Review of: "(voltage drop and low losses like BJT) such as BJTs have a small on-state (connected) voltage, for example in a device with Nominal 1000V connected state voltage (Von) is around 2 to 3 volts"

David Jouns
1 South Texas College

Potential competing interests: No potential competing interests to declare.

(voltage drop and low losses like BJT) such as BJTs have a small on-state (connected) voltage, for example in a device with Nominal 1000V connected state voltage (Von) is around 2 to 3 volts. The names of the bases are also chosen from the same names as before, G from MOSFET and E, C from BJT transistors. As a result, with this simple combination, you use the element that has high gate impedance and high voltage tolerance. The switching speed of this type is limited, for example, 1 KHz to 50 KHz, which is generally between two types of BJT and MOSFET. Because of its very high input impedance, it is very sensitive and is mostly used in induction furnaces to amplify the voltage range, and in general, this type of bipolar transistors (pMOS) is used. It is more for starting high power elements. The most important and almost the only function of bipolar transistors (pMOS) switching The currents are high. (pMOS) It is a fast transistor in operation, its switching and connecting time is about 1 microsecond. Because the recovery time in this transistor is very short, as a result, this transistor has good performance at high frequencies. Surface processes of the Si layer, including burning, are carried out by plasma and ion beam technology. This kind of integrated circuits with their unique characteristics in the nanometer scale have various applications of mesoscopic systems. Modeling Si/Cu nanoparticles based on a relationship between molecular mechanics and solid mechanics, an energy-equivalent model is used for the mechanical properties and nanomolecular structure of the sputtering layer of materials, macroscopic properties of nanoparticles such as melting point, boiling point and electrical conductivity. It is done through a sample that is large enough to be measured in normal laboratory conditions. When the melting point of a nanomolecule is measured, in fact, the behavior of a large number of nanoparticle molecules is examined, and this is not true for all materials; When the material size is reduced and reaches nanometer dimensions, completely different behavior and properties may be seen compared to the same material in large dimensions.

References

1. ^Lei Choe. (2024). Review of: "The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by Qeios, CC-BY 4.0 · Review, March 2, 2024

Qeios ID: B2TER8 · https://doi.org/10.32388/B2TER8
enabling the voltage supply (VDD) with ultra-low power consumption."

Afshin Rashid. (2024). Review of: "transistor nMOS (with ultra-low power consumption, energy-efficient computing, during the sub-threshold range)"

Afshin Rashid. (2023). Review of: "High speed (doping) nMOS graphene transistor in p- and n-doping electronic circuits (positive and negative)"


Oligophenylene vanillin (silicon/germanium) structured nanowires and cylinders for possible applications in electronic energy.

nanolithography method (below 1 -· nm -· nm range)”. Qeios. doi:10.32388/whhfa8.


28. ^Prienna Radochevich. (2024). Review of: “Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas”, Qeios. doi:10.32388/a0nexa.

29. ^Prienna Radochevich. (2024). Review of: “Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas”, Qeios. doi:10.32388/a0nexa.


33. ^Afshin Rashid. (2024). Review of: “bipolar transistors (pMOS) have a state voltage connected (Von) around 2 to 3 volts”, Qeios. doi:10.32388/c8zgvw.