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A new method for finding first integrals of ordinary differential equations (ODEs) is presented. The

approach is based on the complete integrability of the Pfaffian system associated with the ODE,

defined on a suitable jet space. Remarkably, the method does not require the use of symmetries or

integrating factors. Examples of second-, third-, and fourth-order ODEs are provided to illustrate the

method, including cases where classical approaches fail. This work extends the range of tools available

for the analysis and solution of ODEs.
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1. Introduction

First integrals are a key concept in the study of ordinary differential equations (ODEs), which represent

conserved quantities when the ODE models a physical system. The knowledge of first integrals is an

important feature that not only enables the reduction of the order of the ODE, but also facilitates the

determination of the general solution, or the validation of numerical methods.

Over the years, numerous techniques have been developed to determine first integrals of ODEs. The most

common approaches are based on Lie symmetries. They are extremely successful, but the determination

of symmetries can be infeasible for certain classes of ODEs. This limitation has led to the enrichment of

the approach through the introduction of more general classes of vector fields, such as dynamical

symmetries, nonlocal symmetries,  -symmetries, etc.[1][2][3][4][5][6][7][8][9][10][11].

A different point of view to find first integrals is based on the utilization of symbolic computation

techniques to determine integrating factors in ODEs. The corresponding integrating factor determining

equations, a system of partial differential equations (PDEs), must be solved, and then the first integral can
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be computed, effectively reducing the order of the ODE. Due to the difficulty of solving these determining

equations, various techniques have been developed to aid in the search for integrating factors[5][12][13][14]

[15][16][17][18].

While both approaches have significantly advanced the study of first integrals, they come with inherent

difficulties, which motivate the research of alternative strategies for finding first integrals. In this paper a

novel approach is presented, that does not require the use of either symmetries or integrating factors. It

is based on the complete integrability of the Pfaffian system associated with the ODE, defined on the

corresponding jet bundle, which is the natural framework for the geometric study of ODEs[19][20].

To provide motivation, consider a first-order ODE of the form 

where    denotes the derivative of the dependent variable    with respect to the independent

variable  , and   is a smooth function defined on an open set  . Equation (1) is usually written in

differential form as

We have, by dimensionality, that  , and therefore, by Frobenius theorem there exists, locally, a

smooth function    such that  , with    a non-vanishing smooth function. The

function   can be found by solving the PDE: 

Once a particular solution is found, the general solution to (1) could be expressed in implicit form as 

where   is an arbitrary constant.

In this work, we generalize this idea to arbitrary order, presenting a novel method for finding first

integrals. While our approach may be more computationally intensive than some traditional techniques,

its fundamental advantage lies in its ability to address problems where standard methods, particularly

those reliant on Lie symmetries, fail. After introducing the necessary notation and basic definitions in

Section 2, we prove the main theoretical result in Section 3. We then demonstrate the practical power of

our method. Section 4 particularizes the technique for second-order ODEs, while Section 5 applies it to

= ϕ(x,u),u1 (1)

=u1
du

dx
u

x ϕ U ⊆ R
2

:= −ϕdx+ du ≡ 0.θϕ

d ∧ = 0θϕ θϕ

F = F(x,u) dF = μθϕ μ

F

dF ∧ = 0.θϕ

F(x,u) = C,

C
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challenging third- and fourth-order ODEs, including examples that are intractable with standard

symmetry analysis.

2. Preliminaries

Consider an  th-order ODE 

where    represent the independent and dependent variables, respectively, and    denotes the  th-

order derivative of   with respect to  , for  . We consider   as the standard

coordinates of the corresponding  th-order jet bundle, denoted by  [19] for details); and 

 is a smooth function defined on an open subset 

Throughout the text, when we say that a fact holds locally, we mean that it is valid in some open subset of 

. For simplicity, we will continue to use the same notation   to denote such open subsets. Also, we will

implicitly use the notation   to denote  , for the sake of uniformity.

Recall that an important feature of the jet bundle is the contact ideal, which encodes the geometrical

structure of this space. The contact ideal is generated by the contact forms, which are 1-forms that vanish

on any section of the jet bundle that corresponds to the prolongation of a smooth function  . The

contact forms in the jet bundle  ,  , are given by: 

Suppose that there exist, locally, two functions   and  , with 

 is non-vanishing, satisfying

where   denotes the total derivative operator[1][2]

The function   is called a first integral of equation (2), and   an integrating factor.

The knowledge of a first integral allows us to reduce the order of the ODE (2), since equation (2) is, locally,

equivalent to the family of  th-order ODEs 

m

= ϕ(x,u,…, ), m ≥ 2,um um−1 (2)

(x,u) ui i

u x 1 ≤ i ≤ m (x,u, ,…, )u1 um−1

(m− 1) (R,R)Jm−1

ϕ U ⊆ (R,R).Jm−1

U U

u0 u

u = f(x)

(R,R)JN N ≥ 1

θ0

θ1

θN−1

= dx− du,u1

= dx− d ,u2 u1

⋮
= dx− d .uN uN−1

H = H(x,u,…, )um−1 δ = δ(x,u,…, )um−1

δ

H = δ( − ϕ(x,u,…, )),Dx um um−1

Dx

= + .Dx ∂x ∑
i=0

m−1

ui+1∂ui

H δ

(m− 1)
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On the other hand, it is well known[20] that the ODE (2) is encoded by its associated Pfaffian system, i.e.,

by the differential ideal   of the algebra   generated by the contact forms 

together with the 1-form 

This Pfaffian system    is in correspondence with the involutive rank-1 distribution generated by the

vector field associated to equation (2): 

Therefore,    is completely integrable, in the sense that Frobenius theorem applies, i.e., there exist,

locally,   smooth functions   such that    is generated by the 1-forms 

[20].

Finally, recall that in the case of a single 1-form  , which corresponds to a corank-1 distribution,

Frobenius theorem establishes that the requirement 

is equivalent to the (local) existence of a smooth function    such that    for a certain non-

vanishing function  . The 1-form   is said to be Frobenius integrable.

3. Main result

Consider an  th-order ODE as in (2). Unlike in the first-order case, the 1-form   defined in (4) is not, in

general, Frobenius integrable. Nevertheless, since the Pfaffian system    is completely integrable there

must exist, locally, a function   such that  , that is, 

for certain smooth functions   defined on  .

If necessary, we shrink the open set   so that the function   is non-vanishing. We then define 

H(x,u,…, ) = C, C ∈ R.um−1 (3)

Iϕ (U)Ω∗

, ,…, ,θ0 θ1 θm−2

:= −ϕdx+ d .θϕ um−1 (4)

Iϕ

= + +⋯+ + ϕ .Aϕ ∂x u1∂u um−1∂um−2 ∂um−1

Iϕ

m− 1 ,…,F1 Fm−1 Iϕ d ,…,dF1 Fm−1

ω

dω ∧ ω = 0

F dF = μω

μ ω

m θϕ

Iϕ

F = F(x,u,…, )um−1 dF ∈ Iϕ

dF = μ + ,θϕ ∑
i=0

m−2

αiθi

μ, ,…,α0 αm−2 U

U μ

:= + ,ω( ,…, )γ0 γm−2
θϕ ∑

i=0

m−2

γiθi (5)
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where  . With this definition, we have 

which implies that   is Frobenius integrable. Thus, it must satisfy 

which is a first-order PDE system for the functions  ,  .

On the other hand, observe that the smooth function   must satisfy the PDE system 

Now, we are in a position to state and prove the main result of this paper:

Theorem 3.1. Consider an  th-order ODE given by (2). A first integral    can be determined by first

obtaining a particular solution to the PDE system (6) for the functions  ,  , and

subsequently solving the PDE system (7) for  .

Proof. Suppose that the PDE system (6) admits the particular solution 

Then, we use   to define the 1-form   according to equation (5), which is therefore Frobenius

integrable.

Consider now a smooth function    satisfying the PDE system (7). Then, there

exists, locally, a certain non-vanishing function   such that 

Expanding both sides of this expression, we have 

and by comparing the coefficients of the 1-forms  , we obtain 

:=γi
αi
μ

dF = μ ,ω( ,…, )γ0 γm−2

ω( ,…, )γ0 γm−2

d ∧ = 0,ω( ,…, )γ0 γm−2
ω( ,…, )γ0 γm−2

(6)

γi 0 ≤ i ≤ m− 2

F

dF ∧ = 0.ω( ,…, )γ0 γm−2
(7)

m F

γi 0 ≤ i ≤ m− 2

F

= (x,u,…, ),  for 0 ≤ i ≤ m− 2.γi γi um−1

γi ω( ,…, )γ0 γm−2

F = F(x,u,…, )um−1

μ

dF = μ .ω( ,…, )γ0 γm−2

dx+ du+⋯+ dFx Fu Fum−1 um−1 = μ( + )θϕ ∑
i=0

m−2

γiθi

= μ(−ϕdx+ d + (− dx+ d )) ,um−1 ∑
i=0

m−2

γi ui+1 ui

dx,du,d ,…,du1 um−1

Fx

Fui

Fum−1

= −μϕ− μ ,∑
i=0

m−2

γiui+1

= μ ,  for 0 ≤ i ≤ m− 2,γi

= μ.

(8)
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So, finally, to check that   is a first integral for the ODE (2) we apply the total differential operator to  ,

and substitute the expressions (8): 

Remark 3.1. The PDE system (7) is a homogeneous linear system of first-order PDEs for the function  .

In contrast, the PDE system (6) is a system of first-order PDEs for the functions  , which is not generally

linear. Moreover, for an  th-order ODE, the PDE system (6) consists of    equations with 

  unknown functions  . As a result, solving this system is typically challenging. A

practical strategy to address this complexity is to assume some standard ansatz for the functions  , such

as a dependence on fewer variables or linearity in some variable. As we will see in the examples, this kind

of assumption not only reduces the complexity of the involved PDEs, but also allows us to write some

equations as polynomials, in such a way that they can be split into simpler equations.

Remark 3.2. In certain cases, multiple particular solutions to the PDE system(6) can be identified. Each of

these solutions may lead to the construction of distinct, independent first integrals, so increasing the

number of conserved quantities or even providing the general solution of the ODE. For an illustration, see

Example 4.1.

4. Second-order ODEs

In this section, we will explore the application of our results to the particular case of second-order ODEs.

Given the ODE 

we define the 1-form given by (5) 

where   is a smooth function to be determined.

In this case, condition (6),  , reduces to the single PDE for  : 

F F

(F)Dx = +Fx ∑
i=0

m−1

ui+1Fui

= −μϕ− μ + μ + μ∑
i=0

m−2

γiui+1 ∑
i=0

m−2

γiui+1 um

= μ( − ϕ).um

□

F

γi

m ( )m+1
3

m− 1 ,…,γ0 γm−2

γi

= ϕ(x,u, ),u2 u1 (9)

ω( )γ0
:= −ϕdx+ d +u1 γ0θ0

= (−ϕ+ )dx− du+ d ,γ0u1 γ0 u1
(10)

= (x,u, )γ0 γ0 u1

d ∧ = 0ω( )γ0
ω( )γ0

γ0

+ + ϕ+ − − = 0.γ0x γ0uu1 γ0u1 γ2
0 ϕu γ0ϕu1 (11)
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Once a particular solution   is found, a first integral   can be obtained by

solving the PDE system (7): 

The following illustrative example showcases how to use the results above to find first integrals of a

second-order ODE.

Example 4.1. Consider the second-order ODE given by: 

To solve the determining equation (11) for   we assume the ansatz  , in such a

way that (11) simplifies to the polynomial: 

where 

Setting the coefficients   we obtain a system of three PDEs for the functions   and  .

With the aid of a computer algebra system, we find the particular solution 

and thus we take  .

By substituting this expression into (12) and clearing the denominators, we obtain the following system

of equations: 

 The reader can verify that a particular solution is given by 

which is therefore a first integral of the ODE (13).

= (x,u, )γ0 γ0 u1 F = F(x,u, )u1

+γ0Fu1 Fu

+ ( − ϕ)γ0Fx γ0u1 Fu

+ (ϕ− )Fx γ0u1 Fu1

= 0,
= 0,
= 0.

(12a)
(12b)
(12c)

= .u2
(3x + u)(x − u)u1 u1

2 ux2
(13)

γ0 = g(x,u) + h(x,u)γ0 u1

+ u+ = 0,D2u
2
1 D1u1 D0

:D0

:D1

:D2

= −2 − 2 + g− 2x h− ,x2u2h2 x2u2hx u3 u2 u2

= −4 gh− 2 − 2 + 6 uh,x2u2 x2u2hu x2u2gx x2

= −2 − 2 + 3 ug− 3 .x2u2g2 x2u2gu x2 x2

(14a)
(14b)
(14c)

= = = 0D0 D1 D2 g h

g = , h = 0,
1
u

=γ0
u1
u

+ uu1Fu1 Fu

u( − 2xu − ) − 2 ux2u2
1 u1 u2 Fu x2 u1Fx

( − 2xu − ) + 2 ux2u2
1 u1 u2 Fu1 x2 Fx

= 0,

= 0,

= 0.

(15a)

(15b)

(15c)

F(x,u, ) = ln(x) + 2arctanh( ),u1
xu1

u
(16)
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Notably, another particular solution to (14) can be checked to be 

and, consequently, the choice    allows us to find another first integral of (13), provided the

corresponding PDE system is solved: 

A particular solution for (17) is given by 

which is, therefore, another first integral of (13).

The first integrals given by (16) and (18) describe the general solutions of the ODE (13) in implicit form.

In the following example, we use our approach to find a first integral and a 1-parameter family of

solutions to a second-order ODE that does not admit Lie point symmetries.

Example 4.2. Consider the following second-order ODE 

The reader can check that it does not admit Lie point symmetries, so standard procedures cannot be

applied.

To find a first integral we first tackle the PDE (11), which is, in this case, 

By using the natural ansatz    this equation can be regarded as a polynomial in the 

 variable: 

 where 

The particular solution    for the system given by    is easy to find. Now, we write

system (12): 

g = , h = − ,
3
2u

1
2x

=γ0
3x −uu1

2xu

2 − (x + u)x2Fx u1 Fu1

2xu + (3x − u)Fu u1 Fu1

(xu− 3 ) − (xu + )x2u1 Fx u1 u2 Fu

= 0,
= 0,

= 0.

(17a)
(17b)

(17c)

(x,u, ) = ,u1
x − uu1

xu3−−−√
(18)

= 1 + x − .u2 u1
2xu
u1

(19)

+ + ( + x − 2xu ) + − (2xu+ x ) + 2x = 0.u2
1γ0x u3

1γ0u u2
1 u3

1 u1 γ0u1 u2
1γ

2
0 u2

1 γ0 u1

= (x, )γ0 γ0 u1

u

u+ = 0,D1 D0

D1

D0

= 2x + 2x ,u1γ0u1 γ0

= − − ( + x ) − + x − 2x .u2
1γ0x u2

1 u3
1 γ0u1 u2

1γ
2
0 u2

1γ0 u1

(20a)
(20b)

=γ0
1
u1

= = 0D0 D1
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The general solution to equation (21a) is 

where   is an arbitrary smooth function. From equations (21b) and (21c) it follows that   must

satisfy 

This equation admits the particular solution  , therefore a particular solution to the system

(21) is

which is a first integral of the ODE (19).

Remarkably, even if for the reduced ODE 

no straightforward analytical method yields a general solution, in the particular case   the solutions

are given by the family 

which in turn is a 1-parameter family of solutions for the ODE (19). Thus, our method has facilitated a

partial integration of an ODE for which classical approaches appear to be ineffective.

The preceding examples illustrate the effectiveness of the method in obtaining first integrals. In the next

subsection, we will see that, remarkably, for autonomous second-order ODEs, equation  admits a

prescribed solution. This ensures that the method introduced in this work can always be applied in this

important class of problems.

4.1. Autonomous second-order ODEs

In the case of an autonomous second-order ODE 

+Fu1
u1Fu

x( − 2u) −u2
1 Fu Fx

x( − 2u) +u2
1 Fu1

u1Fx

= 0,
= 0,
= 0.

(21a)
(21b)
(21c)

F(x,u, ) = g(x, − 2u),u1 u2
1

g = g(x,y) g

2xy + = 0.gy gx (22)

g(x,y) = ye−x2

F(x,u, ) = ( − 2u) ,u1 u2
1 e−x2

( − 2u) = C, C ∈ R,u2
1 e−x2

C = 0

u(x) = (x+K , K ∈ R,
1
2

)2

(???)

= ϕ(u, ),u2 u1 (23)
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the smooth function   is always a particular solution to equation (11), as can easily be checked. By

substituting in (12) the PDE system for the first integral   reduces to: 

Incidentally, this first integral corresponds to the foliation energy introduced in [?].

Observe that the solutions are of the form  , so the reduced equation 

is also autonomous. If   can be explicitly isolated in (25) as a function of   (and possibly  ), the equation

can be solved by quadrature, leading to a 2-parameter family of solutions for equation (23).

Example 4.3. Consider the autonomous second-order ODE given by 

which only have the trivial Lie point symmetry  . In this case the PDE system (24), 

admits the particular solution 

Therefore, equation (26) can be reduced to the first-order family of ODEs: 

with  .

This family of ODEs can be solved by quadrature, leading to the general solution of (26), which is

implicitly expressed as: 

where  .

=γ0
ϕ

u1

F = F(x,u, )u1

ϕ +Fu1 u1Fu

Fx

= 0,
= 0.

(24)

F = F(u, )u1

F(u, ) = C, C ∈ R,u1 (25)

u1 u C

= ,u2
− − 2u2

1 u2u1 u1

+ uu2
(26)

∂x

Fx

+
− − 2u2

1 u2u1 u1

+ uu2
Fu1 u1Fu

= 0,

= 0,

F (u, ) = .u1
+ u + − 2u2 u1 u1

u

= C,
+ u + − 2u2 u1 u1

u
(27)

C ∈ R

x+ ln(Cu− + 2)+ arctanh( ) = K,
1
2

u2 C + 2

+ 8C2− −−−−−
√

C − 2u

+ 8C2− −−−−−
√

C,K ∈ R
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5. Higher-order ODEs

In this section we will show examples of how our approach can be successfully applied to third- and

fourth-order ODEs. The general procedure is the same as for second-order ODEs, but the complexity of

the PDE systems increases with the order of the ODE.

Example 5.1. Consider the third-order ODE 

According to Theorem 3.1, we need to solve the PDE system (6), 

for the functions  . By using the ansatz  , the resulting PDE system

becomes:

A particular solution can be found by using a computer algebra system, and it is given by 

With these values for   and  , the PDE system (7) for the first integral   becomes 

and a particular solution can be checked to be 

= .u3
u+ x − x − uu1 u1u

2
2 u2

2

2u2
(28)

d ∧ = 0,ω( , )γ0 γ1
ω( , )γ0 γ1

,γ0 γ1 = (x, ), = (x, )γ0 γ0 u2 γ1 γ1 u2

( + + ) −( + )γ1x γ0
x( − 1)u2

2

2u2
γ0 γ0x

( − 1)u2
2

2u2
γ1

− +γ1u2γ0 γ0u2γ1

− − + ( + + )γ0x
( − 1)u2

2

2u2
γ0u2 γ1u2 γ0u1

x + u − x − uu1u
2
2 u2

2 u1

2u2

−( + + + x + u− )  γ1u2u2 γ1 γ0u2u1 u1
x + u − x − uu1u

2
2 u2

2 u1

2u2
2

γ0

− − − + ( + + )γ1x γ0
x( − 1)u2

2

2u2
γ1u2 γ1u2 γ0u1

x + u − x − uu1u
2
2 u2

2 u1

2u2

−( + + + x + u− )γ1u2u2 γ1 γ0u2u1 u1
x + u − x − uu1u

2
2 u2

2 u1

2u2
2

γ1

= 0,

= 0,

= 0,

= 0.

(29a)

(29b)

(29c)

(29d)

γ0

γ1

= ,
x(1 − )u2

2

2u2

= 0.

γ0 γ1 F = F(x,u, , )u1 u2

x − uFx Fu

−x + x + 2u2
2Fu2 Fu2 u2Fu

−u + 2 + uu2
2Fu2 u2Fx Fu2

Fu1

= 0,
= 0,
= 0,
= 0,

(30a)
(30b)
(30c)
(30d)

F = ( − 1).exu u2
2 (31)
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The reduced ODE 

does not appear to admit an explicit closed-form solution in the general case. However, the particular

choice   leads to a notable simplification, yielding the 2-parameter family of solutions for (28): 

Observe that the ODE (28) does not possess Lie point symmetries, as the reader may check. Nevertheless,

we successfully derived a first integral (31), enabling partial integration of the ODE, without relying on Lie

point symmetries or integrating factors.

Example 5.2. Consider the fourth-order ODE

In this case, we have 

and then the 1-form 

must satisfy condition (6): 

This system of 10 PDEs for   and   is too involved to be included in the text. However, by using the

ansatz 

we obtain the particular solution 

using a computer algebra system.

( − 1) = C, C ∈ R,exu u2
2

C = 0

u(x) = ± + x+ , , ∈ R.
1
2
x2 K1 K2 K1 K2

= .u4
(x − + x− + 2) − 2ex+u u1 u1u3 u3 u3

x− 3 + 2u3 ex+u
(32)

= − dx+ d ,θϕ
(x − + x− + 2) − 2ex+u u1 u1u3 u3 u3

x− 3 + 2u3 ex+u
u3

= + + + ,ω( , , )γ0 γ1 γ2
θϕ γ0θ0 γ1θ1 γ2θ2

d ∧ = 0.ω( , , )γ0 γ1 γ2
ω( , , )γ0 γ1 γ2

,γ0 γ1 γ2

= (x,u, ), = (x,u, ), = (x,u, ),γ0 γ0 u3 γ1 γ1 u3 γ2 γ2 u3

γ0

γ1

γ2

= ,
(x− )ex+u u3

2 + x− 3ex+u u3

= 0,
= 0,

(33)
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Upon substituting these expressions into the PDE system (7), we obtain the following system of

equations for the first integral  : 

The reader can verify that a particular solution is given by 

Again, we want to point out that our approach has allowed us to find the first integral (35) for the ODE

(32) without making use of Lie point symmetries (which are not available for this equation) or integrating

factors. Moreover, even if the reduced ODE 

is not easily solved for arbitrary  , the particular case    provides the 3-parameter family of

solutions for (32): 

where  .

6. Comparison with other methods

In this section we will show the relationship between the method presented in this paper and similar

approaches such as the  -symmetries method, the  -function method, and the extended Prelle–Singer

method for higher-order equations.

First, the method presented in this work is connected to the theory of canonical  -symmetries for

second-order ODEs. Specifically, equation (11) serves as the determining equation for a canonical  -

symmetry of the ODE (9), as established in equation (5) in reference[21]. Therefore, identifying the

function    that makes    a  -symmetry is equivalent to finding a solution 

 in the first step of Theorem 3.1.

Also, our approach is related to the framework of the  -function method, introduced in  [22][23]  for

second-order ODEs and generalized in [?,?,?], as well as to the extended Prelle–Singer method for higher-

F

(x− ) + (2 + x− 3 )ex+u u3 Fu3
ex+u u3 Fu

( (x− + 2) − 2 ) + ( − x)ex+u u3 u3 Fu ex+u u3 Fx

( ( − x− 2) + 2 ) + (2 + x− 3 )ex+u u3 u3 Fu3
ex+u u3 Fx

Fu1

Fu2

= 0,
= 0,
= 0,
= 0,
= 0.

(34a)
(34b)
(34c)
(34d)
(34e)

F = ( − )( − x .u3 ex+u u3 )2

( − )( − x = C, C ∈ R,u3 ex+u u3 )2

C ∈ R C = 0

u(x) = + + x+ ,
1
24

x4 K1

2
x2 K2 K3

, , ∈ RK1 K2 K3

λ S

λ

λ

λ = λ(x,u, )u1 ∂u λ

= (x,u, )γ0 γ0 u1

S

qeios.com doi.org/10.32388/ANIIUI.2 13

https://www.qeios.com/
https://doi.org/10.32388/ANIIUI.2


order equations developed in  [14]. Both are extensions of the Prelle–Singer procedure [?], originally

formulated for first-order ODEs, and both aim at finding first integrals and solutions in terms of

elementary functions.

These extended Prelle–Singer methods share with the approach of this paper the goal of constructing

first integrals for higher-order ordinary differential equations by identifying auxiliary functions. In the

extended Prelle–Singer framework one introduces the so-called null forms   (alongside an integrating

factor  ) so that the modified differential 1-form becomes exact and hence integrable to a first integral  .

Analogously, our geometric approach seeks coefficients    for the contact 1-forms to find a Frobenius-

integrable 1-form on the relevant jet bundle. In fact, one may view each   in the Prelle–Singer method as

playing the same role as    in our construction. Thus, the underlying idea of introducing “extra”

functions whose compatibility yields a first integral is common to both approaches.

In contrast, the two approaches differ fundamentally in their nature. Whereas the Prelle–Singer method

is essentially algebraic, constructing and manipulating modified differential forms until they become

exact, our approach is intrinsically geometric, exploiting the structure of the contact distribution of the

jet bundle and the integrability of differential ideals to obtain first integrals.

Moreover, there is an operational difference residing in how these auxiliary functions are used and

obtained. The Prelle–Singer method pairs the functions   with an explicit integrating factor   that must

be solved for from an overdetermined system of algebraic PDEs; once the functions   and   are known,

one performs an integration to recover the first integral. In contrast, our geometric strategy bypasses any

integrating factor by embedding the problem in the language of jet bundles and Pfaffian ideals: we

directly enforce the Frobenius integrability condition   to solve for the  , and then integrate a

homogeneous linear PDE system for the first integral itself. This difference is illustrated in the following

example.

Example 6.1. In Example 4.1 in [14]  it is considered as second-order ODE, which adapted to our notation

becomes 

The authors obtain the following equations: 

Si

R I

γj

Si

−γi−1

Si R

Si R

dω ∧ ω = 0 γj

= .u2
2u− 1
1 + u2

u2
1 (36)

qeios.com doi.org/10.32388/ANIIUI.2 14

https://www.qeios.com/
https://doi.org/10.32388/ANIIUI.2


and the following particular solution for them: 

The corresponding first integral is given in equation (4.15) in{m/14/}, which written in our notation

becomes: 

On the other hand, following the procedure of the present work we write down equation (11): 

which coincides with equation (37) by substituting   by  . We can consider the solution 

which corresponds to the one obtained in equation (40) for  , and we write the PDE system (12): 

A solution to this system is the first integral 

and we can derive from it, as a byproduct, the integrating factor 

The reader can observe that neither the first integral (44) obtained with our method coincides with

expression (41), nor does the integrating factor (45) coincide with the one provided by the extended

Prelle–Singer method in equation (40).

+ +( )Sx u1Su
2u− 1
1 + u2

u2
1 Su1

+ +( )Rx u1Ru
2u− 1
1 + u2

u2
1 Ru1

Ru

= 2 + S+ ,
u(u+ 1) − 1

(1 + u2)2
u2
1

2(2u− 1)u1

1 + u2
S 2

= −R(S+ ) ,
2(2u− 1)u1

1 + u2

= S+R ,Ru1
Su1

(37)

(38)

(39)

S = , R = − .
(2u− 1)

(1 + )u2
u1

earctan(u)

(1 + )u2
(40)

I = .
u1e

arctan(u)

(1 + )u2
(41)

+ +( ) + + 2 − = 0,γ0x γ0uu1
(2u− 1)

(1 + )u2
u2
1 γ0u1 γ2

0

u(u+ 1) − 1

(1 + u2)2
u2
1 γ0

2(2u− 1)u1

1 + u2
(42)

S −γ0

= − ,γ0
(2u− 1)

(1 + )u2
u1

S

−Fx
u1

x
Fu1

+Fu
2xu − x + + 1u1 u1 u2

x( + 1)u2
Fu1

+
2xu − x + + 1u1 u1 u2

x( + 1)u2
Fx

u1

x
Fu

= 0,

= 0,

= 0.

(43a)

(43b)

(43c)

F = ,
(x − − 1)u1 u2 earctan(u)

1 + u2
(44)

μ = .
xearctan(u)

1 + u2
(45)
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7. Conclusions

In this work, it has been presented an approach to find first integrals of  th-order ODEs that does not

require the computation of integrating factors or the knowledge of Lie point symmetries. The approach,

which is based on the complete integrability of the Pfaffian system associated to the ODE, requires the

solution of PDE systems, usually through the assumption of ansätze for the unknown functions and the

use of computer algebra systems. The effectiveness of the method has been illustrated with examples of

second-, third-, and fourth-order ODEs, showing that it can be applied to a wide range of ODEs, including

those that do not admit Lie point symmetries.

We acknowledge that the method may appear complex, compared to some traditional techniques.

However, this perceived complexity, involving the formulation of an ansatz and reliance on symbolic

computation, is a direct cost for greater scope. The primary benefit of our approach is precisely its ability

to succeed where traditional methods fail, particularly for ODEs that lack the required Lie point

symmetries for standard integration techniques to work. This more intricate structure of the method is

not a weakness but rather the very source of its strength, providing a systematic pathway to solve

problems that would otherwise be intractable.

On the other hand, the implementation of the method in computer algebra systems is straightforward,

and it could be particularly useful. Such an implementation could be combined with a systematic

exploration of different ansätze, for example, by progressively selecting an increasing number of

variables for the functions    to depend on. This combination could enhance existing algorithms,

increasing the likelihood of finding first integrals of ODEs. In this way, our approach offers a

complementary tool to the methods currently available, potentially extending the range of solvable

problems.
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