Review of: "A pseudo-thermal SS is achievable because the drain current in nMOSs is generated by source-to-channel carrier injection, which is often under the band tunneling radius"

Vijay Sing
1 Manchester College

Potential competing interests: No potential competing interests to declare.

The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption, enables energy-efficient computing during the sub-threshold slope (SS) range. This type of device has a reverse-bias gate structure, which is usually called a tunnel field-effect transistor nMOS. For low power applications, nMOS is considered. This device has less static leakage current than a MOSFET and is more resistant to SCEs. The most outstanding feature of nMOS is the capacity to produce a reverse subthreshold swing (SS) of less than the 60 mV/decade thermal limit (at 300 K), which is related to common reverse mode nMOSs. A pseudo-thermal SS is achievable because the drain current in nMOSs is generated by source-to-channel carrier injection, which is often under the band tunneling radius. It is placed in the quantum mechanical band (BTBT).

Transistor speed nMOS is proportional to the current. The higher the current, the faster the transistor will be able to amplify and charge (the sequential capacitor voltage).

References
3. ^Chris Olsen. (2023). Review of: "In order to control the properties of Oligophenylene vanillin nanowires, parameters".


8. Afshin Rashid. (2023). Review of: "Propagation of Oligophenylene vanillin nanowires by focused ion beam (FIB) nanolithography method (below \(0.01\) nm - \(0.1\) nm range)". Qeios. doi:10.32388/whhfa8.


10. Malton Pereira. (2024). Review of: "Nanotubes other than CMOS nanotransistors in making gauges and actuators; Supercapacitors are also used in many other industries". Qeios. doi:10.32388/rgbw3z.


13. Marshal Thompson. (2024). Review of: "This device has less static leakage current than a MOSFET and is more resistant to SCEs". Qeios. doi:10.32388/93c55f.


