
Review of: "Non-Darwinian Molecular Biology"

James A. Shapiro1

1 University of Chicago

Potential competing interests:  The author(s) declared that no potential competing interests exist.

Invited Commentary on “Non-Darwinian

Molecular Biology,” Alexander F. Palazzo* and Nevraj S. Kejiou,

Front. Genet., 16 February 2022 | https://doi.org/10.3389/fgene.2022.831068

peerreview@reach.qeios.com

 

When I first saw the title of this review article, I was interested to write a commentary

because I thought the review would highlight many of the exciting new topics in evolutionary

genomics and molecular biology. When I read the article, however, I was disappointed to find that Drs. Palazzo and Kejiou

denigrated important contemporary research and preferred an out-of-date view of evolution producing “messy” genomes

as well as embracing the long discredited notion of “junk DNA.

 

Molecular Biology and genomics have made it possible to study evolutionary

processes with unprecedented precision and revealed the major roles played by important

molecular agents, such as transposable elements and (protein) noncoding DNA and RNA

sequences. The authors have chosen to ignore the growing body of evidence revealing how

these unexpected players in genome evolution have contributed to the origins of adaptive

innovations and new taxa, especially in the most complex eukaryotes. Their concluding

summary makes this retrograde point of view quite clear:

“Most molecular biologists use an antiquated model of how evolution shapes

biological processes leading them to an unrealistic hyper-adaptationalist view. A

prime example of this is the interpretation of the ENCODE project results. Ultimately,

this ultra-Darwinian mindset perpetuates the notion that the genome, and life itself, is

like a Swiss watch—ornate, and complicated, with every part hand crafted for a

specific purpose. This view is completely compatible with the idea that genome is

pure information. However, this view is based on ignorance of developments in

molecular evolution. It also ignores principles of biochemistry, that predict

suboptimal reactions and widespread promiscuity. A more modern view of the

eukaryotic cell, shaped by drift-dominated evolution, is a messy junk-filled entity, full
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of Rube-Goldberg contraptions that were hobbled together by non-adaptive forces.

With this new vantage point, certain aspects of eukaryotic biology become clarified,

including the evolution of complexity.”

Palazzo and Kejiou’s concept of non-Darwinian evolution is to downplay Darwin’s

focus on the importance of adaptive novelty as reflecting “an unrealistic hyper-adaptationalist view,” and they choose

research on noncoding RNA functionalities stimulated by the ENCODE (Encyclopedia of DNA Elements) project as the

chief example of what they characterize as a mistaken “hyper-adaptationalist” focus, disregarding the fact that noncoding

RNA research is currently one of the hottest topics in molecular cell biology and genetics (see below on PubMed results).

Instead, they prefer to focus on a notion of genomic and cellular “sloppiness” predicted by neutral evolution theories and

molecular buffering processes.

Molecular Biology, and more particularly the field of genomics, are indeed Non-

Darwinian for a very good reason. But it is not the anti-adaptationist argument of this review. Non-Darwinian evolutionary

theory arises because molecular genetics and genomics have provided us with new ways of thinking about genome

content, genome functioning, and evolutionary genome change. Protein-coding DNA constitutes less than 2% of our own

genomes (de Koning et al., 2011), and an early comparative genome analysis found that noncoding DNA content in a

genome is a more accurate predictor of organismal complexity than protein-coding content (Liu et al., 2013).

Readers should consider how thinking about the basic biology and genetic principles

underpinning evolution studies have changed in recent years when deciding what parts of the scientific literature to follow:

1. What Palazzo and Kejiou label as “messiness” is considered by disciplines such as

Evo-Devo to reflect robust redundancy and complexity that ensure the exceptional

reliability of inherited characteristics under varying conditions (Keane et al., 2014;

Kim et al., 2014; Oliveira et al., 2014; Payne & Wagner, 2014; Plata & Vitkup, 2014;

Ruz et al., 2014; Zheng & Triesch, 2014; Cui et al., 2015; Jung et al., 2015; Araujo &

Liotta, 2018; diCenzo et al., 2018; Osterwalder et al., 2018).

2. Instead of discrete phenotypic traits defined by independently evolving genetic units,

we now recognize that cellular and organismal properties result from integrated

adaptive systems that depend on expression of coordinated genomic networks (e.g.

animal body plan development) (Li et al., 2020; Nishihara, 2020; Panni et al., 2020;

Chu et al., 2021; Dandage et al., 2021; Duran et al., 2021; Etxebeste, 2021; Hagolani

et al., 2021; Mottes et al., 2021; Sharma et al., 2021).

3. Genome network evolution has been found to involve the ability of transposable
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elements to spread appropriate expression signals to multiple different genetic loci

and so integrate them into coordinated systems (Jacques et al., 2013; Johnson, 2017;

Trizzino et al., 2017; Morata et al., 2018; Rishishwar et al., 2018; Sundaram & Wang,

2018; Trizzino et al., 2018; Fawcett & Innan, 2019; Baud et al., 2020; Moschetti et

al., 2020; Nishihara, 2020; Qiu & K hler, 2020; Voronova et al., 2020; Almojil et al.,

2021; Nicolau et al., 2021; Senft & Macfarlan, 2021; Zhang et al., 2021)

(https://shapiro.bsd.uchicago.edu/Distributed_genome_network_innovation_attributed

_to_mobile_DNA_elements.html).

4. Many aspects of cell and organismal function have been documented by genetic

analysis to require the presence of noncoding RNAs, which act as enzymes, sensors,

and polyvalent aggregation centers for assembling multimolecular complexes in both

the nucleus and cytoplasm. (Johnson & Guigo, 2014; Wang et al., 2016; Andergassen

& Rinn, 2021; Borkiewicz et al., 2021; Oo et al., 2021; Statello et al., 2021)

(Quinodoz & Guttman, 2014; Chujo et al., 2016; Chishima et al., 2018; Mattick,

2018; Salviano-Silva et al., 2018; Daneshvar et al., 2020). The functional diversity of

noncoding RNAs is beginning to rival that of proteins, and these versatile molecules

carry out some very high level and taxonomically restricted regulatory functions

(https://shapiro.bsd.uchicago.edu/Regulatory_Functions_Reported_for_Long_Noncoding_

lncRNA_molecules.html).

The fact is that so-called “junk DNA” elements (transposons, retrotransposons,

repeats, noncoding sequences) are the genome components that change most during

evolutionary transitions, and all have been well-documented to help generate major

adaptive novelties.The importance of noncoding, transposable and repetitive DNA

elements and of their RNA transcripts as research subjects is reflected in their publication

numbers. Here are the numbers I found with different PubMed search entries:

noncoding RNA - 257,261 results

long noncoding RNA - 38,262 results

transposable element - 29,836 results

repetitive DNA - 32,783 results

noncoding DNA - 22,441 results

chromosome structure - 116,574 results

genome network - 84,415 results

neutral evolution - 16,971 results
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While these numbers provide only a rough estimate of the research being done on a topic, it is clear that many molecular

biologists and molecular evolutionists are producing discoveries and publishing their findings at a significant clip. To me,

having studied and practiced molecular genetics, it would seem to be a poor choice to follow the advice of Palazzo and

Kejiou and ignore all of this exciting and revelatory research.
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