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Human pose estimation has given rise to a broad spectrum of novel and compelling applications,

including action recognition, sports analysis, as well as surveillance. However, accurate video pose

estimation remains an open challenge. One aspect that has been overlooked so far is that existing

methods learn motion clues from all pixels rather than focusing on the target human body, making

them easily misled and disrupted by unimportant information such as background changes or

movements of other people. Additionally, while the current Transformer-based pose estimation

methods has demonstrated impressive performance with global modeling, they struggle with local

context perception and precise positional identi�cation.

In this paper, we try to tackle these challenges from three aspects: (1) We propose a bilayer Human-

Keypoint Mask module that performs coarse-to-�ne visual token re�nement, which gradually zooms

in on the target human body and keypoints while masking out unimportant �gure regions. (2) We

further introduce a novel deformable cross attention mechanism and a bidirectional separation

strategy to adaptively aggregate spatial and temporal motion clues from constrained surrounding

contexts. (3) We mathematically formulate the deformable cross attention, constraining that the

model focuses solely on the regions centered at the target person body. Empirically, our method

achieves state-of-the-art performance on three large-scale benchmark datasets. A remarkable

highlight is that our method achieves an 84.8 mean Average Precision (mAP) on the challenging wrist

joint, which signi�cantly outperforms the 81.5 mAP achieved by the current state-of-the-art method

on the PoseTrack2017 dataset.
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Introduction

Human pose estimation, as a fundamental problem in the realm of computer vision and arti�cial

intelligence[1][2], involves accurately identifying the anatomical keypoints of human bodies. Precise pose

estimation is the key for the success of a machine as it paves the way for machines to accurately interpret

human movements and behaviors. Accordingly, human pose estimation spans a wide range of

applications from action recognization, movement tracking, to augmented reality[3][4][5][6][7].

A plethora of research has been dedicated to the �eld of pose estimation on still images, evolving from

early methods employing tree-based and random forest models[8][9]  to current methodologies utilizing

convolutional neural networks[10]  and Transformers[11]. Despite their excellent performance on still

images, applying these methods directly to video pose estimation leads to signi�cant performance

degradation due to the exclusive characteristics in videos, such as rapid movement and video defocus,

which are frequently encountered in videos but absent in static images[12].

Figure 1. A high-level overview of our proposed VREMD, which utilizes a dual-stream architecture to

collaboratively process and integrate complementary visual and motion features. The visual representation

stream executes progressive enhancement of human keypoint-related features to achieve precise location

recognition. The motion stream performs adaptive pose-related motion disentanglement through the novel

deformable cross attention.   denote the visual features of three input frames 

 output by backbone network.
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To address this issue, substantial studies have emerged that leverage temporal continuity to extract rich

semantic visual contexts for human pose estimation in videos. Current methods can be roughly

categorized into two main branches. One line of research[13][14]  aggregates temporal information from

neighboring frames for video pose estimation, employing CNN-based architectures and pose calibration.

Fueled by the development of Transformers[15][16], another line of studies[17][18]  strive to integrate

attention mechanisms into model construction, yielding impressive results and showcasing their

immense potential. However, a limitation inherent in existing Transformer-based methods[17]  lies in

their inability to effectively manage local dependencies. This limitation poses a notable challenge for

visual perception tasks such as pose estimation, which require precise local positioning.

Following thorough experimentation and empirical investigation, we uncover two insights: (1) Existing

methods[19][20][21]  struggle to handle subtle pose changes, particularly in challenging scenarios with

occlusions or motion blur. This may stem from the fact that current methods tend to capture temporal

dynamics pixel-by-pixel rather than focusing solely on target human regions, leading to them being

distracted by unuseful cues such as background changes or pixels far from the target person. (2)

Additionally, previous studies[14][19] adopting multiple sets of �xed deformable convolutions with varying

dilation rates, which neglect the importance of adaptive scale selection.

Inspired by these, we propose a dual-stream framework, which executes Visual Representation

Enhancement and Motion Disentanglement (VREMD) for human pose estimation in videos. Technically,

we embrace three novel designs to tackle the challenge. (1) We propose a two-step human-keypoint mask

module for coarse-to-�ne visual enhancement, which progressively re�nes extracted representations

from the human body and keypoints perspectives. (2) We further introduce a bidirectional decoupled

module tailored for adaptively disentangling motion cues of the target person from unnecessary visual

elements. (3) Furthermore, we mathematically formulate a deformable cross attention mechanism that

constrains the model to focus exclusively on regions circumscribing the target human body.
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Figure 2. The overall pipeline of our VREMD framework. Given an input sequence  , our goal is

to estimate the human pose of the key frame  . We initially extract the visual features via a ViT backbone,

and then feed them into the Human-Keypoint Enhanced module and the Bidirectional Motion

Disentanglement module to obtain   and  . Finally, the outputs derived from different heads are combined

through a weighted sum to arrive at the �nal predicted pose heatmap  .

Our framework exempli�es the collaborative advantage between local spatial focus and adaptive

temporal clues extraction, opening up possibilities for rethinking the pose estimation task from

emphasizing on the target human body and masking out the irrelevant spatio-temporal contexts. To

evaluate the ef�cacy of our method, we conduct extensive experiments on three public benchmarks,

achieving state-of-the-art performance. The key contributions of our method are summarized as follows:

We present a dual-stream framework that integrates visual enhancement and motion

disentanglement to highlight target human areas and �iter other non-essential regions for human

pose estimation.

We creatively introduce a deformable cross attention to disentangle pose-related motion cues,

harnessing bidirectional temporal dynamics and enabling the model to robustly handle complex pose

variations of the target human.

Empirically, our method achieves state-of-the-art performance on three large-scale benchmarks, and

overall provides insights into integrating Transformer-based methods with region-speci�c

enhancement strategies to boost their local localization capabilities.
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Our Method

Preliminaries. Our method follows the top-down paradigm, which �rst extracts each individual person

from an image and then estimates their poses. Speci�cally, we �rst utilize an object detector to extract

the bounding box for person    in a video frame    that is to be detected. Subsequently, we expand the

bounding box by 25  and crop the same person in the adjacent frames (i.e.,   and  ). As a result, we

obtain a sequence of consecutive frames for person  :  . Given a sequence of video

frames   that includes the key frame   and the auxiliary frames   and  , our target is to detect the

human pose within  . We aim to strengthen the utilization of supplementary temporal information in

auxiliary frames by employing incremental visual representation enhancement and adaptively

disentangling useful motion information, thus tackling the common issue of existing methods being

interfered with by irrelevant information regarding the target human.

Method overview. The overview pipeline of our proposed VREMD is depicted in Figure  2. VREMD

constructs a dual-stream architecture with inter-module communication that enhances both visual

features and captures meaningful motion cues. Speci�cally, VREMD incorporates two distinct modules: a

Human-Keypoint Mask Enhanced module (HKME) and a Bidirectional Motion Disentanglement module

(BMD). First, we utilize a Vision Transformer backbone to extract visual features    from

the input frame sequence  , which are then simultaneously fed into both the HKME and BMD modules.

The HKME generates dual masks for a coarse-to-�ne representation re�nement, resulting in enhanced

feature   and key frame keypoint tokens  . The BMD computes the motion features and, utilizing   as

a constraint, dynamically derives joint-related motion contexts to produce the �ltered  . Finally, the

keypoint heatmaps    from key frame tokens    via an MLP and the heatmaps    decoded from 

 and key frame features   are weighted, summed, and combined to produce the �nal pose estimation 

. The following sections will elaborate on the two key components in detail.

Human-Keypoint Mask Enhanced Module

Despite the Transformers architecture achieving remarkable success in various �elds[15][16], its

application in video pose estimation has been limited. Given the signi�cant potential demonstrated by

this architecture in other visual perception tasks[22][23], we seek to design a novel Transformer-based

framework specially tailored for video pose detection. A naive approach to aggregate unique temporal

cues from a video would be to concatenate features across multiple frames for full-token computation.
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Yet, such a straightforward treatment strategy faces two issues: excessive capture of redundant

information between adjacent frames, and a lack of focus on task-relevant tokens.

Inspired by previous work[24][11], we propose a Human-Keypoint Mask Enhanced module with a

progressive re�nement architecture, addressing the aforementioned issues through three steps: (1) We

generate a human mask to coarsely enhance the perception of the target human. (2) We produce a

keypoint mask to achieve �ner �ltering of keypoint-related features. (3) We utilize spatio-temporal

networks to aggregate the highlighted spatio-temporal cues of these visual features. This step-by-step

optimization strategy can discern articular visual tokens, simulating the capability of localized

identi�cation, which promotes precise pose estimation.

Human mask. Given a visual feature sequence   output by the ViT backbone,

we concatenate a learnable class token    with a category of human to each feature. These

features then individually pass through cascaded Transformer blocks for intra-frame spatial similarity

computation. We separate the result into human token    and visual features  . After

transposing the human token, we perform matrix multiplication to obtain the human mask 

. Finally, we secure a coarsely selected feature   by executing element-wise

dot product between the human mask   and the visual feature  , utilizing broadcasting. The above

operations can be formulated as:

where  ,  ,  ,  , and    denote concatenation, temporal index of frames, dot product, matrix

multiplication, the transpose of  , respectively.

Keypoint mask. In pursuit of more precise keypoint-related feature enhancement, we employ additional

auxiliary tokens to accurately localize spatial positions by integrating multi-frame representations in the

spatio-temporal domain. We concatenate the learnable keypoint tokens   (Note that   is the

number of keypoints) to the coarsely selected feature   and separate the multi-frame features, which are

then linked along the token dimension and fed into Transformer blocks for spatio-temporal learning.

Subsequently, we split the visual features and keypoint tokens from the output and gather them over

multiple frames, resulting in multi-frame features    and multi-frame keypoint tokens 

. After transposing the multi-frame features, we perform matrix multiplication with the

multi-frame keypoint tokens to produce the keypoint con�dence map  . We apply the
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softmax function to compute element-wise weights for the map  , and summing along the second-

to-last dimension followed by transposition yields the keypoint mask  :

where  ,   ,  , and   denote the keypoint index, squeeze operation, softmax function,

and matrix multiplication, respectively. The keypoint mask is element-wise multiplied with the multi-

frame features   to create the re�ned �ltered features  .

Spatio-temporal aggregation. To fully leverage the re�ned representation information, we perform

decoupled spatio-temporal feature aggregation through the spatio-temporal Transformers. Speci�cally,

we �rst separate the re�ned �ltered features    and undertake frame-level spatial modulation. Then,

each token is concatenated with its corresponding token in the temporal domain to undergo temporal

modulation, resulting in  . Finally, we adopt an MLP to execute token dimensionality

reduction on   to attain spatio-temporal aggregation of multi-frame features, leading to the enhanced

feature  .

Bidirectional Motion Disentanglement Module

To extract useful complementary information from auxiliary frames, prior methods[14][20]  implicitly

model feature residuals to capture motion evidence. The common practice among these paradigms is to

directly concatenate the computed multiple motion features for convolution after their calculation, which

considers temporal continuity but overlooks insights from the temporal direction. We observe that, from

the perspective centered around the key frame, the essential temporal details that need to be focused on

actually originate from two different directions, namely forward and backward. Considering this intrinsic

factor, we design a bidirectional separation strategy to decouple the continuous motion into parallel

forward and backward motion trajectories. Furthermore, existing methods do not differentiate motion

clues in the spatial dimension, which can lead to learning pose-irrelevant information (e.g., background,

other people, etc.) that can disrupt detection. Moreover, existing methods heavily rely on deformable

convolutions for local motion calibration, potentially leading to models that are overly tailored and

limiting their compatibility with Transformer-based architectures. To tackle these challenges, we

introduce deformable cross attention (DCA) for the �rst time and create the Adaptive Deformable Cross

block by employing it, which adaptively captures pose-related motion dynamics.
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Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

PoseTracker[25] 67.5 70.2 62.0 51.7 60.7 58.7 49.8 60.6

PoseFlow[26] 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5

JointFlow[27] - - - - - - - 69.3

FastPose[28] 80.0 80.3 69.5 59.1 71.4 67.5 59.4 70.3

TML++[29] - - - - - - - 71.5

Simple (R-50)[30] 79.1 80.5 75.5 66.0 70.8 70.0 61.7 72.4

Simple (R-152)[30] 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.7

STEmbedding[31] 83.8 81.6 77.1 70.0 77.4 74.5 70.8 77.0

HRNet[10] 82.1 83.6 80.4 73.3 75.5 75.3 68.5 77.3

MDPN[32] 85.2 88.5 83.9 77.5 79.0 77.0 71.4 80.7

CorrTrack[33] 86.1 87.0 83.4 76.4 77.3 79.2 73.3 80.8

Dynamic-GNN[34] 88.4 88.4 82.0 74.5 79.1 78.3 73.1 81.1

PoseWarper[13] 81.4 88.3 83.9 78.0 82.4 80.5 73.6 81.2

DCPose[14] 88.0 88.7 84.1 78.4 83.0 81.4 74.2 82.8

DetTrack[35] 89.4 89.7 85.5 79.5 82.4 80.8 76.4 83.8

SLT-Pose[36] 88.9 89.7 85.6 79.5 84.2 83.1 75.8 84.2

HANet[37] 90.0 90.0 85.0 78.8 83.1 82.1 77.1 84.2

KPM[38] 89.5 90.0 87.6 81.8 81.1 82.6 76.1 84.6

M-HANet[39] 90.3 90.7 85.3 79.2 83.4 82.6 77.8 84.8

FAMI-Pose[19] 89.6 90.1 86.3 80.0 84.6 83.4 77.0 84.8

DSTA[18] 89.3 90.6 87.3 82.6 84.5 85.1 77.8 85.6

TDMI-ST[20] 90.6 91.0 87.2 81.5 85.2 84.5 78.7 85.9

VREMD (Ours) 89.9 91.4 88.8 84.8 88.5 87.8 81.0 87.6
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Table 1. Comparisons with the state-of-the-art methods for video pose estimation on the validation sets of

the PoseTrack2017[40] dataset. Note that we aggregate temporal information from neighboring frames (i.e.,

one frame to the left and one to the right).

Adaptive Deformable Cross block. Given the features    from the backbone, we subtract 

  from both    and    to obtain  . Adaptive Deformable Cross blocks (ADC) take the

concatenation of    and  , along with the enhanced feature    from HKME. After entering the ADC

block,    and    are �rst split, and then pass through a dual-branch structure that includes a

deformable cross attention (DCA) and a cross attention. The results from the dual branches are

concatenated and sent into an MLP for nonlinear transformation. After the �nal block, a fusion layer is

applied to integrate the bidirectional motion features to obtain an aggregated motion representation  .

Deformable cross attention. Our deformable cross attention (DCA) predicts multiple offsets at a single

point, rather than predicting offsets at each point of the kernel as in the case of deformable convolution.

This endows it with a stronger ability to characterize the relationships between elements and to �exibly

handle different scales. The concept of our cross mechanism is realized by incorporating the enhanced

feature   as a constraint to control the generation of offsets in the spatial domain, ensuring that only a

subset of motion features are selected as keys and values for attention computation. Speci�cally, the DCA

can be represented by the following formulas:

where  ,  ,  ,  ,  ,  , and   are motion features   or  , query, point offset, reference points from 

, sample features, number of sampling points, and embedding dimension, respectively.  ,  ,  ,  , 

, and    denote the operations of matrix multiplication, concatenation, convolution, offset

generation, bilinear interpolation, softmax, respectively.  ,  ,  , and   are all learnable mapping

matrices. The offset    generated under the constraint of  , ensures the �ltering of spatial regions

related to the human joints within the global domain, thereby facilitating adaptive motion cue extraction

from motion features.
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Heatmap generation. We �rst split the key frame keypoint tokens   from   and then transform them

into   through an MLP and reshaping. By aggregating   and   and up-sampling, we obtain  . The

�nal pose heatmaps   are derived by adding   and   with equal weights.

Loss function. We adopt the established pose heatmap loss    to supervise the �nal predicted pose

heatmaps   to converge to the ground truth pose heatmaps  :

Experiments

Experimental Settings

Datasets. PoseTrack has become a crucial dataset in video-based human pose estimation benchmarks.

PoseTrack2017[40] introduces 250 training videos and 50 validation videos, with 80,144 pose annotations

across 15 key points. PoseTrack2018[41] expands to 593 training and 170 validation videos, totaling 153,615

annotations. PoseTrack2021[42] further enriches the dataset, particularly improving the representation of

smaller �gures and crowded scenes, reaching 177,164 pose annotations, with recalibrated joint visibility

�ags to better address occlusions.

Evaluation metric. To evaluate the ef�cacy of our proposed model in pose estimation, we calculate the

average precision (AP) for each joint and then aggregate these values to obtain the mean average

precision (mAP).

Implementation details. Our VREMD framework is realized utilizing PyTorch. For feature extraction on

single frames, we adopt the most primitive Vision Transformer (ViT-L) architecture[15][43], pre-trained on

the COCO dataset[44], as our backbone. The input image size is �xed at 256 192. We integrate a series of

data augmentation techniques, consistent with methodologies employed in previous works[13][14],

comprising random rotation  , random scale [0.65, 1.35], truncation (half body), and �ipping

during training. The number of input frames is set to 3, consisting of one key frame accompanied by two

auxiliary frames sourced from preceding and succeeding neighbors, respectively. This con�guration

mirrors that of DCPose[14], rather than employing the �ve frame input as seen in TDMI[20]  and FAMI-

Pose[19]. Our model is trained on a single RTX 4090 GPU for 20 epochs with the backbone frozen. We

utilize the AdamW optimizer with an initial learning rate of 2e-3, which is then reduced by a factor of ten

at the 16th epoch.
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Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

AlphaPose[45] 63.9 78.7 77.4 71.0 73.7 73.0 69.7 71.9

TML++[29] - - - - - - - 74.6

MDPN[32] 75.4 81.2 79.0 74.1 72.4 73.0 69.9 75.0

PGPT[46] - - - 72.3 - - 72.2 76.8

Dynamic-GNN[34] 80.6 84.5 80.6 74.4 75.0 76.7 71.8 77.9

PoseWarper[13] 79.9 86.3 82.4 77.5 79.8 78.8 73.2 79.7

PT-CPN++[47] 82.4 88.8 86.2 79.4 72.0 80.6 76.2 80.9

DCPose[14] 84.0 86.6 82.7 78.0 80.4 79.3 73.8 80.9

DetTrack[35] 84.9 87.4 84.8 79.2 77.6 79.7 75.3 81.5

FAMI-Pose[19] 85.5 87.7 84.2 79.2 81.4 81.1 74.9 82.2

HANet[37] 86.1 88.5 84.1 78.7 79.0 80.3 77.4 82.3

M-HANet[37] 86.7 88.9 84.6 79.2 79.7 81.3 78.7 82.7

KPM[38] 85.1 88.9 86.4 80.7 80.9 81.5 77.0 83.1

DSTA[18] 85.9 88.8 85.0 81.1 81.5 83.0 77.4 83.4

TDMI-ST[20] 86.7 88.9 85.4 80.6 82.4 82.1 77.6 83.6

VREMD (Ours) 86.7 89.3 85.6 82.1 85.0 83.9 79.3 84.6

Table 2. Comparisons with the state-of-the-art methods for video pose estimation on the validation sets of

the PoseTrack2018[41] dataset.
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Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

Tracktor++ w. poses[48] - - - - - - - 71.4

CorrTrack[33] - - - - - - - 72.3

Tracktor++ w. corr.[48] - - - - - - - 73.6

DCPose[14] 83.2 84.7 82.3 78.1 80.3 79.2 73.5 80.5

FAMI-Pose[19] 83.3 85.4 82.9 78.6 81.3 80.5 75.3 81.2

DSTA[18] 87.5 87.0 84.2 81.4 82.3 82.5 77.7 83.5

TDMI-ST[20] 86.8 87.4 85.1 81.4 83.8 82.7 78.0 83.8

VREMD (Ours) 87.2 89.1 85.2 82.4 85.1 83.4 79.2 84.5

Table 3. Comparisons with the state-of-the-art methods for video pose estimation on the validation sets of

the PoseTrack2021[42] dataset.
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Figure 3. Qualitative comparison of our VREMD, DCPose[14], and TDMI[20] on the PoseTrack2017

dataset, featuring challenges such as pose occlusions, fast motion, and video defocus. Red solid

circles denote the inaccurate pose predictions.-
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Figure 4. Visual results of our VREMD on PoseTrack datasets. Challenging Scenarios such as fast

motion or pose occlusion are involved.

Method HKME BMD Mean

Baseline 80.2

(a) ✓ 85.3

(b) ✓ 85.6

(c) ✓ ✓ 87.6

Table 4. Ablation of different components in our VREMD.

Comparison with State-of-the-art Approaches

Results on the PoseTrack2017 Dataset. We �rst benchmark our method on the

PoseTrack2017[40]  dataset. A total of 22 methods are compared and their performances on the

PoseTrack2017 validation set are summarized in Table 1. Our proposed VREMD consistently outperforms

existing state-of-the-art methods, reaching an mAP of 87.6. Compared to the latest top-performing

method TDMI-ST[20], our VREMD obtain a 1.7 mAP gain. The performance boost for challenging joints
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(i.e., wrist, ankle) is also promising: we attain an mAP of 84.8 (  3.3) for wrists and an mAP of 81.0 (  2.3)

for ankles. It is noteworthy that our VREMD operates effectively with fewer input video frames than the

most recent works[19][20], requiring just three frames as opposed to �ve. These consistent and substantial

improvements in effectiveness indicate the importance of reinforcing the positional attributes of visual

representations and integrating joint-related motion dynamics. In addition, we present the visualized

results, which include a comparison with existing methods, for scenarios involving complex spatio-

temporal interactions (e.g., pose occlusion, blur) in Fig 3, demonstrating our method’s robustness. More

visualization results are shown in Figure 4.

Results on the PoseTrack2018 Dataset. We further evaluate our VREMD on the PoseTrack2018 dataset,

and the detailed validation set results are showcased in Table 2. Once again, as illustrated in this table,

our VREMD surpasses all prior state-of-the-art methods, achieving the most exceptional outcomes. We

obtain the �nal performance of 84.6 mAP. The precision for wrists and ankles also shows a noticeable

improvement compared to TDMI-ST, scoring 82.1 ( 1.5) and 79.3 (  1.7) respectively.

Results on the PoseTrack2021 Dataset. Performance comparisons of our model and previous state-of-

the-art methods on the PoseTrack21 dataset are provided in Table  3. When evaluated on the

PoseTrack2021 validation dataset, the results highlight the outstanding performance of our model.

Achieving new state-of-the-art results, our model records an overall mAP of 84.5, outperforming TDMI-

ST by a margin of 0.7 mAP. Encouragingly, our method yields a 1.0 mAP improvement over the previous

best, attaining 82.4 at the wrist, and shows a 1.2 mAP advance, achieving 79.2 at the ankle, which are

recognized as dif�cult joints to accurately predict. These results, once again, underscore the robustness

and superiority of our method in this domain.

Method Human mask Keypoint mask Mean

(a) 85.9

(b) ✓ 86.5

(c) ✓ 86.8

(d) ✓ ✓ 87.6

Table 5. Ablation of various designs in the HKME module.

↑ ↑

↑ ↑
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Method DC DA DCA (Ours) BS (Ours) Mean

(a) ✓ 84.7

(b) ✓ 85.8

(c) ✓ 87.1

(d) ✓ ✓ 87.6

Table 6. Ablation of various designs in the BMD module.

Ablation Study

We carry out extensive ablation studies centered on assessing the impact of individual components

within our VREMD architecture, encompassing the Human-Keypoint Mask Enhancement module

(HKME) and the Bidirectional Motion Disentanglement module (BMD). We additionally probe into the

ef�cacy of diverse micro-designs incorporated in each module. All experiments are performed on the

PoseTrack2017 validation set.

Study on components of VREMD. We experimentally evaluate the effectiveness of each component in

our VREMD framework, detailing the quantitative results in Table 4. Firstly, we establish a baseline for

this experiment by coupling a Vision Transformer (ViT) Backbone with a pose detection head. (a)

Integrating the Human-Keypoint Mask Enhanced module (HKME) into the baseline yields a substantial

gain of 5.1 mAP. This substantial progress indicates that the dual-mask mechanism, offering a coarse-to-

�ne representation re�nement, facilitates improvements in human pose estimation. (b) In the next setup,

we exclusively incorporate the Bidirectional Motion Disentanglement module (BMD) into the baseline

system. Notably, the Adaptive Deformable Cross (ADC) block, which originally utilized enhanced features

from the HKME, now receives backbone output features instead. The outcome achieves an mAP of 85.6,

marking an increase of 5.4 mAP. Such a signi�cant boost in performance unequivocally validates the

BMD module’s pro�ciency in adaptively excavating bidirectional temporal information, guiding accurate

pose estimation. (c) Finally, we incorporate both the HKME and BMD modules into our framework,

attaining a culminating performance of 87.6 mAP, which indicates that the synergy of these two

components can lead to further enhancements.
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Study on Human-Keypoint Mask Enhanced module. We then investigate the impact of the two mask

generation techniques in HKME on overall performance. We conduct four experiments and presented

them in Table  5. (a) Generating visual representations using only the spatio-temporal Transformers

network. (b) Producing a human mask for coarse �ltering of human-related tokens. (c) Calculating a

keypoint mask for basic joint token screening. (d) Utilizing dual masks, derived from methods (b) and (c),

for the progressive re�nement and enhancement of visual tokens, transitioning from coarse to �ne

detail. This table illustrates that method (a), which does not generate any masks, offers a slight

improvement of 0.3 mAP over the setting that removes HKME. Subsequently, applying the human mask

alone (b) and the keypoint mask alone (c) achieves respective performances of 86.5 mAP and 86.8 mAP.

Although utilizing these masks individually can yield certain accuracy gains, simultaneously employing

both for coarse-to-�ne representation re�nement (d) leads to the optimal results. This promising

outcome attests to the superiority of our dual-mask paradigm, which provides a prompt of human joints

to the framework, enabling more accurate keypoint localization.

Study on Bidirectional Motion Disentanglement module. Additionally, we explore the in�uence of our

deformable cross attention (DCA) and bidirectional separation strategy. Four experiments are performed

and displayed in Table  6. (a) We �rst replace our Adaptive Deformable Cross (ADC) block with the

deformable conv (DC)[49], as adopted in previous works[14][19][20]. We observe a slight performance

decline, that is, a 0.6 mAP decrease. We speculate that the reason might be the feature map obtained

through the attention mechanism is more spatially dispersed and structurally diverse, which is

incompatible with the local adaptive variation characteristics of deformable conv. (b) We further employ

plain deformable attention (DA)[50] and achieve an 85.8 mAP, which proves that deformable attention is

more suitable for our frameworks based on attention mechanisms. (c) We propose a novel deformable

cross attention (DCA), which integrates the advantages of adaptive receptive �eld of deformable attention

and selective feature highlighting of cross attention, achieving an 87.1 mAP. (d) Finally, we apply a

bidirectional separation (BS) strategy to independently capture bidirectional motion dynamics, resulting

in a 0.5 mAP improvement, unlike previous methods that concatenate and jointly process bidirectional

motion features. These results strongly demonstrate that our method can more effectively capture task-

relevant motion cues to facilitate pose estimation.
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Related Work

Image-based human pose estimation. Recent progress in deep learning architectures, as chronicled

in[15][51], coupled with the proliferation of extensive datasets referenced in[44][52], has catalyzed the

development of a multitude of deep learning methodologies. These methodologies, delineated in[10]

[53] and proposed for the purpose of image-based human pose estimation, predominantly align with two

distinct paradigms: bottom-up and top-down. Bottom-up approaches[54]  initiate with the detection of

individual body parts in an image and subsequently attempt to aggregate these parts into a

comprehensive human pose. The top-down paradigm[10][43] start by detecting the bounding box around

the human body and then localize the target human’s keypoints within that area. However, these image-

based methods struggle when applied to video streams, since they fail to effectively incorporate the

temporal changes between frames. our research builds upon previous image-based approaches,

extending them with temporal dynamics capture speci�cally tailored for video pose estimation.

Video-based human pose estimation. In the early stages, substantial approaches involve utilizing optical

�ow to establish motion-based assumptions[55]. These approaches commonly generate dense optical

�ow across frames to improve pose heatmap predictions, yet the technique is computationally

demanding and prone to errors when faced with marked deterioration in image quality. Recent

methods[18]  have shifted towards attempting to implicitly capture motion evidence from temporal

information by employing deformable convolutions. DCPose[14]  and PoseWarper[13]  model and process

pose temporal residuals and re-re�ne keypoint detection via multi-scale deformable convolutions for

accurate pose estimation. TDMI[20]  introduces a multi-stage framework that encodes temporal

differences for dynamic context modeling, leveraging mutual information to uncover useful temporal

clues. Contrary to prior approaches that directly execute feature difference learning in the global space,

we strive to enhance visual representations through the aggregation of joint positions, and to dissect

representative joint-associated motion dynamics for more robust human pose estimation.

Conclusion and Future Work

Conclusion. In this paper, we investigate the video-based human pose estimation task from the

perspective of local spatial perception and temporal cues disentanglement. A dual-stream architecture is

designed to effectively capture spatio-temporal dependencies by collaboratively executing gradual

human joint focus and adaptive motion decoupling. Speci�cally, we present a Human-Keypoint Mask
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Enhanced module that performs a coarse-to-�ne selective representation enhancement to assist the

framework in exploring human and joint regions. Additionally, we create a Bidirectional Motion

Disentanglement module to adaptively mine pose-related motion evidence. Our method signi�cantly and

consistently outperforms state-of-the-art performances on three benchmark datasets: PoseTrack2017,

PoseTrack2018, and PoseTrack2021.

Limitations and future works. We identi�ed two limitations in our model: (1) The accuracy of our head

joint localization is suboptimal. We believe this is due to good spatial separation of joints but imperfect

recognition of their relationships, causing interference from nearby joints, such as the shoulder. We plan

to address this by incorporating Graph Neural Networks (GNNs) to better capture these

interrelationships. (2) When the target person is severely occluded by others, our method may

mistakenly incorporate temporal cues from non-target individuals, reducing pose estimation accuracy.

We plan to optimize our visual and motion features using clustering techniques to address this issue.
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