Open Peer Review on Qeios

Description of the $\exists b^{-}$ (6100) Baryon in Terms of a First-Order Mass Formula

Joseph Bevelacqua

Funding: No specific funding was received for this work.Potential competing interests: No potential competing interests to declare.

Abstract

Bevelacqua Resources, 7531 Flint Crossing Circle SE, Owens Cross Roads, AL 35763 USA

A recently proposed \exists_{b}^{-} (6100) baryon structure is investigated using a first-order mass formula. The first-ordermass formula predicts the \exists_{b}^{-} (6100) baryon has a mass of 5710 MeV/ c^{2} . This prediction is about 6% smaller than the experimental value. The first-order mass formula also predicts possible J^{TI} values of 1/2⁺ and 3/2⁺ for the proposed \exists_{b}^{-} (6100) baryon. This is consistent with the experimental J^{TI} value of 1/2⁺.

KEYWORDS: Ξ_{b}^{-} (6100) baryon, mass formula, quark model, cluster model

1.0 Introduction

The original set of baryons was defined by the octet and decuplet structures that contain u, d, and s quarks. This basic set of states has expended with the inclusion of the heavier c, b, and t quarks. For example, the Ξ^- baryon is composed of a d quark and two s quarks. Analogue Ξ_b baryons form an isospin doublet and contain a b quark, an s quark and a lighter q (u or d) quark¹. As noted in Ref. 1, the Ξ_b baryon ground states have no angular momentum between the b quark and the light diquark.

The \equiv_b^- (6100) baryon has been recently confirmed by the LHCb Collaboration¹ utilizing an evaluation of the $\equiv_b^- \pi^+ \pi^-$ system. Following Ref. 1, The \equiv_b^- (6100) baryon has a J^{π} value of 1/2⁺, and a mass of 6100 MeV/c².

This paper applies the first-order mass formula model of Refs. 2 and 3 to investigate the \overline{F} (6100) baryon. The proposed methodology was previously used to evaluate pentaquark⁴⁻⁶, and hexaquark and other exotic quark configurations⁷⁻⁹ that incorporates the first-order mass formula.

2.0 Model Formulation

Zel'dovich and Sakharov^{2,3} proposed a semiempirical mass formula that provides a prediction of meson and baryon masses in terms of effective quark masses. Within this formulation, quark wave functions are assumed to reside in their

lowest S state. The baryon mass formula is used as the basis for deriving a Ξ_b^- (6100) baryon mass.

The baryon (b) mass (M) formula of Refs. 2 and 3 is:

$$M_{b} = \delta_{b} + m_{1} + m_{2} + m_{3} + Z(1a)$$

$$Z = \frac{b_{b}}{3} \frac{m_{0}^{2}}{m_{1}m_{2}} \sigma_{1} \cdot \sigma_{2} + \frac{m_{0}^{2}}{m_{1}m_{3}} \sigma_{1} \cdot \sigma_{3} + \frac{m_{0}^{2}}{m_{2}m_{3}} \sigma_{2} \cdot \sigma_{3} \right] (1b)$$

where the m_i labels the three baryon quarks (i = 1, 2, and 3) and δ_b and b_b are 230 MeV and 615 MeV, respectively³. For a particle with a total baryon spin 1/2, the following prescription is used if the baryon (comprised of three quarks q_1 , q_2 , and q_3) contains two identical quarks³ q_2 , and q_3

$$\sigma_2 \cdot \sigma_3 = 1/4 (2)$$

 $\sigma_1 \cdot \sigma_2 = \sigma_1 \cdot \sigma_3 = -1/2$ (3)

For completeness, the reader should note that $q \cdot \sigma_j$ has the value +1/4 for a J= 3/2 baryon. In addition, these basic $\varphi \sigma_j$ relationships must be modified if the baryon contains three different quarks. The methodology is provided in Ref. 3.

In formulating the baryon mass formula, effective quark masses provided by Griffiths¹⁰ are utilized. These effective masses for d, u, s, c, b, and t quarks are 340, 336, 486, 1550, 4730, and 177000 MeV/c², respectively. These masses are utilized in Eq. 1.

These six quarks are arranged in three generations: [d(-1/3 e), u(+2/3 e)], [s(-1/3 e), c(+2/3 e)], and [b(-1/3e), t(+2/3 e)]¹¹. The three generations are specified by the square brackets and the quark charges are given within parenthesis in terms of the proton charge e.

The first-order mass formula model only permits a primitive coupling structure between the quarks

 $J^{\pi}(\Xi_{b}^{-}(6100)) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} (4)$

The values utilized in Eq. 4 suggest possible $J^{T} = 1/2^{+}$ and $3/2^{+}$ values. Eq. 4 does not uniquely predict the total angular momentum of the Ξ_{b}^{-} (6100) baryon, but does permit a range of spin coupling values to be predicted.

3.0 Results and Discussion

Eq. 1 is used to calculate the mass of the $\overline{\mathfrak{s}}^-$ (6100) baryon. The first-order-mass formula predicts $\overline{\mathfrak{s}}^-$ (6100) baryon has a mass of 5710 MeV/c².

Using Eq. 4, the first-order mass formula predicts \mathbb{J} values of $1/2^+$ and $3/2^+$ for the Ξ_b^- (6100) baryon. This is consistent with the $1/2^+$ prediction of Ref. 1. The first-order mass is about 6% smaller than the experimental value of Ref.

1.

4.0 Conclusions

A recently proposed Ξ_b^- (6100) baryon structure is investigated using a first-order mass formula. The first-order-mass formula predicts the Ξ_b^- (6100) baryon has a mass of 5710 MeV/ c^2 . This prediction is about 6% smaller than the experimental value. The first-order mass formula also predicts possible J^{TT} values of 1/2⁺ and 3/2⁺ for the proposed Ξ_b^- (6100) baryon. This is consistent with the experimental J^T value of 1/2⁺.

References

1) LHCb Collaboration, Observation of New Baryons in the $\Xi_{b}^{-} \pi^{+} \pi^{-}$ and $\Xi_{b}^{0} \pi^{+} \pi^{-}$ Systems, Phys. Rev. Lett. **131**, 171901 (2023).

 Ya. B. Zel'dovich and A. D. Sakharov, <u>Kvarkovaia struktura i massy sil'novzaimodeistvuyushchikh chastits</u> Yad. Fiz. 4, 395 (1966).

3) A. D. Sakharov, Mass formula for mesons and baryons, Sov. Phys. JETP51, 1059 (1980).

4) J. J. Bevelacqua, First-Order Pentaquark Mass Formula, Physics Essays29, 107 (2016).

5) J. J. Bevelacqua, Possible Description of the J/Ψ p and J/Ψ p-bar Structures in Terms of a First-Order Pentaquark Mass Formula, QEIOS **6KVPY6**, 1 (2022). <u>https://doi.org/10.32388/6KVPY6</u>.

6) J. J. Bevelacqua, Possible Description of the J/ Ψ Λ Structure at 4338.2 MeV in Terms of a First-Order Pentaquark Mass Formula, Qeios **HDEA44**, 1 (2022).

https://doi.org/10.32388/HDEA44.

7) J. J. Bevelacqua, Description of Selected Hexaquark States in Terms of a First-Order Mass Formula, Physics Essays **31** (1), 104 (2018).

8) J. J. Bevelacqua, Description of $\Omega\Omega$, $\Omega_{cc}\Omega_{ccc}$, and $\Omega_{bbb}\Omega_{bbb}$ Dibaryon States in Terms of a First-Order Hexaquark Mass Formula, QEIOS **27N2QF**, 1 (2022).

https://doi.org/10.32388/27N2QF.

9) J. J. Bevelacqua, Possible Hexaquark Explanation for the State X(2600) in the $\pi^+ + \pi^- + \eta'$ System Observed in the Process J/ $\Psi \rightarrow \gamma \pi^+ \pi^- \eta'$, Qeios **S7UNV7**, 1 (2023). <u>https://doi.org/10.32388/S7UNV7</u>.

10) D. Griffiths, Introduction to Elementary Particles, 2nd ed., (Wiley-VCH, Weinheim, 2008).

11) Particle Data Group, Review of Particle Physics, Prog. Theor. Exp. Phys 2022, 083C01 (2022).