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A new method to �nd �rst integrals of ordinary differential equations (ODEs) is presented. The

approach is based on the complete integrability of the Pfaf�an system associated with the ODE, and it

does not require the use of symmetries or integrating factors. Examples of second-, third-, and fourth-

order ODEs are provided to illustrate the method, including cases where classical approaches fail. This

work extends the range of tools available for the analysis and solution of ODEs.
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1. Introduction

First integrals are a key concept in the study of ordinary differential equations (ODEs), which represent

conserved quantities when the ODE models a physical system. The knowledge of �rst integrals is an

important feature that not only enables the reduction of the order of the ODE, but also facilitates the

determination of the general solution, or the validation of numerical methods.

Over the years, numerous techniques have been developed to determine �rst integrals of ODEs. The most

common approaches are based on Lie symmetries. They are extremely successful, but the determination

of symmetries can be infeasible for certain classes of ODEs. This limitation has led to the enrichment of

the approach through the introduction of more general classes of vector �elds, such as dynamical

symmetries, nonlocal symmetries,  -symmetries, etc.[1][2][3][4][5][6][7][8][9][10].

A different point of view to �nd �rst integrals is based on the utilization of symbolic computation

techniques to determine integrating factors in ODEs. The corresponding integrating factor determining

equations, a system of partial differential equations (PDEs), must be solved, and then the �rst integral can

be computed, effectively reducing the order of the ODE. Due to the dif�culty of solving these determining
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equations, various techniques have been developed to aid in the search for integrating factors[5][11][12][13]

[14][15][16][17].

While both approaches have signi�cantly advanced the study of �rst integrals, they come with inherent

dif�culties, which motivate the research of alternative strategies for �nding �rst integrals. In this paper

we present a novel approach, that does not require the use of either symmetries or integrating factors. It

is based on the complete integrability of the Pfaf�an system associated with the ODE, de�ned on the

corresponding jet bundle, which is the natural framework for the geometric study of ODEs[18][19].

To provide motivation, consider a �rst-order ODE of the form 

where    denotes the derivative of the dependent variable    with respect to the independent

variable  , and   is a smooth function de�ned on an open set  . Equation (1) is usually written in

differential form as

We have, by dimensionality, that  , and therefore, by Frobenius theorem there exists, locally, a

smooth function    such that  , with    a non-vanishing smooth function. The

function   can be found by solving the PDE: 

Once a particular solution is found, the general solution to (1) could be expressed in implicit form as 

where   is an arbitrary constant.

In this work, we will generalize this idea up to arbitrary order. After introducing the notation and basic

de�nitions in Section 2, we will present the main result in Section 3. In Section 4 we will particularize the

method for the case of second-order ODEs. And in Section 5 we will apply the techniques to third- and

fourth-order ODEs.

2. Preliminaries

Consider an  th-order ODE 

= ϕ(x,u),u1 (1)

=u1
du

dx
u

x ϕ U ⊆ R
2

:= −ϕdx + du ≡ 0.θϕ

d ∧ = 0θϕ θϕ

F = F(x,u) dF = μθϕ μ

F

dF ∧ = 0.θϕ

F(x,u) = C,

C

m

= ϕ(x,u, … , ), m ≥ 2,um um−1 (2)
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 where    represent the independent and dependent variables, respectively, and   denotes the  th-

order derivative of   with respect to  , for  . We consider   as the standard

coordinates of the corresponding  th-order jet bundle, denoted by  [18] for details); and 

 is a smooth function de�ned on an open subset 

Throughout the text, when we say that a fact holds locally, we mean that it is valid in some open subset of 

. For simplicity, we will continue to use the same notation   to denote such open subsets. Also, we will

implicitly use the notation   to denote  , for the sake of uniformity.

Recall that an important feature of the jet bundle is the contact ideal, which encodes the geometrical

structure of this space. The contact ideal is generated by the contact forms, which are 1-forms that vanish

on any section of the jet bundle that corresponds to the prolongation of a smooth function  . The

contact forms in the jet bundle  ,  , are given by: 

Suppose that there exist, locally, two functions    and    such

that   is non-vanishing and they satisfy 

where   denotes the total derivative operator[1][2]

The function   is called a �rst integral of equation (2), and   an integrating factor.

The knowledge of a �rst integral allows us to reduce the order of the ODE (2), since equation (2) is, locally,

equivalent to the family of  th-order ODEs 

On the other hand, it is well known[19] that the ODE (2) is encoded by its associated Pfaf�an system, i.e.,

by the differential ideal   of the algebra   generated by the contact forms 

together with the 1-form 

(x,u) ui i

u x 1 ≤ i ≤ m (x,u, , … , )u1 um−1

(m − 1) (R, R)Jm−1

ϕ U ⊆ (R, R).Jm−1

U U

u0 u

u = f(x)

(R, R)JN N ≥ 1

θ0

θ1

θN−1

= dx − du,u1

= dx − d ,u2 u1

⋮
= dx − d .uN uN−1

H = H(x,u, … , )um−1 δ = δ(x,u, … , )um−1

δ

H = δ( − ϕ(x,u, … , )),Dx um um−1

Dx

= + .Dx ∂x ∑
i=0

m−1

ui+1∂ui

H δ

(m − 1)

H(x,u, … , ) = C, C ∈ R.um−1 (3)

Iϕ (U)Ω∗

, , … , ,θ0 θ1 θm−2
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This Pfaf�an system    is in correspondence with the involutive rank-1 distribution generated by the

vector �eld associated to equation (2): 

Therefore,    is completely integrable, in the sense that Frobenius theorem applies, i.e., there exist,

locally,   smooth functions   such that    is generated by the 1-forms 

[19].

Finally, recall that in the case of a single 1-form  , which corresponds to a corank-1 distribution,

Frobenius theorem establishes that the requirement 

is equivalent to the (local) existence of a smooth function    such that    for a certain non-

vanishing function  . The 1-form   is said to be Frobenius integrable.

3. Main result

Consider an  th-order ODE as in (2). Unlike in the �rst-order case, the 1-form   de�ned in (4) is not, in

general, Frobenius integrable. Nevertheless, since the Pfaf�an system    is completely integrable there

must exist, locally, a function   such that  , that is, 

for certain smooth functions   de�ned on  .

If necessary, we shrink the open set   so that the function   is non-vanishing. We then de�ne 

where  . With this de�nition, we have 

which implies that   is Frobenius integrable. Thus, it must satisfy 

:= −ϕdx + d .θϕ um−1 (4)

Iϕ

= + + ⋯ + + ϕ .Aϕ ∂x u1∂u um−1∂um−2 ∂um−1

Iϕ

m − 1 , … ,F1 Fm−1 Iϕ d , … ,dF1 Fm−1

ω

dω ∧ ω = 0

F dF = μω

μ ω

m θϕ

Iϕ

F = F(x,u, … , )um−1 dF ∈ Iϕ

dF = μ + ,θϕ ∑
i=0

m−2

αiθi

μ, , … ,α0 αm−2 U

U μ

:= + ,ω( ,…, )γ0 γm−2
θϕ ∑

i=0

m−2

γiθi (5)

:=γi
αi
μ

dF = μ ,ω( ,…, )γ0 γm−2

ω( ,…, )γ0 γm−2

d ∧ = 0,ω( ,…, )γ0 γm−2
ω( ,…, )γ0 γm−2

(6)
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which is a �rst-order PDE system for the functions  ,  .

On the other hand, observe that the smooth function   must satisfy the PDE system 

Now, we are in a position to state and prove the main result of this paper:

Theorem 3.1. Consider an  th-order ODE given by (2). A �rst integral    can be determined by �rst

obtaining a particular solution to the PDE system (6) for the functions  , and subsequently solving the

PDE system (7) for  .

Proof. Suppose that the PDE system (6) admits the particular solution 

Then, we use   to de�ne the 1-form   according to equation (5), which is therefore Frobenius

integrable.

Consider now a smooth function    satisfying the PDE system (7). Then, there

exists, locally, a certain non-vanishing function   such that 

 Expanding both sides of this expression, we have 

 and by comparing the coef�cients of the 1-forms  , we obtain 

So, �nally, to check that   is a �rst integral for the ODE (2) we apply the total differential operator to  ,

and substitute the expressions (8): 

γi 0 ≤ i ≤ m − 2

F

dF ∧ = 0.ω( ,…, )γ0 γm−2
(7)

m F

γi

F

= (x,u, … , ),  for 0 ≤ i ≤ m − 2.γi γi um−1

γi ω( ,…, )γ0 γm−2

F = F(x,u, … , )um−1

μ

dF = μ .ω( ,…, )γ0 γm−2

dx + du + ⋯ + dFx Fu Fum−1
um−1 = μ( + )θϕ ∑

i=0

m−2

γiθi

= μ(−ϕdx + d + (− dx + d )) ,um−1 ∑
i=0

m−2

γi ui+1 ui

dx,du,d , … ,du1 um−1

Fx

Fui

Fum−1

= −μϕ − μ ,∑
i=0

m−2

γiui+1

= μ ,  for 0 ≤ i ≤ m − 2,γi

= μ.

(8)

F F
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Remark 3.1. The PDE system (7) is a homogeneous linear system of �rst-order PDEs for the function  .

In contrast, the PDE system (6) is a system of �rst-order PDEs for the functions  , which is not generally

linear. Moreover, for an  th-order ODE, the PDE system (6) consists of    equations with 

  unknown functions  . As a result, solving this system is typically challenging. A

practical strategy to address this complexity is to assume some standard ansatz for the functions  , such

as a dependence on fewer variables or linearity in some variable. As we will see in the examples, this kind

of assumption not only reduces the complexity of the involved PDEs, but also allows us to write some

equations as polynomials, in such a way that they can be split into simpler equations.

Remark 3.2. In certain cases, multiple particular solutions to the PDE system(6) can be identi�ed. Each of

these solutions may lead to the construction of distinct, independent �rst integrals, so increasing the

number of conserved quantities or even providing the general solution of the ODE. For an illustration, see

Example 4.1.

4. Second-order ODEs

In this section, we will explore the application of our results to the particular case of second-order ODEs.

Given the ODE 

 we de�ne the 1-form given by (5) 

where   is a smooth function to be determined.

In this case, condition (6),  , reduces to the single PDE for  : 

Once a particular solution   is found, a �rst integral   can be obtained by

solving the PDE system (7): 

(F)Dx = +Fx ∑
i=0

m−1

ui+1Fui

= −μϕ − μ + μ + μ∑
i=0

m−2

γiui+1 ∑
i=0

m−2

γiui+1 um

= μ( − ϕ).um

□

F

γi

m ( )m+1
3

m − 1 , … ,γ0 γm−2

γi

= ϕ(x,u, ),u2 u1 (9)

ω( )γ0
:= −ϕdx + d +u1 γ0θ0

= (−ϕ + )dx − du + d ,γ0u1 γ0 u1
(10)

= (x,u, )γ0 γ0 u1

d ∧ = 0ω( )γ0
ω( )γ0

γ0

+ + ϕ + − − = 0.γ0x γ0uu1 γ0u1 γ2
0 ϕu γ0ϕu1 (11)

= (x,u, )γ0 γ0 u1 F = F(x,u, )u1

qeios.com doi.org/10.32388/ANIIUI 6

https://www.qeios.com/
https://doi.org/10.32388/ANIIUI


Remark 4.1. Our approach relates to the framework of the  -function method, as introduced in[20][21].

The  -function methodology provides a powerful tool to �nd �rst integrals, particularly for rational

2ODEs, by exploiting the relationship between the structure of the equation and associated one-forms. In

relation to this work, it can be checked that the function   plays the role of the function  .

Remark 4.2. On the other hand, the method presented here relates also to the theory of canonical  -

symmetries for second-order ODEs. In fact, equation (11) is the determining equation for a canonical  -

symmetry of the ODE (9), as established in equation (5) in[22].

The following illustrative example showcases how to use the results above to �nd �rst integrals of a

second-order ODE.

Example 4.1. Consider the second-order ODE given by: 

To solve the determining equation (11) for   we assume the ansatz  , in such a

way that (11) simpli�es to the polynomial: 

where 

Setting the coef�cients   we obtain a system of three PDEs for the functions   and  .

With the aid of a computer algebra system, we �nd the particular solution 

and thus we take  .

By substituting this expression into (12) and clearing the denominators, we obtain the following system

of equations: 

+γ0Fu1 Fu

+ ( − ϕ)γ0Fx γ0u1 Fu

+ (ϕ − )Fx γ0u1 Fu1

= 0,
= 0,
= 0.

(12a)
(12b)
(12c)

S

S

S −γ0

λ

λ

= .u2
(3x + u)(x − u)u1 u1

2 ux2
(13)

γ0 = g(x,u) + h(x,u)γ0 u1

+ u + = 0,D2u
2
1 D1u1 D0

:D0

:D1

:D2

= −2 − 2 + g − 2x h − ,x2u2h2 x2u2hx u3 u2 u2

= −4 gh − 2 − 2 + 6 uh,x2u2 x2u2hu x2u2gx x2

= −2 − 2 + 3 ug − 3 .x2u2g2 x2u2gu x2 x2

(14a)
(14b)
(14c)

= = = 0D0 D1 D2 g h

g = , h = 0,
1
u

=γ0
u1
u

+ uu1Fu1 Fu

u( − 2xu − ) − 2 ux2u2
1 u1 u2 Fu x2 u1Fx

( − 2xu − ) + 2 ux2u2
1 u1 u2 Fu1 x2 Fx

= 0,

= 0,

= 0.

(15a)

(15b)

(15c)
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 The reader can verify that a particular solution is given by 

which is therefore a �rst integral of the ODE (13).

Notably, another particular solution to (14) can be checked to be 

and, consequently, the choice    allows us to �nd another �rst integral of (13), provided the

corresponding PDE system is solved: 

A particular solution for (17) is given by 

which is, therefore, another �rst integral of (13).

The �rst integrals given by (16) and (18) describe the general solutions of the ODE (13) in implicit form.

In the following example, we use our approach to �nd a �rst integral and a 1-parameter family of

solutions to a second-order ODE that does not admit Lie point symmetries.

Example 4.2. Consider the following second-order ODE 

The reader can check that it does not admit Lie point symmetries, so standard procedures cannot be

applied.

To �nd a �rst integral we �rst tackle the PDE (11), which is, in this case, 

By using the natural ansatz    this equation can be regarded as a polynomial in the 

 variable: 

 where 

F(x,u, ) = ln(x) + 2 arctanh( ),u1
xu1

u
(16)

g = , h = − ,
3

2u
1

2x

=γ0
3x −uu1

2xu

2 − (x + u)x2Fx u1 Fu1

2xu + (3x − u)Fu u1 Fu1

(xu − 3 ) − (xu + )x2u1 Fx u1 u2 Fu

= 0,
= 0,

= 0.

(17a)
(17b)

(17c)

(x,u, ) = ,u1
x − uu1

xu3−−−√
(18)

= 1 + x − .u2 u1
2xu
u1

(19)

+ + ( + x − 2xu ) + − (2xu + x ) + 2x = 0.u2
1γ0x u3

1γ0u u2
1 u3

1 u1 γ0u1 u2
1γ

2
0 u2

1 γ0 u1

= (x, )γ0 γ0 u1

u

u + = 0,D1 D0
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The particular solution    for the system given by    is easy to �nd. Now, we write

system (12): 

The general solution to equation (21a) is 

where   is an arbitrary smooth function. From equations (21b) and (21c) it follows that   must

satisfy 

This equation admits the particular solution  , therefore a particular solution to the system

(21) is

which is a �rst integral of the ODE (19).

Remarkably, even if for the reduced ODE 

no straightforward analytical method yields a general solution, in the particular case   the solutions

are given by the family 

which in turn is a 1-parameter family of solutions for the ODE (19). Thus, our method has facilitated a

partial integration of an ODE for which classical approaches appear to be ineffective.

4.1. Autonomous second-order ODEs

In the case of an autonomous second-order ODE 

D1

D0

= 2x + 2x ,u1γ0u1 γ0

= − − ( + x ) − + x − 2x .u2
1γ0x u2

1 u3
1 γ0u1 u2

1γ
2
0 u2

1γ0 u1

(20a)
(20b)

=γ0
1
u1

= = 0D0 D1

+Fu1 u1Fu

x( − 2u) −u2
1 Fu Fx

x( − 2u) +u2
1 Fu1 u1Fx

= 0,
= 0,
= 0.

(21a)
(21b)
(21c)

F(x,u, ) = g(x, − 2u),u1 u2
1

g = g(x,y) g

2xy + = 0.gy gx (22)

g(x,y) = ye−x2

F(x,u, ) = ( − 2u) ,u1 u2
1 e−x2

( − 2u) = C, C ∈ R,u2
1 e−x2

C = 0

u(x) = (x + K , K ∈ R,
1
2

)2

= ϕ(u, ),u2 u1 (23)
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the smooth function   is always a particular solution to equation (11), as can easily be checked. By

substituting in (12) the PDE system for the �rst integral   reduces to: 

Observe that the solutions are of the form  , so the reduced equation 

  is also autonomous. If    can be explicitly isolated in (25) as a function of    (and possibly  ), the

equation can be solved by quadrature, leading to a 2-parameter family of solutions for equation (23).

Example 4.3. Consider the autonomous second-order ODE given by 

which only have the trivial Lie point symmetry  . In this case the PDE system (24), 

admits the particular solution 

Therefore, equation (26) can be reduced to the �rst-order family of ODEs: 

with  .

This family of ODEs can be solved by quadrature, leading to the general solution of (26), which is

implicitly expressed as: 

where  .

5. Higher-order ODEs

In this section we will show examples of how our approach can be successfully applied to third- and

fourth-order ODEs. The general procedure is the same as for second-order ODEs, but the complexity of

=γ0
ϕ

u1

F = F(x,u, )u1

ϕ +Fu1 u1Fu

Fx

= 0,
= 0.

(24)

F = F(u, )u1

F(u, ) = C, C ∈ R,u1 (25)

u1 u C

= ,u2
− − 2u2

1 u2u1 u1

+ uu2
(26)

∂x

Fx

+
− − 2u2

1 u2u1 u1

+ uu2
Fu1 u1Fu

= 0,

= 0,

F (u, ) = .u1
+ u + − 2u2 u1 u1

u

= C,
+ u + − 2u2 u1 u1

u
(27)

C ∈ R

x + ln(Cu − + 2) + arctanh( ) = K,
1
2

u2 C + 2

+ 8C2− −−−−−
√

C − 2u

+ 8C2− −−−−−
√

C,K ∈ R
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the PDE systems increases with the order of the ODE.

Example 5.1. Consider the third-order ODE 

According to Theorem 3.1, we need to solve the PDE system (6), 

for the functions  . By using the ansatz  , the resulting PDE system

becomes:

A particular solution can be found by using a computer algebra system, and it is given by 

With these values for   and  , the PDE system (7) for the �rst integral   becomes 

and a particular solution can be checked to be 

The reduced ODE 

= .u3
u + x − x − uu1 u1u

2
2 u2

2

2u2
(28)

d ∧ = 0,ω( , )γ0 γ1
ω( , )γ0 γ1

,γ0 γ1 = (x, ), = (x, )γ0 γ0 u2 γ1 γ1 u2

( + + ) − ( + )γ1x γ0
x( − 1)u2

2

2u2
γ0 γ0x

( − 1)u2
2

2u2
γ1

− +γ1u2γ0 γ0u2γ1

− − + ( + + )γ0x
( − 1)u2

2

2u2
γ0u2 γ1u2 γ0u1

x + u − x − uu1u
2
2 u2

2 u1

2u2

−( + + + x + u − )  γ1u2u2 γ1 γ0u2u1 u1
x + u − x − uu1u

2
2 u2

2 u1

2u2
2

γ0

− − − + ( + + )γ1x γ0
x( − 1)u2

2

2u2
γ1u2 γ1u2 γ0u1

x + u − x − uu1u
2
2 u2

2 u1

2u2

−( + + + x + u − )γ1u2u2 γ1 γ0u2u1 u1
x + u − x − uu1u

2
2 u2

2 u1

2u2
2

γ1

= 0,

= 0,

= 0,

= 0.

(29a)

(29b)

(29c)

(29d)

γ0

γ1

= ,
x(1 − )u2

2

2u2
= 0.

γ0 γ1 F = F(x,u, , )u1 u2

x − uFx Fu

−x + x + 2u2
2Fu2 Fu2 u2Fu

−u + 2 + uu2
2Fu2 u2Fx Fu2

Fu1

= 0,
= 0,
= 0,
= 0,

(30a)
(30b)
(30c)
(30d)

F = ( − 1).exu u2
2 (31)

( − 1) = C, C ∈ R,exu u2
2
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does not appear to admit an explicit closed-form solution in the general case. However, the particular

choice   leads to a notable simpli�cation, yielding the 2-parameter family of solutions for (28): 

Observe that the ODE (28) does not possess Lie point symmetries, as the reader may check. Nevertheless,

we successfully derived a �rst integral (31), enabling partial integration of the ODE, without relying on Lie

point symmetries or integrating factors.

Example 5.2. Consider the fourth-order ODE

In this case, we have 

and then the 1-form 

 must satisfy condition (6): 

This system of 10 PDEs for   and   is too involved to be included in the text. However, by using the

ansatz 

we obtain the particular solution 

using a computer algebra system.

Upon substituting these expressions into the PDE system (7), we obtain the following system of

equations for the �rst integral  : 

C = 0

u(x) = ± + x + , , ∈ R.
1
2
x2 K1 K2 K1 K2

= .u4
(x − + x − + 2) − 2ex+u u1 u1u3 u3 u3

x − 3 + 2u3 ex+u
(32)

= − dx + d ,θϕ
(x − + x − + 2) − 2ex+u u1 u1u3 u3 u3

x − 3 + 2u3 ex+u
u3

= + + + ,ω( , , )γ0 γ1 γ2
θϕ γ0θ0 γ1θ1 γ2θ2

d ∧ = 0.ω( , , )γ0 γ1 γ2
ω( , , )γ0 γ1 γ2

,γ0 γ1 γ2

= (x,u, ), = (x,u, ), = (x,u, ),γ0 γ0 u3 γ1 γ1 u3 γ2 γ2 u3

γ0

γ1

γ2

= ,
(x − )ex+u u3

2 + x − 3ex+u u3

= 0,
= 0,

(33)

F
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The reader can verify that a particular solution is given by 

Again, we want to point out that our approach has allowed us to �nd the �rst integral (35) for the ODE

(32) without making use of Lie point symmetries (which are not available for this equation) or integrating

factors. Moreover, even if the reduced ODE 

is not easily solved for arbitrary  , the particular case    provides the 3-parameter family of

solutions for (32): 

where  .

6. Further remarks

In this work, we have presented an approach to �nd �rst integrals of  th-order ODEs that does not

require the computation of integrating factors or the knowledge of Lie point symmetries. Our approach,

which is based on the complete integrability of the Pfaf�an system associated to the ODE, requires the

solution of PDE systems, usually through the assumption of ansätze for the unknown functions and the

use of computer algebra systems. The effectiveness of the method has been illustrated with examples of

second-, third-, and fourth-order ODEs, showing that it can be applied to a wide range of ODEs, including

those that do not admit Lie point symmetries.

We consider that it would be interesting the implementation of our method in computer algebra systems.

Such an implementation could be combined with a systematic exploration of different ansätze, for

example, by progressively selecting an increasing number of variables for the functions   to depend on.

This combination could enhance existing algorithms, increasing the likelihood of �nding �rst integrals

of ODEs. In this way, our approach offers a complementary tool to the methods currently available,

potentially extending the range of solvable problems.

(x − ) + (2 + x − 3 )ex+u u3 Fu3
ex+u u3 Fu

( (x − + 2) − 2 ) + ( − x)ex+u u3 u3 Fu ex+u u3 Fx

( ( − x − 2) + 2 ) + (2 + x − 3 )ex+u u3 u3 Fu3
ex+u u3 Fx

Fu1

Fu2

= 0,
= 0,
= 0,
= 0,
= 0.

(34a)
(34b)
(34c)
(34d)
(34e)

F = ( − )( − x .u3 ex+u u3 )2

( − )( − x = C, C ∈ R,u3 ex+u u3 )2

C ∈ R C = 0

u(x) = + + x + ,
1

24
x4 K1

2
x2 K2 K3

, , ∈ RK1 K2 K3

m

γi
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