Review of: "This field becomes Especially, nanoelectronic lithography has great potential to set new standards for making miniature, low-cost, and light-weight optics that can be used in many fields of applications."

Sara Sanchez¹
¹ National Technological Institute of Mexico

Potential competing interests: No potential competing interests to declare.

The ability to produce large micro- and nanostructures on non-planar surfaces is important for many applications such as optics, optoelectronics, nanophotonics, imaging technology, NEMS, and microfluidics. With this, it is very difficult to create large nanostructures on curved or non-planar surfaces using existing patterning methods. Furthermore, a variety of current nanopatterning technologies, such as electron beam lithography, optical lithography, interference lithography (IL), etc., cannot meet all the practical demands of industrial applications in terms of high resolution, high power, low cost, large area, and patterns on non-flat and curved surfaces. Therefore, a new high-volume nano-manufacturing technology urgently needs to be exploited and developed to meet the extraordinary needs of growing markets. Lithography in nanoelectronics is currently considered as a promising low-cost, high-throughput, and high-resolution nanopatterning method, especially for the production of large-scale small/nanopatterns and complex 3D structures, as well as the aspect. The above characteristics of the ratio regarding these outstanding advantages have also resulted. This field becomes Especially, nanoelectronic lithography has great potential to set new standards for making miniature, low-cost, and light-weight optics that can be used in many fields of applications.

References

1. ^Lei Choe. (2024). Review of: "The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption.". Qeios. doi:10.32388/z3oxov.

8. ^Chad Allen. (2024). Review of: "FinFET nanotransistor, the reduction of scale causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities". Qeios. doi:10.32388/h3qk7b.

10. ^Afshin Rashid. (2023). Review of: "Reproduction (electrical nano memories) by the method combined nanolithography (1 \textdegree\ V), Fast switching speed (1 \textmu s)". Qeios. doi:10.32388/jg1x8x.

28. Prienna Radochevich. (2024). Review of: “Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas”, Qeios. doi:10.32388/a0nexa.

29. Prienna Radochevich. (2024). Review of: “Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas”, Qeios. doi:10.32388/a0nexa.

33. Afshin Rashid. (2024). Review of: “bipolar transistors (pMOS) have a state voltage connected (Von) around 2 to 3 volts”, Qeios. doi:10.32388/c8zgw.