.35 55.48 61.94

✗ ✗ ✓ ✗ 34.86 49.54 57.80 53.55 65.81 72.90

✓ ✓ ✗ ✗ 40.37 59.63 62.39 59.35 67.74 74.19

✓ ✓ ✓ ✗ 42.20 66.06 77.48 56.13 70.97 78.06

✓ ✓ ✓ ✓ 66.06 77.98 78.90 64.52 74.19 78.06

Table 4. Ablation study on the V-RAG framework components. We quantify the impact of each module for

the Recall@1, Recall@3 and Recall@5 retrieval performance on the DocHaystack-1000 and InfoHaystack-1000

for our V-RAG framework.

qeios.com doi.org/10.32388/AJMACY 17

https://www.qeios.com/
https://doi.org/10.32388/AJMACY


Visual question answering (VQA) results.

The table presents VQA results for the DocHaystack and InfoHaystack benchmarks across varying dataset

sizes (100, 200, 1000) using different multimodal models, both independently and in combination with

the V-RAG framework. The results show that Qwen2-VL �ne-tuned with V-RAG (Qwen2-VL-f.t.+V-RAG)

achieves the highest scores across most benchmarks, with particularly notable performance on

DocHaystack-100 (86.24) and InfoHaystack-100 (67.10), indicating superior retrieval and VQA capabilities

in these scenarios. When V-RAG is added to other models, substantial improvements are observed,

demonstrating the framework’s ef�cacy in enhancing retrieval accuracy. For instance, GPT-4o’s

performance increases signi�cantly with V-RAG, particularly for DocHaystack-100 and -200. The analysis

highlights that V-RAG integration generally boosts performance across models, with Qwen2-VL-f.t.+V-

RAG standing out as the top performer on both benchmarks, especially for the larger 1000-document

tasks where retrieval accuracy is more challenging. This suggests that V-RAG’s vision-centric, retrieval-

augmented approach is highly effective for large-scale multimodal document understanding.

The table also shows that the DocHaystack-1000 and InfoHaystack-1000 present signi�cant challenges

for current LMMs. The drop in performance for larger document sets, with top accuracy only reaching

73.39% for DocHaystack-1000 and 60.00% for InfoHaystack-1000, underscores the dif�culty our

benchmarks.

5.3. Ablation Studies

Ablation study on Top-k Selection.

This �gure presents the top-k selection ablation analysis for LMM-VQA across four models: LLaVA-OV,

Qwen2-VL, GPT-4o, and the �ne-tuned Qwen2-VL (Qwen2-VL-f.t.), evaluated on the DocHaystack-

100/1000 and InfoHaystack-100/1000 benchmarks. The analysis reports VQA accuracy as a function of

top-k selection (Top 1, Top 3, and Top 5). Overall, accuracy tends to improve with larger k-values,

suggesting that offering more retrieval options positively impacts model performance. However, for

LLaVA-OV, there is a marked decrease in performance at top-5, indicating that this model struggles to

process multiple images at this scale.
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Ablation study on the V-RAG framework components.

The ablation study in Table 4 highlights the contributions of each component in the V-RAG framework

on the DocHaystack-1000 and InfoHaystack-1000 benchmarks. Using CLIP alone yields low performance

(e.g., Recall@1 of 23.85% on DocHaystack-1000 and 45.81% on InfoHaystack-1000), indicating its limited

retrieval capability on its own. Adding SigLIP and OpenCLIP incrementally improves results.

The highest performance is achieved when all three encoders are combined with the VLM-�lter module,

leading to Recall@1 scores of 66.06% on DocHaystack-1000 and 64.52% on InfoHaystack-1000. This setup

also achieves the top Recall@1, Recall@3 and Recall@5 values, demonstrating that the VLM-�lter is

essential for re�ning the ensemble outputs and signi�cantly improving retrieval accuracy. These results

con�rm that each module contributes to V-RAG’s overall effectiveness.

6. Conclusion

In this work, we introduced the DocHaystack and InfoHaystack benchmarks to evaluate LMMs for

retrieving and reasoning across large-scale documents. Our benchmarks providing a more rigorous and

realistic assessment of large multimodal models in real-world, large-scale retrieval scenarios. To tackle

these challenges, we proposed V-RAG, a vision-centric retrieval-augmented generation framework that

signi�cantly enhances retrieval precision and overall VQA performance. V-RAG achieves this through an

ensemble of vision encoders and a specialized relevance �ltering module, enabling improved accuracy

across diverse visual inputs. Experimental results indicate that integrating V-RAG enables both open-

source and closed-source LMMs to achieve superior performance in large-scale image retrieval and

complex reasoning tasks.
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