
29 January 2025, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

Poisson Network SIR Epidemic Model

Josephine K. Wairimu1, Andrew Gothard2, Grzegorz A. Rempala2

1. Department of Mathematics, University of Nairobi, Kenya; 2. Division of Biostatistics, The Ohio State University, Columbus, United

States

We extend the classical Susceptible-Infected-Recovered (SIR) model to a network-based framework

where the degree distribution of nodes follows a Poisson distribution. This extension incorporates

an additional parameter representing the mean node degree, allowing for the inclusion of

heterogeneity in contact patterns. Using this enhanced model, we analyze epidemic data from the

2018-20 Ebola outbreak in the Democratic Republic of the Congo, employing a survival approach

combined with the Hamiltonian Monte Carlo method. Our results suggest that network-based

models can more e�ectively capture the heterogeneity of epidemic dynamics compared to

traditional compartmental models, without introducing unduly overcomplicated compartmental

framework.

I. Introduction: SIR Compartmental Modeling

The study of the causes, transmission, and control of infectious diseases has a rich history, dating

back to Grant’s work in 1620[1]. In mathematical epidemiology, mathematical models and analytical

techniques are employed to understand the spread and control of infectious diseases. These models

enable researchers to predict disease dynamics, assess the impact of various interventions, and guide

public health strategies.

One of the earliest examples of such modeling comes from Daniel Bernoulli[2], who in 1760 applied

mathematical principles to study the trade-o�s between the bene�ts and risks of variolation during a

deadly smallpox outbreak in the American colonies. His approach classi�ed individuals based on their

epidemiological status, laying the groundwork for what are now known as compartmental models.

The �rst malaria compartmental model was developed by Sir Ronald Ross in early 1900’s. He used

human and vector compartments to demonstrate that malaria was transmitted by mosquitoes to

humans[3]. In 1927, the classical Susceptible-Infected-Recovered (SIR) compartmental model was
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introduced by Kermack and McKendrick to describe the transmission of infectious diseases[4][5][6].

For a comprehensive review of both classical and more recent SIR-type models, as well as related

developments, see[1] and the references therein.

In the original Kermack-McKendrick model, individuals in a population are divided into three

compartments: susceptibles ( ) infected ( ) and recovered ( ), with the proportion of    type

individuals at time   denoted by  ,  , and   respectively. The system of ordinary di�erential

equations (ODEs) governing the transfer of individuals between these compartments is given by

where dotted quantities denote time derivatives and where for simplicity we suppressed the time

argument in functions   and  .

The above system is known as the SIR compartmental ODE model, the simplest example of a

deterministic system describing the spread of a disease in a closed population. From the equations, we

note the following.

 represents the rate at which susceptible individuals become infected upon encountering infected

individuals (the infection rate).

  de�nes the rate at which infected individuals recover or succumb, thus leaving the infected

compartment (the recovery rate).

  is a threshold parameter known as the basic reproduction number which represents the

average growth rate of secondary cases in a completely susceptible population[1].

When  , the epidemic will, at least initially, spread within the population as the number of

infected individuals increases. In contrast, if  , the number of infected individuals will decline

and the epidemic will not spread.

If   represents a small proportion of initially infected individuals, the initial conditions of the

system are given by  . From the form of (1), it follows that the system

satis�es the conservation law  . This and elementary manipulations of the �rst and

the last equation in (1) give the following alternative representation of the classical SIR model

S I R S, I,R

t S(t) I(t) R(t)
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Note that the �rst equation in the system above involves only  . Since it describes the decline of

susceptibles (and consequently the emergence of new cases), it is often referred to as the epidemic

curve equation (see, for instance, [7]).

For the SIR model to e�ectively describe the disease dynamics in a given population of interest, it is

typically necessary to estimate the parameters  ,  , and  .

While compartmental ODE models are valuable tools in epidemiology, they have several notable

limitations  [8]. First, these models rely on the law of mass action, which assumes uniform social

contact patterns across the population. This simpli�cation neglects the inherent heterogeneity in

individual behaviors and fails to account for changes in contact patterns as an epidemic unfolds, a

crucial factor for diseases where person-to-person transmission is the primary mode of spread.

Additionally, as deterministic models, they overlook the dynamics of early outbreak phases, during

which the number of infections is small and stochastic events play a signi�cant role in shaping disease

transmission. As disease dynamics grow more complex—such as when multiple types of infected or

susceptible individuals are involved—these models become increasingly intricate, complicating

interpretation and analysis.

Given these limitations, a di�erent approach, often based on stochastic modeling, is frequently more

e�ective  [8][9]. While stochastic models are typically more challenging to formulate, they better

accommodate heterogeneity and can simplify the overall structure by reducing the number of

compartments. Furthermore, they inherently capture variability by incorporating random

�uctuations, o�ering a more realistic representation of disease spread in diverse populations [10].

This paper explores the classical SIR model from a stochastic perspective, with a focus on its extension

to the network-based SIR model, where transmission dynamics are governed by a static contact

network. Speci�cally, we highlight the lesser-known relationships between the classical SIR model,

its Poisson network counterpart, and the pairwise closure condition. Through a real data example, we

demonstrate that while both models have similar computational complexity, the network-based

model holds the advantage of explicitly accounting for and revealing the network’s degree

distribution.

The rest of the paper is organized as follows: In Section II, we provide background on network-based

stochastic SIR models, focusing on con�guration models, their pairwise representations, and

dynamical survival approaches to model �tting. Following  [7], we argue that in some cases the

S

b c d

qeios.com doi.org/10.32388/AKZ12J 3

https://www.qeios.com/
https://doi.org/10.32388/AKZ12J


classical SIR model serves as a good approximation of the Poisson SIR network model. In Section III,

we address the statistical inference problem for stochastic network-based SIR models under a Poisson

degree distribution and derive the relevant likelihood equations for parameter estimation. We then

analyze the 2018-20 Ebola outbreak data in the Democratic Republic of the Congo, �tting the data to

the derived network model and comparing the result to similar analysis based on the classical SIR

approach presented in [11]. Finally, in Section IV, we discuss the results and present conclusions from

our work.

II. Stochastic Network SIR Model

Stochastic network models address some of the challenges discussed earlier by providing a more

realistic framework for capturing and studying the complexities of disease spread in structured

populations. These models account for the variability in individual interactions and transmission

dynamics. A stochastic model represents contact patterns during an epidemic as a graph, where nodes

correspond to individuals, and edges denote potential transmission routes. The stochastic SIR

epidemic process on a network of size   can be described as follows.

At the onset of the epidemic,    individuals are randomly selected as initially infectious. Each

infectious individual remains in this state for a duration drawn from an exponential distribution with

rate  . During this period, the individual contacts their immediate neighbors according to a Poisson

process with intensity  . If a contacted neighbor is susceptible, they become infectious immediately.

Once the infectious period ends, the individual recovers and becomes immune to further infections. All

infectious periods and Poisson processes are assumed to be independent (see, e.g., [12]).

In many applications, it is useful to track the spread of an epidemic while simultaneously constructing

the underlying transmission network. This can be achieved by generating a random graph in tandem

with modeling the epidemic’s spread. The process, illustrated in Figure 1, begins by assigning to each

node a number of unconnected half-edges based on the degree distribution  . Static connections are

then formed by matching the half-edges of infectious nodes to other available half-edges in the

network as part of the Poisson contact process with intensity  , as described earlier. If the connected

node is susceptible, transmission occurs. Otherwise, the infectious individual attempts to connect its

remaining half-edges to other available half-edges, repeating this process until all half-edges are

matched or no further connections are possible. While this matching process may occasionally result
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in self-loops or multiple edges between two nodes, such occurrences are negligible in the limit of

large  .

The network SIR process as described above is seen to be a continuous time Markov chain  [13]  on a

con�guration model random graph    of size    and the degree distribution  . Recall

that the probability generating function (PGF) corresponding to   is de�ned as

The average degree is then de�ned in terms of PGF    as  . Similarly, the average excess

degree (i.e., the average degree of a random neighbor of a node, minus one) is de�ned as 

 (see, e.g., [14][7]). The probability generating function is needed here as it tells us about

the properties of a randomly chosen susceptible node. We use the PGF to �nd the probability that a

randomly chosen node  , that is initially susceptible, in a in�nite network, remains so up to time  .

Figure 1. SIR Dynamics on Network. Blue nodes represent susceptible individuals, while

red and pink ones represent the initially infected and secondarily infected individuals,

respectively. The black node indicates a removed individual. Dashed half-edges connect

uniformly at random to form solid edges.
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A. Pairwise Model and Its Closure

The pairwise model provides a comprehensive way of describing the dynamics of an SIR epidemic on a

con�guration model graph. The pairwise model equations (see, for instance, [15]) are:

where  ,  ,    with    stand for the functions that at their integer values

may be interpreted as counts of the number of singles, doubles and triples in the entire network with

the given sequence of states when each group is counted in all possible ways. More formally, at integer

values

where   is the adjacency matrix of the network with entries either zero or one and  , 

, and   are binary variables that equal one when the status of  -th individual is  ,  , and  ,

respectively, and equal zero otherwise. The singles   and doubles   are similarly de�ned.

The model described in (3) is not especially useful as stated, since clearly additional equations for

triples dynamics are required, which, in turn, depend on dynamics of quadruples, and so on, leading to

an escalating number of variables and equations. To manage this complexity and make the model

tractable, a ”closure” approach is often employed. In this approach, larger structures (e.g., triples) are

approximated in terms of smaller ones (e.g., pairs). Indeed, The model described in (3) can be closed at

the level of pairs by applying the following result recently presented in[15].

Theorem 1. [Exact pairwise closure] Consider the SIR Markov process on the con�guration graph   as

described above. Let  . The system (3) may be closed exactly by setting

for   i� the degree distribution   is binomial, Poisson or negative binomial. The closure is exact in

the sense that the equality in (1) with both sides multiplied by    holds asymptotically as  .

Furthermore,  ,  , or    if the degree distribution is binomial 

, Poisson  , or negative binomial  , respectively.

[S]˙

[I]˙

[R]˙

[SI]˙

[SS]˙

= −β[SI]

= β[SI] − γ[I]

= γ[I]

= −γ[SI] + β([SSI] − [ISI]) − β[SI]

= −2β[SSI]

(3)
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We direct interested readers to the original paper for a formal statement of this result, along with its

proof and additional details that are beyond the scope of this discussion.

Applying the closure relation in Theorem 1, the system (3) may be written as

The above system may be considerably simpli�ed, by removing last two equations. Indeed, by dividing

the last equation by the �rst one and solving the resulting di�erential equation under the assumption

that  , it follows that  . Substituting now this formula into the fourth

equation and dividing again by the �rst one we obtain another di�erential equation for    as a

function of  . That equation may be then solved explicitly, depending on the value of  , yielding the

reduced version of (4) which by Theorem 1 may be written in terms of the limiting proportions of 

,  , and   as   which we denote below by  . The �nal system has the following

form:

where the initial conditions are (per analogy with the classical SIR model (1) in Section I) 

 and  ,  , and  .

Note that the equations above may be interpreted as the mean �eld approximation to the scaled SIR

Markov process evolving on the con�guration model random graph    as described in the

beginning of this Section.

B. Poisson Network SIR

For the reminder of the paper we will consider only the special case of the Poisson network SIR model,

namely when   distribution in   is of the form   for  . This gives the PGF

formula

[S]˙

[I]˙

[R]˙

[SI]˙

[SS]˙

= −β[SI]

= β[SI] − γ[I]

= γ[I]

= −γ[SI] + βκ − β[SI]
[SI][SS] − [SI]

[S]

= −2βκ .
[SI][SS]

[S]

(4)

[SS](0) = μ[S](0) [SS] = μ[S]2κ

[SI]

[S] κ

[S]/n [I]/n [R]/n n → ∞ S, I,R

−Ṡ

İ

R
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( − ) + S(1 − ) +β

~
Sκ S 2κ γ

~

1−κ
Sκ−1 ρ~Sκ

(S − ) + S logS + Sβ
~

S 2 γ~ ρ~
if κ ≠ 1

if κ = 1

= − − γIṠ
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(5)
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~
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p G(n,p) = exp(−μ) /k!pk μk k ≥ 0
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and consequently implies that  , so that   (see also Theorem 1). In this

case the system (5) takes the form

where    is a network analogue of the basic reproduction number discussed in Section  I. In

general, (6) is seen to be algebraically closely related to (2) as formalized in the following result (see

also[7]).

Proposition 1. Assume that we wish to approximate the dynamics of a Poisson network SIR epidemic given

by (6) using the classical SIR equations (2). The two models’ respective epidemic curve equations (and thus

also respective  -curves) coincide i�  ,    and  . In this case  . Moreover, if 

 than the true infection curve under the network model satis�es

The result above indicates that the Poisson network SIR model will closely approximate the classical

SIR model in terms of its Susceptible-Infected-Recovered (SIR) curves when the mean degree of the

Poisson network ( ) is high. In this scenario, the factor   approaches one. As the mean degree

increases, the network model converges to the classical SIR model because the high connectivity

reduces the impact of individual-speci�c interaction patterns. Consequently, the infection and

recovery dynamics become more uniform, aligning closely with the simpler SIR framework. This is

further illustrated in Figure 2 where the the  -curves of the Poisson network SIR model are plotted (in

red) for several di�erent values of  . The lowest curve corresponds to   which is the classical SIR

model represented by ODEs (1) and (2).

μ = (1) = (1)/μ =Ψ′ Ψ′′ μex κ = 1

Ṡ

İ

R

= − S(1 + ρ − S + logS)β
~

R
~−1

0

= − − γIṠ
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(6)

= /R
~

0 β
~
γ~

S b = β
~

d = ρ c = γ~ =R0 R
~

0

< μR0

= − − c(1 − )I.İ Ṡ
R0
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□
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I
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Figure 2. Approximating Network SIR Model. A simple example illustrating

the result of Proposition 1. For large mean degree distribution   (here at least

40), the network curves for infected are seen to get close to the one

corresponding to the classical SIR model (lowest curve). For this particular

example the values of the parameters   are taken from the �rst column

of Table I in Section III below.

The system (6), for numerical convenience and to avoid evaluating terms of the form   when   is

small, is often reformulated into an alternative representation of the Poisson SIR equation.

Speci�cally, by introducing the substitution

and di�erentiating, we can reformulate the �rst equation in terms of two others as shown in (7).

These two equations resemble the classical SIR equations (1), with    replaced by  , and with the

parameters matched as described in Proposition 1.

with additional initial condition  .

μ

( , , ρ)β
~
γ~

logS S

D = 1 + ρ − S + logS,R
~−1

0

I D

Ṡ

Ḋ

İ

R

= − DSβ
~

= − − DṠ γ~

= − − γIṠ

= 1 + ρ − S − I,

(7)

D(0) = ρ
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As noted in Chapter 2[16] for better numerical stability, it is sometimes convenient to rewrite the above

set of equations in terms of log transformed quantities  ,  , and   as

with   recovered via the conservation law as before.

C. Dynamical Survival Analysis

Although (6) is derived from the mean-�eld approximation of a Markov process evolving on an

in�nite random Poisson degree graph, it also serves as a basis for approximate inference regarding

both the parameters of the underlying network and the SIR process. This method, which employs

ODEs to characterize a stochastic process and is referred to as dynamical survival analysis or DSA in[9],

was originally proposed in[17]. In that work, it was argued that, for a randomly selected node, the 

  function described in (6) can be interpreted as an improper survival function (see also[8]).

Speci�cally, if   denotes the random time at which a randomly chosen, initially susceptible node in

the network becomes infected, then in the limit of the large graph (that is, as the number of nodes 

) we have for any 

Note that taking in (6)    (since at the end of the epidemic there is no further depletion of

susceptibles, see e.g,[8]) gives   where

is the �nal epidemic size or, equivalently, the limiting probability of a randomly chosen initially

susceptible node being ever infected, i.e.,  .

More generally, if for   we de�ne

then the quantity

may be considered as a density function for the conditional random variable  . Notice

that we may take here   in which case  , the quantity de�ned in (9). In view of this, since

= logSS∗ = log II∗ = logDD∗

Ṡ ∗

Ḋ∗

İ ∗

= − exp( )β
~

D∗

= exp( ) −β
~

S∗ γ~

= exp( + − ) − γ,β
~

S∗ D∗ I∗

(8)

R

S

TI

n → ∞ t > 0

P ( > t) = S(t).TI

(∞) = 0Ṡ

S(∞) = 1 − τ

τ = log(1 − τ) − ρR
~−1

0 (9)

τ = P ( < ∞)TI

T > 0

= 1 − S(T )τT (10)

(t) = − (t)/fτT Ṡ τT (11)

= | < TT ∗
I TI TI

T = ∞ = ττ∞
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we may use the second equation in (6) to represent the variable   in terms of a convolution:

we see that the quantity

is simply a density function of a random variable, say  , that is a sum of two independent random

variables:    and    where    is an exponential variable with rate  . It follows that the system (6)

describes the densities of a pair of random variables   representing the history of epidemic of a

randomly chosen network node in an in�nite network. By construction, these variables are such that 

  is independent of the exponential variable    which is interpreted as the infectious

period.

Note that the vector of parameters describing the distribution of the pair   is

as all other relevant quantities, such as  ,  , and  , can be expressed in terms of   or  , which is

fully determined by  . Indeed, recall that  ,   with   de�ned by (9) and that for

the average degree   we have

In view of the above discussion, it is sometimes more convenient to consider an alternative

parametrization

which is the parametrization used in our numerical example below.

III. Statistical Inference

A. Ebola Dataset

We will illustrate the practical application of the network-based epidemic model and the

approximation result in Proposition 1 by analyzing the data from the third and �nal wave of the 2018–

2020 Ebola Virus Disease (EVD) outbreak in the Democratic Republic of the Congo (DRC). The

I

I(t) = ρ exp(−γt) + (− (u)) exp{−γ(t − u)}du,∫
t

0
Ṡ

(t) = (I(t) − ρ exp(−γt))gτT
γ

τT
(12)

TR

T ∗
I U U γ

( , )T ∗
I TR

T ∗
I U = −TR T ∗

I

( , )T ∗
I TR

θ = ( , ,γ,ρ)β
~
γ~ (13)

τT μ R
~

0 θ S

θ = /R
~

0 β
~
γ~ = 1 − S(T )τT τ∞

μ

μ = .R
~

0(1 − )
γ

γ~

−1

(14)

= ( , ,μ,ρ),θ∗ β
~
γ~ (15)
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complete dataset from this outbreak is described and analyzed in detail in  [11]; here, we focus

speci�cally on a subset of the data, which includes information on the onset and hospitalization of

1,069 con�rmed EVD patients recorded between May 27, 2019, and September 12, 2019. This subset is

derived from the broader EVD database, which is comprehensively detailed in Section 2 of [11].

Since early August 2018, the DRC Ministry of Health, in collaboration with several international

partners, has been working to support and strengthen the response to the Ebola Virus Disease (EVD)

outbreak. This e�ort has been coordinated through the Emergency Operations Center in Goma, the

capital of North Kivu Province in eastern DRC. Despite regional security challenges  [18], response

teams were deployed wherever possible to interview patients and suspected contacts. These interviews

were conducted using a standardized case investigation form. Based on the collected information,

cases were categorized as suspected, probable, or con�rmed.

A suspected case (whether the patient survived or not) was de�ned as one with an acute onset of fever

(over 100∘F) and at least three Ebola-compatible clinical signs or symptoms, including headache,

vomiting, anorexia, diarrhea, lethargy, stomach pain, muscle or joint aches, di�culty swallowing or

breathing, hiccups, unexplained bleeding, or any sudden, unexplained death. If a patient met the

suspected case de�nition but died, and no specimens were available for testing, the case was

considered probable. A con�rmed case of EVD was de�ned as a suspected case with at least one

positive test for Ebola virus using reverse transcription polymerase chain reaction (RT-PCR) [19].

Patients suspected of having EVD were isolated and transported to an Ebola Treatment Center (ETC)

for con�rmatory testing and treatment  [20]. Following the approach in  [11], our analysis of the DRC

dataset focused on the dates of symptom onset and removal, with ”removal” de�ned as either death

or recovery at home, or transfer to an ETC. It was assumed that, once patients were admitted to an

ETC, the probability of further infection spread was minimal due to strict safety protocols. This

assumption was later reinforced by the vaccination of healthcare personnel and family members who

had been in contact with the suspected Ebola cases.

B. Statistical Model

The probabilistic DSA model used to derive (11) and (12) can now be applied in a similar manner to

derive the likelihood function for inference of the parameters vector   given in (13). The justi�cation for

this approach is discussed in [17] through the so-called Sellke construction. We omit the details here,

θ

qeios.com doi.org/10.32388/AKZ12J 12

https://www.qeios.com/
https://doi.org/10.32388/AKZ12J


referring interested readers to the original source. Instead, our focus will be on the mechanics of the

statistical inference process.

a. Likelihood: We assume that observations of new infections and recoveries are available up to some

time horizon   such that  . Recall the de�nition of (10) and note that   is non-decreasing

in   and that  , the �nal epidemic size given by (9). As already indicated, the density (11)

may be interpreted as a conditional density function of infection times    on    for any  .

Recalling the pair of variables    and the fact that the variable    is exponentially

distributed with rate parameter   we obtain the following individual-level likelihood function for an

initially susceptible individual    observed until time    with infection and recovery times    and  ,

respectively:

Here,    is the event indicator, satisfying    if   and   otherwise. The likelihood

for the set of   individuals in the population with complete records (16) is the product of the individual

likelihoods, re�ecting the assumption that the infection events are (approximately) independent in a

large population.

b. Likelihood with missing data: As discussed in [11] in about 30% of the DRC Ebola cases the individual

disease records were incomplete, missing either infection   or recovery   times. Fortunately, such

missingness may be handled by the DSA likelihood without any need for data imputation. In case when

only   is observed, (  is missing), the likelihood (16) reduces simply to (11)

On the other hand, if only   is observed (  is missing), the likelihood is obtained from the convolution

formula and (12)

Similarly as above, the likelihood for incomplete data (22) is obtained by taking product of (17) and

(18) over all individual incomplete histories (see also next subsection).

c. E�ective population size and outbreak size: In many outbreak datasets, including the one from DRC

considered here, only infection and recovery times are recorded. It is therefore often di�cult to

determine the size ( ) of the susceptible population at risk of infection. This is known in the literature

as the problem of estimating the e�ective population size[17]. Under the DSA model, this estimate may

be obtained as

T T ∈ [0, ∞] τT

T = τ < 1τ∞

T ∗
I [0,T ] T ≤ ∞

( , )T ∗
I TR W = −TR T ∗

I

γ

i T ti ri

L(θ| , ,T ) = ( ) .ti ri fτT ti γ
wi e−γ( ∧T− )ri ti (16)

wi = 0wi ∧ T = Tri = 1wi

n

( )ti ( )ri

ti ri

L(θ| , ∘,T ) = ( ).ti fτT ti (17)

ri ti

L(θ|∘, ,T ) = ( ).ri gτT ri (18)

N
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where   is the count of observed infected over the time horizon   and   is given by (10). Similarly,

one may also estimate the �nal epidemic count   of all already observed and future infections by

where   is the �nal epidemic size.

C. Parameter Estimation

As discussed in the previous section, the epidemic history of the  -th individual can be represented

either by the times of disease onset and removal   or by incomplete data, such as   or   alone,

denoted as   or   (  indicates a missing value). Among the available   individual recorded

histories, we assume there are   complete records  ,    incomplete records of type  , and 

 incomplete records of type  .

The DSA likelihood function for the   complete data records is derived from (16) and takes the form:

where   is the time horizon, and   is the binary censoring indicator as de�ned in (16).

For the remaining   partially incomplete records, the DSA likelihood function is based on (11)

and (12):

where we assume  .

The overall likelihood for all   individual histories is obtained by multiplying (21) and (22). Note that

the likelihood expressions depend on the parameter    only implicitly, through the values of the

survival function   de�ned in (7).

The estimation of the parameter vector  , as de�ned in (13), involves maximizing the product of the

two likelihood functions (21) and (22). To enhance numerical stability, it is often advantageous to

consider the formulation in terms of the logarithmic transformation (8), which involves maximizing

the sum of the logarithms of the two likelihood functions instead. This approach seamlessly integrates

into the Bayesian estimation framework, allowing for more comprehensive propagation of

= ,N̂
kT

τT
(19)

kT T τT

K∞

= τ,K̂∞ N̂ (20)

τ = limT→∞ τT

i

( , )ti ri ti ri

( , ∘)ti (∘, )ri ∘ nT

n ( , )ti ri n1 ( , ∘)ti

n2 (∘, )ri

n

(θ| , . . . , , , . . . , ,T ) = ( ) ,LC t1 tn r1 rn ∏
i=1

n

fτT ti γ
wi e−γ( ∧T− )ri ti (21)

T wi

+n1 n2

(θ| , . . . , , , . . . , ,T ) = ( ) ( ),LI t1 tn1
r1 rn2

∏
i=1

n1

fτT ti ∏
i=1

n2

gτT ri (22)

< Tri

nT

β

S(t)

θ

qeios.com doi.org/10.32388/AKZ12J 14

https://www.qeios.com/
https://doi.org/10.32388/AKZ12J


uncertainty and the incorporation of external information into the statistical model. Consequently,

this method yields parameter estimates that fully leverage all available information while accounting

for uncertainty in a rigorous manner.

In our analysis of DRC data, the approximate posterior densities of    were obtained using the

Hamiltonian Monte Carlo (HMC) sampler[21], implemented in the open-source statistical software

STAN[22]. This implementation was accessed via the R library Rstan[23]. Following[11], we assumed

uniform (sometimes improper) prior distributions for the components of  , speci�ed as follows:

As in[11], the lower bound on    was informed by empirical data, while the upper bound on    was

chosen to enforce the constraint  .

The MCMC analysis was based on two chains of 3,000 iterations, with a burn-in period of 1,000

iterations. Convergence of the chains was assessed using Rubin’s    statistic[23]. The analysis

produced approximate samples from the posterior distribution of the parameter vector   (see Figure

4 below).

D. Results

The general comparison of the parametric predictions of the DSA model with the empirical data in the

DRC data set between May 27, 2019, and September 12, 2019 is given in Figure 3, where the scaled

theoretical densities of the epidemic are plotted alongside the observed relative daily counts of

infection (onset) and removal (hospitalization). As seen from the plots, the network model appears to

capture well the empirically observed patterns of daily counts represented by the histogram bars. The

95% credible bounds around the model �t (shaded in red) are calculated based on the model

parameter posterior distributions estimated via the MCMC algorithm with priors described in Section

III-C. We note that, although the network DSA model curve �t appears quite similar to that presented

in Section 2 of[11], the added bene�t is the estimation of the distribution of an average degree

interpreted as an average number of contacts per infected individual prior to removal. Since the mean

degree is estimated as relatively high the Proposition 1 justi�es also the use of classical SIR model

from[11] for the DSA analysis.

θ

θ

β
~

γ~

ρ

∈ (0.1, ∞),

∈ (0,β),

∈ (0, 0.01).

(23)

β
~

γ

> 1R
~

0

R

θ∗
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The numerical results of the MCMC analysis are summarized in Table I with some of the posterior

plots presented in Figure 4. In Table I, the posterior mean and corresponding credibility interval for

each component of    given by (15) are listed along with the estimated reproduction number ( ).

Additionally, in the last two rows, the posterior mean estimate of the outbreak size ( ) as de�ned in

(20) is reported along with its 95% credible bounds. The MCMC estimation scheme that produced the

numerical values listed in the table was based on likelihood functions in equations (21) and (22)

conditioned on the observation periods ( ). Since the posterior estimate of the ratio 

 is relatively low, the result of Proposition 1 indicates that we should expect a reasonably

good agreement between the classical mass-action SIR model (2) and the Poisson network model (6).

Indeed, as seen from the entries of Table I, the point parameter values (posterior means) for the

infection rate  , recovery rate ( ) and the initial prevalence of infection   all are numerically close for

the classical and network models. In fact, since the respective credible intervals for   and ( ) under

network model contain the credible intervals under classical SIR, one would conclude that the

posterior estimates distributions are not statistically di�erent.

Param Classical Network

0.235 (0.218, 0.253) 0.229 (0.209, 0.259)

0.214 (0.199, 0.230) 0.215 (0.197, 0.242)

0.0067 (0.0055, 0.0081) 0.0055 (0.0046, 0.0073)

– 39.48 (7.93, 93.00)

1.098 (1.061,1.135 ) 1.071 (1.034, 1.109)

3481.41 3773.37

  (2877.416, 4155.878) (3373.245, 4226.315)

Table 1. Parameter Estimates. Comparison of posterior estimates (means and 95% credibility bounds)

from the classical SIR and network SIR models for the DRC Ebola dataset. The parameters between two

models are matched according to Proposition 1.

θ∗ R
~

0

K∞

T = 108

/μ ≈ 1/40R
~

0

β
~

γ~ ρ

β
~

γ~

β
~

γ~

ρ

μ

R
~

0

K̂∞
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Figure 3. Model Fit. Histograms of onset and recovery (hospitalization) times overlaid with Poisson SIR

model �t, computed at the means of the posterior parameter values (solid lines) with the corresponding

95% credible intervals (shaded regions).

Although the posterior means of the basic reproduction number and the �nal epidemic size are also

close to the quantities obtained from the classical SIR model analysis, they posterior distributions are

seen not to overlap and hence we conclude them to be di�erent.

The �nal noteworthy result is that the SIR network model provides a better overall �t to the data, as

indicated by the maximized likelihood function (not shown in the summary table). Additionally, the

network analysis reveals that the posterior distribution of the average network degree ( ) is highly

right-skewed. This �nding aligns with the observation that a small subset of infectious individuals

had a disproportionately high number of contacts before their hospitalization.

Interestingly, the mean contact degree is approximately 40, while the posterior mode is slightly below

25 (see Figure  4). For the range of parameters estimated from the data, the relatively high mean

degree suggests that the two SIR models analyzed in Table I are numerically quite similar in terms of

the respective numbers of infected individuals. This similarity is further illustrated by the plots in

Figure 2 based on Proposition 1.

μ
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Figure 4. Posterior Parameter Densities. The posterior distributions of  ,  ,   and  . The posterior

distribution of average degree ( ) is seen to be right skewed but with mode below 25.

IV. Discussion

This paper presents a novel formulation of the classical SIR model, incorporating a dynamical survival

analysis perspective into a con�guration model based on a Poisson-distributed degree network.

Among the broad class of con�guration model networks, the Poisson network is particularly

noteworthy due to its exact pair-level closure property. This characteristic makes it a representative

model for many ”appropriately regular” random networks (for instance, certain Bernoulli graphs)

which often exhibit structural similarities to Poisson networks.

From a numerical perspective, the Poisson exact closure property prevents network complexity from

scaling uncontrollably as the network size increases. This property enhances both analytical

tractability and computational e�ciency, o�ering a scalable and reliable approach for studying and

managing disease dynamics. The proposed framework e�ectively models the contact patterns within a

population that drive the spread of infectious diseases, providing deeper insights into outbreak

mechanisms, disease persistence, and shifts in infection dynamics as interactions between infectious

and susceptible individuals evolve.

The proposed model is broadly applicable to various domains, including social interactions, biological

systems (e.g., neural or protein interactions), and technological networks (e.g., the spread of

computer viruses or resilience of infrastructure systems). By transforming the SIR model using

dynamical survival analysis within the edge-based con�guration network framework, the resulting

system of equations captures the intricate dynamics of network-based interactions. Despite the

β
~
γ~ μ R

~
0

μ
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complexity of these interactions, the equations remain mathematically tractable, often enabling

precise predictions of disease trends (see, for instance, the discussions of related DSA-based

approaches given in [8][24]).

The utility of the Poisson SIR network model is demonstrated through secondary analysis of the data

from 2018–2020 Ebola outbreak in the Democratic Republic of the Congo. The model not only

maintains a strong �t to empirical data but also reveals hidden structural features of the contact

network underlying the disease’s spread. Identifying such networks is crucial for e�ectively targeting

at-risk populations—such as through vaccination campaigns—to prevent further transmission. This

stochastic SIR framework thus provides a versatile tool for modeling infectious diseases and other

dynamic processes beyond the scope of traditional SIR models.

Additionally, the study addresses an open challenge in approximating network-based SIR models with

classical mass-action SIR models. Our empirical �ndings, encapsulated also in Proposition 1

reformulated after  [7], demonstrate that such an approximation is achievable by establishing a

correspondence between the parameters of the two frameworks. Furthermore, it highlights that in

networks of moderate to high degree, the classical SIR model can serve as a reasonable approximation

for the susceptible and infected curves and a possible trend prediction tool.

Overall, our results underscore the potential for bridging complex network-based dynamics with

classical modeling approaches, o�ering both theoretical insights and practical tools for

understanding and forecasting epidemic spread.
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