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Di�usion models have led to signi�cant advancements in generative modelling. Yet their widespread

adoption poses challenges regarding data attribution and interpretability. In this paper, we aim to help

address such challenges in di�usion models by developing an in�uence function framework. In�uence

function-based data attribution methods approximate how a model’s output would have changed if some

training data were removed. In supervised learning, this is usually used for predicting how the loss on a

particular example would change. For di�usion models, we focus on predicting the change in the probability

of generating a particular example via several proxy measurements. We show how to formulate in�uence

functions for such quantities and how previously proposed methods can be interpreted as particular design

choices in our framework. To ensure scalability of the Hessian computations in in�uence functions, we

systematically develop K-FAC approximations based on generalised Gauss-Newton matrices speci�cally

tailored to di�usion models. We recast previously proposed methods as speci�c design choices in our

framework, and show that our recommended method outperforms previous data attribution approaches on

common evaluations, such as the Linear Data-modelling Score (LDS) or retraining without top in�uences,

without the need for method-speci�c hyperparameter tuning.

Corresponding author: Bruno Mlodozeniec, bkm28@cam.ac.uk

1. Introduction

Generative modelling for continuous data modalities — like images, video, and audio — has advanced rapidly

propelled by improvements in di�usion-based approaches. Many companies now o�er easy access to AI-

generated bespoke image content. However, the use of these models for commercial purposes creates a need for

understanding how the training data in�uences their outputs. In cases where the model’s outputs are
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undesirable, it is useful to be able to identify, and possibly remove, the training data instances responsible for

those outputs. Furthermore, as copyrighted works often make up a signi�cant part of the training corpora of

these models[1], concerns about the extent to which individual copyright owners’ works in�uence the generated

samples arise. Some already characterise what these companies o�er as “copyright infringement as a

service”[2], which has caused a �urry of high-pro�le lawsuits[2][3]. This motivates exploring tools for data

attribution that might be able to quantify how each group of training data points in�uences the models’

outputs. In�uence functions[4][5] o�er precisely such a tool. By approximating the answer to the question, “If

the model was trained with some of the data excluded, what would its output be?”, they can help �nding data

points most responsible for a low loss on an example, or a high probability of generating a particular example.

However, they have yet to be scalably adapted to the general di�usion modelling setting.

In�uence functions work by locally approximating how the loss landscape would change if some of the training

data points were down-weighted in the training loss (illustrated in Figure 5). Consequently, this enables

prediction for how the (local) optimum of the training loss would change, and how that change in the

parameters would a�ect a measurement of interest (e.g., loss on a particular example). By extrapolating this

prediction, one can estimate what would happen if the data points were fully removed from the training set.

However, to locally approximate the shape of the loss landscape, in�uence functions require computing and

inverting the Hessian of the training loss, which is computationally expensive. One common approximation of

the training loss’s Hessian is the generalised Gauss-Newton matrix (GGN),[6][7]. The GGN has not been clearly

formulated for the di�usion modelling objective before and cannot be uniquely determined based on its general

de�nition. Moreover, to compute and store a GGN for large neural networks further approximations are

necessary. We propose using Kronecker-Factored Approximate Curvature (K-FAC),[8][9]  to approximate the

GGN. It is not commonly known how to apply it to neural network architectures used in di�usion models; for

example,[10] resort to alternative Hessian approximation methods because “[K-FAC] might not be applicable to

general deep neural network models as it highly depends on the model architecture”. However, based on recent

work, it is indeed clear that it can be applied to architectures used in di�usion models[11][12], which typically

combine linear layers, convolutions, and attention[13].

In this work, we describe a scalable approach to in�uence function-based approximations for data attribution

in di�usion models, using a K-FAC approximation of GGNs as Hessian approximations. We articulate a design

space based on in�uence functions, unify previous methods for data attribution in di�usion models[14]

[15] through our framework, and argue for the design choices that distinguish our method from previous ones.

One important design choice is the GGN used as the Hessian approximation. We formulate di�erent GGN

matrices for the di�usion modelling objective and discuss their implicit assumptions. We empirically ablate

variations of the GGN and other design choices in our framework and show that our proposed method
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outperforms the existing data attribution methods for di�usion models as measured by common data

attribution metrics like the Linear Data-modelling Score[16]  or retraining without top in�uences. Finally, we

also discuss interesting empirical observations that challenge our current understanding of in�uence functions

in the context of di�usion models.

Figure 1. Most in�uential training data points as identi�ed by K-FAC In�uence Functions for samples generated

by a denoising di�usion probabilistic model trained on CIFAR-10. The top in�uences are those whose omission

from the training set is predicted to most increase the loss of the generated sample. Negative in�uences are those

predicted to most decrease the loss, and the most neutral are those that should change the loss the least.

2. Background

This section introduces the general concepts of di�usion models, in�uence functions, and the GGN.

2.1. Di�usion Models

bordercolor=orange!50bordercolor=orange!50todo: bordercolor=orange!50BM: Notation: change   to   for

space/better formatting?

Di�usion models are a class of probabilistic generative models that �t a model    parameterised by

parameters   to approximate a training data distribution  , with the primary aim being to sample

new data  [17][13][18]. This is usually done by augmenting the original data   with   �delity levels as 

  with an augmentation distribution    that satis�es the following criteria: 1) the

x(t),x(0:t)
,xt x0:t

(x)pθ

θ ∈ Rdparam q(x)

x ∼ (⋅)pθ x T

= [ , … , ]x(0:T) x(0) x(T) q( )x(0:T)
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highest �delity   equals the original training data  , 2) the lowest �delity   has a distribution

that is easy to sample from, and 3) predicting a lower �delity level from the level directly above it is simple to

model and learn. To achieve the above goals,    is typically taken to be a �rst-order Gaussian auto-regressive

(di�usion) process:  , with hyperparameters    set so that the law

of   approximately matches a standard Gaussian distribution  . In that case, the reverse conditionals 

  are �rst-order Markov, and if the number of �delity levels    is high enough,

they can be well approximated by a diagonal Gaussian, allowing them to be modelled with a parametric model

with a simple likelihood function, hence satisfying (3)  [18]. The marginals 

  also have a simple Gaussian form, allowing for the

augmented samples to be sampled as:

Di�usion models are trained to approximate the reverse conditionals    by

maximising log-probabilities of samples   conditioned on  , for all timesteps  . We can note

that   has a Gaussian distribution with mean given by:

as in Equation (1). In other words, the mean is a mixture of the sample   and the noise   that was applied to 

  to produce it. Hence, we can choose to analogously parameterise    as 

. That way, the model   simply predicts the noise   that was added to

the data to produce  . The variances    are usually chosen as hyperparameters[13]. With that

parameterisation, the negative expected log-likelihood  , up to scale and shift

independent of   or  , can be written as[13][18]:1

This leads to a training loss   for the di�usion model   that is a sum of per-di�usion timestep training

losses:2

The parameters are then optimised to minimise the loss averaged over a training dataset  :

Other interpretations of the above procedure exist in the literature[19][20][21][22].

x(0) q( ) = q(x)x(0) x(T)

q

q( | ) = N ( | , (1 − I)x(t) x(0:t−1) x(t) λtx
(t−1) λt)2 λt

x(T) N (0, I)

q( | ) = q( | )x(t−1) x(t:T) x(t−1) x(t) T

q( | ) = N ( | , (1 − )I)x(t) x(0) x(t) ∏t
=1t′ λtx

(0) ∏t
=1t′ λ2

t′

= + (1 − , with  ∼ N (0, I).x(t) ∏
=1t′

t

λtx
(0) ∏

=1t′

t

λ2
t′ )

1/2ϵ(t) ϵ(t) (1)

( | ) ≈ q( | )pθ x(t−1) x(t) x(t−1) x(t)

x(t−1) x(t) t = 1, … ,T

q( | , )x(t−1) x(t) x(0)

( , ) = ( − ) , with~μt−1|t,0 x(t) ϵ(t) 1

λt
x(t) 1 − λ2

t

(1 − ∏t
=1t′ λ2

t′ )1/2ϵ(t)
ϵ(t) =

def ( − )x(t) ∏t
=1t′ λt′x(0)

(1 − ∏t
=1t′ λ2

t′ )1/2

x(t) ϵ(t)

x(0) ( | )pθ xt−1 x(t)

N ( | ( , ( )), I)xt−1 μt−1|t,0 x(t) ϵt
θ
x(t) σ2

t ( )ϵ
(t)
θ

x(t) ϵ(t)

x(t) σ2
t

[− logp( | )]Eq( , | )xt−1 x(t) x(0) xt−1 x(t)

θ x(0)

(θ, ) = [∥ − ( ) ]ℓt x(0) E ,ϵ(t) x(t) ϵ(t) ϵt
θ
x(t) ∥2 ∼ N (0, I)ϵ(t)

= + (1 −x(t) ∏t
=1t′ λtx

(0) ∏t
=1t′ λ2

t′ )1/2ϵ(t)
(2)

ℓ ( )ϵt
θ
x(t)

ℓ(θ,x) = [ (θ,x)] ∼ Uniform([T ]).E
t
~ ℓ

t
~ t

~

D = {xn}Nn=1

(D) = arg (θ) (θ) ℓ(θ, ).θ∗ min
θ
LD LD =

def 1

N
∑
n=1

N

xn (3)
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2.2. In�uence Functions

The aim of in�uence functions is to answer questions of the sort “how would my model behave were it trained

on the training dataset with some datapoints removed”. To do so, they approximate the change in the optimal

model parameters in Equation (3) when some training examples  ,  , are removed

from the dataset  . To arrive at a tractable approximation, it is useful to consider a continuous relaxation of

this question: how would the optimum change were the training examples   down-weighted by   in

the training loss:

The function    (well-de�ned if the optimum is unique) is the response function. Setting    to 

 recovers the minimum of the original objective in Eq. (3) with examples   removed.

Under suitable assumptions (see Appendix A), by the Implicit Function Theorem[23], the response function is

continuous and di�erentiable at  . In�uence functions can be de�ned as a linear approximation to the

response function   by a �rst-order Taylor expansion around  :

as  . See Appendix A for a formal derivation and conditions. The optimal parameters with examples 

 removed can be approximated by setting   to   and dropping the   terms.

Usually, we are not directly interested in the change in parameters in response to removing some data, but

rather the change in some measurement function   at a particular test input   (e.g. per-example test

loss). We can further make a �rst-order Taylor approximation to    at    — 

 — and combine it with Eq. (5) to get a simple linear

estimate of the change in the measurement function:

2.2.1. Generalised Gauss-Newton matrix

Computing the in�uence function approximation in Eq. (5) requires inverting the Hessian 

. In the context of neural networks, the Hessian itself is generally computationally

intractable and approximations are necessary. A common Hessian approximation is the generalised Gauss-

Newton matrix (GGN). We will �rst introduce the GGN in an abstract setting of approximating the Hessian for a

(xj)j∈I I = { , … , } ⊆ [N]i1 iM

D

(xj)j∈I ε ∈ R

(ε) = arg ℓ(θ, ) − ε ℓ(θ, )r−I min
θ

1

N
∑
n=1

N

xn ∑
j∈I

xj (4)

: R →r−I Rdparam ε

1/N ( , … , )xi1 xiM

ε = 0

r−I ε = 0

(ε)r−I = (0) + ε + o(ε)r−I

d ( )r−I ε′

dε′

∣

∣
∣

=0ε′

= (D) + ℓ( , )ε + o(ε),θ∗ ∑
j∈I

( ( ))∇2
θ∗LD θ∗ −1

∇θ∗ θ∗ xj

(5)

ε → 0

(xi)i∈I ε 1/N o(ε)

m( (D), )θ∗ x′ x′

m(⋅, )x′ (D)θ∗

m(θ, ) = m( , ) + m( , )(θ − ) + o(∥θ − )x′ θ∗ x′ ∇⊤
θ∗ θ∗ x′ θ∗ θ∗∥2

m( (ε), ) = m( , ) + m( , ) ℓ( , )ε + o(ε).r−I x′ θ∗ x′ ∑
j∈I

∇⊤
θ∗ θ∗ x′ ( ( ))∇2

θ∗LD θ∗ −1
∇θ∗ θ∗ xj (6)

(θ) ∈∇2
θ
LD R ×dparam dparam
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general training loss  , to make it clear how di�erent variants can be arrived at for di�usion

models in the next section.

In general, if we have a function    of the form  , with    a convex function, the GGN for an

expectation   is de�ned as

where    is the Jacobian of  . Whenever    is (locally) linear, the    is equal to the Hessian 

. Therefore, we can consider the GGN as an approximation to the Hessian in which we “linearise”

the function  . Note that any decomposition of   results in a valid GGN as long as   is convex[7].3 We give

two examples below.

Option 1. A typical choice would be for   to be the neural network function on a training datapoint  , and for 

 to be the loss function (e.g.  -loss), with the expectation   being taken over the empirical (training) data

distribution; we call the GGN for this split  . The GGN with this split is exact for linear neural networks

(or when the model has zero residuals on the training data)[7].

Option 2. Alternatively, a di�erent GGN can be de�ned by using a trivial split of the loss   into the identity

map    and the loss  , and again taking the expectation over the empirical data distribution.

With this split, the resulting GGN is

This is also called the empirical Fisher[24]. Note that   is only equal to the Hessian under the arguably

more stringent condition that   — the composition of the model and the loss function — is linear. This is

in contrast to  , for which only the mapping from the parameters to the model output needs to be

(locally) linear. Hence, we might prefer to use    for Hessian approximation whenever we have a

nonlinear loss, which is the case for di�usion models.

3. Scalable in�uence functions for di�usion models

In this section, we discuss how we adapt in�uence functions to the di�usion modelling setting in a scalable

manner. We also recast data attribution methods for di�usion models proposed in prior work[14][15]  as the

result of particular design decisions in our framework, and argue for our own choices that distinguish our

method from the previous ones.

L(θ) = [ρ(θ, z)]Ez

ρ(θ, z) ∘ (θ)hz fz hz

[ρ(θ, z)]Ez

GGN(θ) = [ (θ) ( (θ)) (θ)] ,Ez ∇⊤
θ
fz ∇2

(θ)fz
hz fz ∇θfz

(θ)∇θfz fz fz GGN

[ ρ(θ, z)]Ez ∇2
θ

fz ρ(θ, z) hz

fz z

hz ℓ2 Ez

GGNmodel

→ GG (θ)
:= mapping from parameters to model outputfz

:= loss function (e.g.~ -loss)hz ℓ2
Nmodel (7)

ρ(θ, z)

:= idhz :=ρ(⋅, z)fz

→ GG (θ) = [ ρ(θ, z) ρ(θ, z)] .
:=ρ(⋅, z)fz

:= idhz
N loss Ez ∇θ ∇⊤

θ
(8)

GGN loss

ρ(⋅, z)

GGNmodel

GGNmodel
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3.1. Approximating the Hessian

In di�usion models, we want to compute the Hessian of the loss of the form

where   is the expectation over the empirical data distribution.4

We will describe how to formulate di�erent GGN approximations for this setting.

3.1.1. GGN for di�usion models

Option 1. To arrive at a GGN approximation, as discussed in Section 2.2.1, we can partition the function 

 into the model output   and the  -loss function  . This results in the

GGN:

where   is the identity matrix. This correspond to “linearising” the neural network  . For di�usion models, the

dimensionality of the output of    is typically very large (e.g.    for CIFAR), so computing the

Jacobians   explicitly is still intractable. However, we can express   as

where  ; see Appendix B for the derivation. This formulation lends itself

to a Monte Carlo approximation, since we can now compute gradients using auxiliary targets   sampled from

the model’s output distribution, as shown in Equation (10).    can be interpreted as a kind of Fisher

information matrix[25][7], but it is not the Fisher for the marginal model distribution  .

Option 2. Analogously to Equation (8), we can also consider the trivial decomposition of   into the identity

map and the loss, e�ectively “linearising”  . The resulting GGN is:

where   is the di�usion training loss de�ned in Equation (2). This Hessian approximation   turns

out to be equivalent to the ones considered in the previous works on data attribution for di�usion models[14][15]

[10]. In contrast, in this work, we opt for    in Equation (9), or equivalently  , since it is arguably a

better-motivated approximation of the Hessian than   (c.f. Section 2.2.1).

In[15], the authors explored substituting di�erent (theoretically incorrect) training loss functions into the

in�uence function approximation. In particular, they found that replacing the loss    with the

(θ) = [ℓ(θ, )] = [ [ [∥ − ( ) ]]] ,LD Exn xn Exn E
t
~ E

,x( )t
~

ϵ( )t
~ ϵ( )t

~

ϵ t
~

θ
x( )t

~

∥2

[⋅] = ( ⋅)Exn
1
N
∑N

n=1

θ ↦ ∥ − ( )ϵ(t) ϵt
θ
x(t) ∥2 θ ↦ ( )ϵt

θ
x(t) ℓ2 ∥ − ⋅ϵ(t) ∥2

→ (θ) = [ [ [ ( ) (2I) ( )]]] ,
:= ( )fz ϵ t

~

θ
x( )t

~

:= ∥ − ⋅hz ϵ( )t
~

∥2
GGNmodel

D Exn E
t
~ E

,x( )t
~

ϵ( )t
~ ∇⊺

θ
ϵ t

~

θ
x( )t

~

∇θϵ
t
~

θ
x( )t

~
(9)

I ϵt
θ

ϵ t
~

θ
32 × 32 × 3

∇θϵ
t
θ

GGNmodel
D

(θ) = [ [ [ [ (θ) (θ ]]]] , ∼ N ( ( ), I)FD Exn E
t
~ E

x
( )t

~

n

Eϵmod gn gn )⊺ ϵmod ϵ t
~

θ
x

( )t
~

n (10)

(θ) = ∥ − ( ) ∈gn ∇θ ϵmod ϵ t
~

θ
x

( )t
~

n ∥2 Rdparam

ϵmod

FD

(x)pθ

ℓ(⋅,x)

ℓ(⋅,x)

→ (θ) = [ ℓ(θ, ) ℓ(θ, )] ,
:= ℓ(⋅, )fz xn

:= idhz
GGNloss

D Exn ∇θ xn ∇⊤
θ

xn (11)

ℓ(θ,x) GGNloss
D

GGNmodel
D FD

GGNloss
D

∥ − ( )ϵ(t) ϵt
θ
x(t) ∥2
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square norm loss   (e�ectively replacing the “targets”   with  ) gave the best results. Note that the

targets   do not appear in the expression for   in Equation (9).5

Hence, in our method substituting di�erent targets would not a�ect the Hessian approximation. In  [15],

replacing the targets only makes a di�erence to the Hessian approximation because they use    (an

empirical Fisher) to approximate the Hessian.

3.1.2. K-FAC for di�usion models

While   and   do not require computing full Jacobians or the Hessian of the neural network model,

they involve taking outer products of gradients of size  , which is still intractable. Kronecker-Factored

Approximate Curvature K-FAC[8][9] is a common scalable approximation of the GGN to overcome this problem.

It approximates the GGN with a block-diagonal matrix, where each block corresponds to one neural network

layer and consists of a Kronecker product of two matrices. Due to convenient properties of the Kronecker

product, this makes the inversion and multiplication with vectors needed in Equation (6) e�cient enough to

scale to large networks. K-FAC is de�ned for linear layers, including linear layers with weight sharing like

convolutions[11]. This covers most layer types in the architectures typically used for di�usion models. When

weight sharing is used, there are two variants – K-FAC-expand and K-FAC-reduce[12]. For our recommended

method, we choose to approximate the Hessian with a K-FAC approximation of  , akin to[26].

For the parameters   of layer  , the GGN   in Equation (10) is approximated by

with   being the inputs to the  th layer for data point   and   being the gradient of the  -

loss w.r.t. the output of the  th layer, and    denoting the Kronecker product.6 The approximation trivially

becomes an equality for a single data point and also for deep linear networks with  -loss[27][12]. We

approximate the expectations in Equation (12) with Monte Carlo samples and use K-FAC-expand whenever

weight sharing is used since the problem formulation of di�usion models corresponds to the expand setting

in[12]; in the case of convolutional layers this corresponds to[11]. Lastly, to ensure the Hessian approximation is

well-conditioned and invertible, we follow standard practice and add a damping term consisting of a small

scalar damping factor times the identity matrix. We ablate these design choices in Section 4 (Figures 4, 7 and 9).

3.2. Gradient compression and query batching

In practice, we recommend computing in�uence function estimates in Equation (6) by �rst computing and

storing the approximate Hessian inverse, and then iteratively computing the preconditioned inner products 

  for di�erent training datapoints  . Following[26], we use query

∥ ( )ϵt
θ
x(t) ∥2 ϵ(t) 0

ϵ(t) GGNmodel
D

GGNloss
D

(θ)FD GGNloss
D

Rdparam

FD

θl l FD

( ) ≈ [ [ ]] ⊗ [ [ ]] ,FD θl
1

N 2
∑
n=1

N

E
t
~ E

,x
( )t

~

n ϵ( )t
~ a

(l)
n a

(l)⊤
n ∑

n=1

N

E
t
~ E

, ,x
( )t

~

n ϵ( )t
~

ϵ
( )t

~

mod

b
(l)
n b

(l)⊤
n (12)

∈a
(l)
n Rd lin l x

( )t
~

n ∈b
(l)
n Rd lout ℓ2

l ⊗

ℓ2

m( ,x) ℓ( , )∇⊤
θ∗ θ∗ ( ( ))∇2

θ∗LD θ∗ −1
∇θ∗ θ∗ xj xj
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batching to avoid recomputing the gradients    when attributing multiple samples  . We also use

gradient compression; we found that compression by quantisation works much better for di�usion models

compared to the SVD-based compression used by[26]  (see Appendix C), likely due to the fact that gradients 

 are not low-rank in this setting.

3.3. What to measure

For di�usion models, arguably the most natural question to ask might be, for a given sample   generated from

the model, how did the training samples in�uence the probability of generating a sample  ? For example, in the

context of copyright infringement, we might want to ask if removing certain copyrighted works would

substantially reduce the probability of generating  . With in�uence functions, these questions could be

interpreted as setting the measurement function    to be the (marginal) log-probability of generating 

 from the di�usion model:  .

Computing the marginal log-probability introduces some challenges. Di�usion models have originally been

designed with the goal of tractable sampling, and not log-likelihood evaluation.[13][17] only introduce a lower-

bound on the marginal log-probability.[20]  show that exact log-likelihood evaluation is possible, but it only

makes sense in settings where the training data distribution has a density (e.g.  uniformly dequantised data),

and it only corresponds to the marginal log-likelihood of the model when sampling deterministically[21].7 Also,

taking gradients of that measurement, as required for in�uence functions, is non-trivial. Hence, in most cases,

we might need a proxy measurement for the marginal probability. We consider a couple of proxies in this work:

1. Loss. Approximate   with the di�usion loss   in Equation (2) on that particular example. This

corresponds to the ELBO with reweighted per-timestep loss terms (see Figure 18).

2. Probability of sampling trajectory. If the entire sampling trajectory    that generated sample    is

available, consider the probability of that trajectory  .

3. ELBO. Approximate   with an Evidence Lower-Bound (eq. (5))[13].

Initially, we might expect ELBO to be the best motivated proxy, as it is the only one with a clear link to the

marginal log-probability. Probability of sampling trajectory might also appear sensible, but it doesn’t take into

account the fact that there are multiple trajectories   that all lead to the same �nal sample  , and it has

the disadvantage of not being reparameterisation invariant.8 We empirically investigate these di�erent proxies

in Section 4.

ℓ( , )∇θ∗ θ∗ xj x

ℓ(θ, )∇θ xn

x

x

x

m(θ,x)

x log (x)pθ

log (x)pθ ℓ(θ,x)

x(0:T) x

( ) = p( ) ( | )pθ x(0:T) xT ∏T
t=1 pθ x(t−1) x(t)

log (x)pθ

x(0:T) x(0)
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4. Experiments

Evaluating Data Attribution.

To evaluate the proposed data attribution methods, we primarily focus on two metrics: Linear Data Modelling

Score (LDS) and retraining without top in�uences. LDS measures how well a given attribution method can predict

the relative magnitude in the change in a measurement as the model is retrained on (random) subsets of the

training data. For an attribution method   that approximates how a measurement   would

change if a model was trained on an altered dataset  , LDS measures the Spearman rank correlation between

the predicted change in output and actual change in output after retraining on di�erent subsampled datasets:

where   are independently subsampled versions of the original dataset  , each containing   of the points

sampled without replacement. However, a reality of deep learning is that, depending on the random seed used

for initialisation and setting the order in which the data is presented in training, training on a �xed dataset can

produce di�erent models with functionally di�erent behaviour. Hence, for any given dataset  , di�erent

measurements could be obtained depending on the random seed used. To mitigate the issue, [16] propose to use

an ensemble average measurement after retraining as the “oracle” target:

where   are the parameters resulting from training on   with a particular seed  .

Retraining without top in�uences, on the other hand, evaluates the ability of the data attribution method to

surface the most in�uential data points – namely, those that would most negatively a�ect the measurement 

 under retraining from scratch on a dataset   with these data points removed. For each method,

we remove a �xed percentage of the most in�uential datapoints from   to create the new dataset  , and report

the change in the measurement   relative to   (measurement by the model trained on the

full dataset  ).

In all experiments, we look at measurements on samples generated by the model trained on  . We primarily

focus on Denoising Di�usion Probabilistic Models (DDPM) [13] throughout.8

Baselines

We compare in�uence functions with K-FAC and   (MC-Fisher; 10) as the Hessian approximation (K-

FAC In�uence) to TRAK as formulated for di�usion models in [14][15]. In our framework, their method can be

tersely described as using    (Empirical Fisher) in Equation (11) as a Hessian approximation instead of 

a(D, ,x)D
′ m( (D),x)θ∗

D
′

spearman[ ; ] ,(a(D, ,x))D
~
i

M

i=1
(m( ( ),x))θ∗

D
~
i

M

i=1

D
~
i D 50%

D
′
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⎡

⎣
(a(D, ,x))D

~
i

M
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( m( ( ),x))
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K
∑
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⎦
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  (MC-Fisher) in Equation (10), and computing the Hessian-preconditioned inner products using

random projections  [28]  rather than K-FAC. We also compare to the ad-hoc changes to the

measurement/training loss in the in�uence function approximation (D-TRAK) that were shown by [15] to give

improved performance on LDS benchmarks. Note that, the changes in D-TRAK were directly optimised for

improvements in LDS scores in the di�usion modelling setting, and lack any theoretical motivation. Hence, a

direct comparison for the changes proposed in this work (K-FAC In�uence) is TRAK; the insights from D-TRAK

are orthogonal to our work. These are the only prior works motivated by predicting the change in a model’s

measurements after retraining that have been applied to the general di�usion modelling setting that we are

aware of. We also compare to naïvely using cosine similarity between the CLIP [29] embeddings of the training

datapoints and the generated sample as a proxy for in�uence on the generated samples. Lastly, we report LDS

results for the oracle method of “Exact Retraining”, where we actually retraining a single model to predict the

changes in measurements.

GGNmodel
D
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Figure 2. Linear Data-modelling Score (LDS) for di�erent data attribution methods. Methods that substitute in

incorrect measurement functions into the approximation are separated and plotted with [red circle]. We plot

results for both the best Hessian-approximation damping value with [gray circle] and a “default” damping value

with [gray empty circle] (where applicable). Where applicable, the numerical results are reported in black for the

best damping value, and for the “default” damping value in (gray). “(m. loss)” implies that the appropriate

measurement function was substituted with the loss   measurement function in the approximation. Results

for the exact retraining method (oracle), are shown with [gold circle] ;. Standard error in the LDS score estimate

is indicated with ‘ ’, where the mean is taken over di�erent generated samples   on which the change in

measurement is being estimated.

LDS

The LDS results attributing the loss and ELBO measurements are shown in Figures 2a and 2b. K-FAC In�uence

outperforms TRAK in all settings. K-FAC In�uence using the loss measurement also outperforms the

benchmark-tuned changes in D-TRAK in all settings as well. In Figures 2a and 2b, we report the results for both

the best damping values from a sweep (see Appendix D), as well as for “default” values following

recommendations in previous work (see Appendix G.4). TRAK and D-TRAK appear to be signi�cantly more

sensitive to tuning the damping factor than K-FAC In�uence. They often don’t perform at all if the damping

ℓ(θ,x)

± x
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factor is too small, and take a noticeable performance hit if the damping factor is not tuned to the problem or

method (see Figures 8 and 10 in Appendix D). However, in most applications, tuning the damping factor would

be infeasible, as it requires retraining the model many times over to construct an LDS benchmark, so this is a

signi�cant limitation. In contrast, for K-FAC In�uence, we �nd that generally any su�ciently small value

works reasonably well if enough samples are taken for estimating the loss and measurement gradients (see

Figures 7 and 9).

Retraining without top in�uences

The counterfactual retraining results are shown in Figure 3 for CIFAR-2, CIFAR-10, with    and    of the

data removed. In this evaluation, in�uence functions with K-FAC consistently pick more in�uential training

examples (i.e. those which lead to a higher loss reduction) than the baselines.

Figure 3. Changes in measurements under counterfactual retraining without top in�uences for the loss

measurement. The standard error in the estimate of the mean is indicated with error bars and reported after ‘ ’,

where the average is over di�erent generated samples for which top in�uences are being identi�ed.

Hessian Approximation Ablation

In Figure 4, we explore the impact of the Hessian approximation design choices discussed in Section 3.1. We use

K-FAC to approximate the GGN in all cases, with either the “expand” or the “reduce” variant (Section 3.1.2). We

�nd that the better-motivated “MC-Fisher” estimator    in Equation (9) does indeed perform better

than the “empirical Fisher” in Equation (11) used in TRAK and D-TRAK. Secondly, we �nd that K-FAC expand

signi�cantly outperforms K-FAC reduce, which stands in contrast to the results in the second-order

2% 10%

±

GGNmodel
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optimisation setting where the two are on par with one another[12]. There are multiple di�erences from our

setting to the one from the previous optimisation results: we use a square loss instead of a cross entropy loss, a

full dataset estimate, a di�erent architecture, and evaluate the approximation in a di�erent application.

Notably, the expand variant is the better justi�ed one since the di�usion modelling problem corresponds to the

expand setting in[12]. Hence, our results all seem to imply that a better Hessian approximation directly results

in better downstream data attribution performance. However, we do not directly evaluate the approximation

quality of the estimates and also do not sweep over the damping value for all variants.

Figure 4. Ablation over the di�erent Hessian approximation variants introduced in Section 3.1. We ablate two

versions of the GGN: the “MC” Fisher in Equation (9) and the “Empirical” Fisher in Equation (11), as well as two

settings for the K-FAC approximation: “expand” and “reduce”[12].

4.1. Potential challenges to use of in�uence functions for di�usion models

One peculiarity in the LDS results, similar to the �ndings in[15], is that substituting the loss measurement for

the ELBO measurement when predicting changes in ELBO actually works better than using the correct

measurement (see Figure 2b “K-FAC In�uence (measurement loss)”).9 To try and better understand the

properties of in�uence functions for predicting the numerical change in behaviour after retraining, in this

section we perform multiple ablations and report di�erent interesting phenomena resulting from these that

give some insight into the challenges of using in�uence functions in this setting.

As illustrated in Figure 18, gradients of the ELBO and training loss measurements, up to a constant scaling,

consist of the same per-di�usion-timestep loss term gradients  , but with a di�erent weighting. To

try and break-down why approximating the change in ELBO with the training loss measurement gives higher

LDS scores, we �rst look at predicting the change in the per-di�usion-timestep losses    while substituting

di�erent per-di�usion-timestep losses into the K-FAC in�uence approximation. The results are shown in

Figure 11, leading to the following observation:

(θ,x)∇θℓt

ℓt
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Observation 1. Higher-timestep losses   act as better proxies for lower-timestep losses.

More speci�cally, changes in losses    can in general be well approximated by substituting measurements 

 into the in�uence approximation with  . In some cases, using the incorrect timestep   even results in

signi�cantly better LDS scores than the correct timestep  .

Based on Observation 1, it is clear that in�uence function-based approximations have limitations when being

applied to predict the numerical change in loss measurements. We observe another pattern in how they can fail:

Observation 2. In�uence functions predict both positive and negative in�uence on loss, but, in practice, removing

data points predominantly increases loss.

We show in Figures 15 and 16 that in�uence functions tend to overestimate how often removal of a group data

points will lead to improvements in loss on a generated sample (both for aggregate di�usion training loss in

Section 2.1, and the per-di�usion-timestep loss in Equation (2)).

Lastly, although ELBO is perhaps the measurement with the most direct link to the marginal probability of

sampling a particular example, we �nd it has some peculiar properties. The below observation particularly puts

its usefulness as a measurement function into question:

Observation 3.ELBO is close to constant on generated samples, irrespective of which examples were removed from

the training data.

As illustrated in Figure 17, ELBO measurement is close to constant for any given sample generated from the

model, no matter which   subset of the training data is removed. In particular, it is extremely rare that if one

sample is more likely to be generated than another sample by one model (as measured by ELBO), it will be less

likely to be generated than another by a model trained on a di�erent random subset of the data. This implies

that the standard DDPM  ELBO  might be a poor proxy for the real question we intend to ask: “how likely is a

given sample to be generated by a model?”. It would appear improbable that the true probabilities of generating

any given sample are close-to una�ected by resampling what data subset the model was trained on.

(θ,x)ℓt

ℓt

ℓt′ > tt′ > tt′

= tt′

50%
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5. Discussion

In this work, we extended the in�uence functions approach to the di�usion modelling setting, and showed

di�erent ways in which the GGN Hessian approximation can be formulated in this setting. Our proposed

method with recommended design choices improves performance copmared to existing techniques across

various data attribution evaluation metrics. Nonetheless, experimentally, we are met with two contrasting

�ndings: on the one hand, in�uence functions in the di�usion modelling setting appear to be able to identify

important in�uences. The surfaced in�uential examples do signi�cantly impact the training loss when

retraining the model without them (Figure 3), and they appear perceptually very relevant to the generated

samples. On the other hand, they fall short of accurately predicting the numerical changes in measurements

after retraining. Thes appears to be especially the case for measurement functions we would argue are most

relevant in the image generative modelling setting – proxies for marginal probability of sampling a particular

example. This appears to be both due to the limitations of the in�uence functions approximation, but also due

to the shortcomings of the considered proxy measurements (Section 4.1).

Despite these shortcomings, in�uence functions can still o�er valuable insights: they can serve as a useful

exploratory tool for understanding model behaviour in a di�usion modelling context, and can help guide data

curation, identifying examples most responsible for certain behaviours. To make them useful in settings where

numerical accuracy in the predicted behaviour after retraining is required, such as copyright infringement, we

believe more work is required into 1)�nding better proxies for marginal probability than ELBO and probability

of sampling trajectory , and 2) even further improving the in�uence function approximation.

Appendix A. Derivation of In�uence Functions

In this section, we state the implicit function theorem (Appendix A.1). Then, in Appendix A.2, we introduce the

details of how it can be applied in the context of a loss function    parameterised by a continuous

hyperparameter   (which is, e.g., controlling how down-weighted the loss terms on some examples are, as in

Section 2.2).

L(ϵ, θ)

ϵ
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Figure 5. Illustration of the in�uence function approximation for a 1-dimensional parameter space  .

In�uence funcitons consider the extended loss landscape  , where the loss 

 for some datapoint   (alternatively, group of datapoints) is down-weighted by  . By linearly

extrapolating how the optimal set of parameters   would change around   ( ), we can predicted how the

optimal parameters would change when the term   is fully removed from the loss ( ).

A.1. Implicit Function Theorem

Theorem 1 (Implicit Function Theorem[23]) Let   be a continuously di�erentiable function, and

let   have coordinates  . Fix a point   with  , where   is

the zero vector. If the Jacobian matrix   of 

is invertible, then there exists an open set    containing    such that there exists a unique function 

 such that  , and   for all  . Moreover,   is continuously di�erentiable.

Remark 1 (Derivative of the implicit function) Denoting the Jacobian matrix of   as:

the derivative   of   in Theorem 1 can be written as:

θ ∈ R

L(ϵ, θ) ℓ( , θ) − ϵℓ( , θ)=
def 1

N
∑N

n=1 xn xj

ℓ( , θ)xj xj ϵ

θ ϵ = 0 ω

ℓ( , θ)xj ω0

F : × →Rn Rm Rm

×Rn Rm (x, y) (a, b) = ( , … , , , … , )a1 an b1 bm F(a, b) = 0 0 ∈ Rm

F(a, b) ∈∇y Rm×m y ↦ F(a, y)

[ F(a, b) = (a, b),∇y ]ij
∂Fi

∂yj

U ⊂ Rn a

g : U → Rm g(a) = b F(x, g(x)) = 0 x ∈ U g

x ↦ F(x, y)

[ F(x, y) = (x, y),∇x ]ij
∂Fi

∂xj

: U →
∂g

∂x
Rm×n g : U → Rm

= −[ F(x, g(x)) F(x, g(x)).
∂g(x)

∂x
∇y ]−1∇x (14)
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This can readily be seen by noting that, for  :

Hence, since   is di�erentiable, we can apply the chain rule of di�erentiation to get:

Rearranging gives equation (14).

A.2. Applying the implicit function theorem to quantify the change in the optimum of a loss

Consider a loss function   that depends on some hyperparameter   (in Section 2.2, this

was the scalar by which certain loss terms were down-weighted) and some parameters  . At the

minimum of the loss function  , the derivative with respect to the parameters    will be zero. Hence,

assuming that the loss function is twice continuously di�erentiable (hence   is continuously di�erentiable),

and assuming that for some   we have a set of parameters   such that   and the Hessian 

  is invertible, we can apply the implicit function theorem to the derivative of the loss function 

, to get the existence of a continuously di�erentiable function    such that 

 for   in some neighbourhood of  .

Now   might not necessarily be a minimum of  . However, by making the further assumption that 

 is strictly convex we can ensure that whenever  ,   is a unique minimum, and so   represents

the change in the minimum as we vary  . This is summarised in the lemma below:

Lemma 1. Let    be a twice continuously di�erentiable function, with coordinates denoted by 

, such that   is strictly convex  . Fix a point   such that  . Then,

by the Implicit Function Theorem applied to  , there exists an open set   containing   such that there exists a

unique function    such that  , and    is the unique minimum of    for all  .

Moreover,   is continuously di�erentiable with derivative:

Remark 2. For a loss function   of the form   (such as that in (4)),   in

the equation above simpli�es to:

The above lemma and remark give the result in Equation (5). Namely, in section 2.2:

x ∈ U

F( , g( )) = 0 ∀ ∈ Ux
′

x
′

x
′ ⇒ = 0.

dF(x, g(x))

dx

g

0 = = F(x, g(x)) + F(x, g(x)) .
dF(x, g(x))

dx
∇x ∇y

∂g(x)

∂x

L : × → RRn Rm ϵ ∈ Rn

θ ∈ Rm

L(ϵ, θ) θ

∂L
∂ϵ

∈ϵ′ Rn θ⋆ ( , ) = 0∂L
∂ϵ

ϵ′ θ⋆

( , )L∂2

∂θ2 ϵ′ θ⋆

: × →∂L
∂ϵ

Rn Rm Rm g

(ϵ, g(ϵ)) = 0∂L
∂ϵ

ϵ ϵ′

g(ϵ) θ ↦ L(ϵ, θ)

L (ϵ, θ) = 0∂L
∂θ

θ g(ϵ)

ε

L : × → RRn Rm

(ϵ, θ) ∈ ×Rn Rm θ ↦ L(ϵ, θ) ∀ϵ ∈ Rn ( , )ϵ′ θ⋆ ( , ) = 0∂L
∂θ

ϵ′ θ⋆

∂L
∂θ

U ⊂ Rn θ⋆

g : U → Rm g( ) =ϵ′ θ⋆ g(ϵ) θ ↦ L(ϵ, θ) ϵ ∈ U

g

= − (ε, g(ε))
∂g(ε)

∂ε
[ (ε, g(ε))]

L∂ 2

∂θ2

−1
L∂ 2

∂ε∂θ
(15)

L : R × Rm
L(ε, θ) = (θ) + ε (θ)L1 L2 (ε, g(ε))L∂2

∂ε∂θ

(ε, g(ε)) = (g(ε))
L∂ 2

∂ε∂θ

∂L2

∂θ
(16)
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Appendix B. Derivation of the Fisher “GGN” formulation for Di�usion

Models

As discussed in Section 2.2.1 partitioning the function    into the model output 

 and the   loss function is a natural choice and results in

Note that we used

We can substitute   with

where the mean of the Gaussian is chosen to be the model output  . Furthermore, by using the “score”

trick:

we can rewrite:

where the last equality follows by the chain rule of di�erentiation. We can thus rewrite the expression for the 

 in (17) as
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Appendix C. Gradient compression ablation

In Figure 6, we ablate di�erent compression methods by computing the per training datapoint in�uence scores

with compressed query (measurement) gradients, and looking at the Pearson correlation and the rank

correlation to the scores compute with the uncompressed gradients. We hope to see a correlation of close to 

, in which case the results for our method would be una�ected by compression. We �nd that using

quantisation for compression results in almost no change to the ordering over training datapoints, even when

quantising down to   bits. This is in contrast to the SVD compression scheme used in [26]. This is likely because

the per-example gradients naturally have a low-rank (Kronecker) structure in the classi�cation, regression, or

autoregressive language modelling settings, such as that in [26]. On the other hand, the di�usion training loss

and other measurement functions considered in this work do not have this low-rank structure. This is because

computing them requires multiple forward passes; for example, for the di�usion training loss we need to

average the mean-squared error loss in Equation (2) over multiple noise samples    and multiple di�usion

timesteps. We use   bit quantisation with query gradient batching [26] for all KFAC experiments throughout this

work.

Figure 6. Comparison of gradient compression methods for the in�uence function

approximation.
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Appendix D. Damping LDS ablations

We report an ablation over the LDS scores with GGN approximated with di�erent damping factors for TRAK/D-

TRAK and K-FAC in�uence in Figures 7 to 10. The reported damping factors for TRAK are normalised by the

dataset size so that they correspond to the equivalent damping factors for our method when viewing TRAK as

an altenrative approximation to the GGN (see Section 3.1).

Figure 7. E�ect of damping on the LDS scores for K-FAC in�uence on CIFAR-2. In this plot,

K-FAC GGN approximation was always computed with   samples, and the number of

samples used for computing a Monte Carlo estimate of the training loss/measurement

gradient is indicated on the legend.
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Figure 8. E�ect of damping on the LDS scores for TRAK (random projection) based in�uence

on CIFAR-2. 250 samples were used for Monte Carlo estiamtion of all quantities (GGN and the

training loss/measurement gradients). In the legend: Target indicates what measurement

we’re trying to predict the change in after retraining, Measure indicates what measurement

function was substituted into the in�uence function approximation, and Train.Loss

indicates what function was substituted for the training loss in the computation of the GGN

and gradient of the training loss in the in�uence function approximation.

Figure 9. E�ect of damping on the LDS scores for K-FAC based in�uence on CIFAR-10. 

 samples were used for computing the K-FAC GGN approximation, and   for computing

a Monte Carlo estimate of the training loss/measurement gradients.   indicates a NaN result

(the computation was not su�ciently numerically stable with that damping factor).
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Figure 10. E�ect of damping on the LDS scores for TRAK (random projection) based in�uence

on CIFAR-10.   samples were used for Monte Carlo estiamtion of all quantities (GGN and

the training loss/measurement gradients). In the legend: Target indicates what measurement

we’re trying to predict the change in after retraining, Measure indicates what measurement

function was substituted into the in�uence function approximation, and Train.Loss

indicates what function was substituted for the training loss in the computation of the GGN

and gradient of the training loss in the in�uence function approximation.

Appendix E. Empirical ablations for challenges to use of in�uence

functions for di�usion models

In this section, we describe the results for the observations discussed in Section 4.1.

Observation 1 is based on Figures 11 and 12. Figure 11 shows the LDS scores on CIFAR-2 when attributing per-

timestep di�usion losses   (see Equation (2)) using in�uence functions, whilst varying what (possibly wrong)

per-timestep di�usion loss    is used as a measurement function in the in�uence function approximation

(Equation (6)). Figure 12 is a counter-equivalent to Figure 16 where instead of using in�uence functions to

approximate the change in measurement, we actually retrain a model on the randomly subsampled subset of

data and compute the measurement.

250

ℓt

ℓt′
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Figure 11. Rank correlation (LDS scores) between in�uence function estimates with di�erent

measurement functions and di�erent true measurements CIFAR-2. The plot shows how well

di�erent per-timestep di�usion losses   work as measurement functions in the in�uence

function approximation, when trying to approximate changes in the actual measurements

when retraining a model.

A natural question to ask with regards to Observation 1 is: does this e�ect go away in settings where the

in�uence function approximation should more exact? Note that, bar the non-convexity of the training loss

function  , the in�uence function approximation in Equation (6) is a linearisation of the actual change in the

measurement for the optimum of the training loss functions with some examples down-weighted by   around 

. Hence, we might expect the approximation to be more exact when instead of fully removing some data

points from the dataset (setting  ), we instead down-weight their contribution to the training loss by a

smaller non-zero factor. To investigate whether this is the case, we repeat the LDS analysis in Figures 11 and 12,

but with  ; in other words, the training loss terms corresponding to the “removed” examples are

simply down-weighted by a factor of   in the retrained models. The results are shown in Figures 13 and 14.

Perhaps somewhat surprisingly, a contrasting e�ect can be observed, where using per-timestep di�usion

losses for larger times yields a higher absolute rank correlation, but with the opposing sign. The negative

correlation between measurement    for    can also be observed for the true measurements in the

retrained models in Figure 14. We also observe that in this setting, in�uence functions fail completely to predict

changes in   with the correct measurement function for  .
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Figure 12. Rank correlation between true measurements for losses at di�erent di�usion

timesteps on CIFAR-2.

Figure 13. Rank correlation (LDS scores) between in�uence function estimates with di�erent

measurement functions and di�erent true measurements CIFAR-2, but with the retrained

models trained on the full dataset with a random subset of examples having a down-weighted

contribution to a training loss by a factor of  .×0.5
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Figure 14. Rank correlation between true measurements for losses at di�erent di�usion

timesteps on CIFAR-2, but with the retrained models trained on the full dataset with a

random subset of examples having a down-weighted contribution to a training loss by a

factor of  .

Observation 1. Figure 15 shows the changes in losses after retraining the model on half the data removed

against the predicted changes in losses using K-FAC In�uence for two datasets: CIFAR-2 and CIFAR-10. In both

cases, for a vast majority of retrained models, the loss measurement on a sample increases after retraining. On

the other hand, the in�uence functions predict roughly evenly that the loss will increase and decrease. This

trend is ampli�ed if we instead look at in�uence predicted for per-timestep di�usion losses   (Equation (2))

for earlier timesteps  , which can be seen in Figure 16. On CIFAR-2, actual changes in   measurements

are actually always positive, which the in�uence functions approximation completely misses. For all plots, K-

FAC In�uence was ran with a damping factor of   and   samples for all gradient computations.

×0.5
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Figure 15. Change in di�usion loss   in Section 2.1 when retraining with random subsets of 

 of the training data removed, as predicted by K-FAC in�uence ( -axis), against the

actual change in the measurement ( -axis). Results are plotted for measurements   for 

 samples   generated from the di�usion model trained on all of the data. The scatter color

indicates the sample   for which the change in measurement is plotted. The �gure shows that

in�uence functions tend to overestimate how often the loss will decrease when some training

samples are removed; in reality, it happens quite rarely.
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Figure 16. Change in per-di�usion-timestep losses   when retraining with random subsets

of   of the training data removed, as predicted by K-FAC in�uence ( -axis), against the

actual change in the measurement ( -axis). Results are plotted for the CIFAR-2 dataset, for

measurements   for   samples   generated from the di�usion model trained on all of

the data. The scatter color indicates the sample   for which the change in measurement is

plotted. The �gure shows that: 1) in�uence functions predict that the losses   will increase or

decrease roughly equally frequently when some samples are removed, but, in reality, the

losses almost always increase; 2) for su�ciently large time-steps ( ), this pattern seems to

subside. Losses   in the   range seem to work well for predicting changes in other

losses Figure 11.

Observation 3. Lastly, the observations that the ELBO measurements remain essentially constant for models

trained on di�erent subsets of data is based on Figure 17. There, we plot the values of the ELBO measurement
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for di�erent pairs of models trained on di�erent subsets of data, where we �nd near perfect correlation. The

only pairs of models that exhibit an ELBO measurement correlation of less that    are the CIFAR-2 model

trained on the full dataset compared to any model trained on a   subset, which is likely due to the fact that

the   subset models are trained for half as many gradient iterations, and so may have not fully converged

yet. For CIFAR-10, where we train for   as many training steps due to a larger dataset size, we observe near-

perfect correlation in the ELBO measurements across all models. Each ELBO measurement was computed with a

Monte-Carlo estimate using   samples.

Figure 17. Correlation of the   measurements on di�erent data points   (samples generated

from the model trained on full data), for models trained on di�erent subsets of data. Each subplot plots 

 measurements for   generated samples  , as measured by two models trained from scratch

on di�erent subsets of data, with the  -label and the  -label identifying the respective split of data used

for training (either full dataset, or randomly subsampled  -subset). Each subplot shows the Pearson

correlation coe�cient ( ) and the Spearman rank correlation ( ) for the   measurements as

measured by the two models trained on di�erent subsets of data. The two parts of the �gure show results

for two di�erent datasets: CIFAR-2 on the left, and CIFAR-10 on the right.
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Figure 18. The di�usion loss and di�usion ELBO as formulated in [13] (ignoring the

reconstruction term that accounts for the quantisation of images back to pixel space) are equal

up to the weighting of the individual per-di�usion-timestep loss terms and a constant

independent of the parameters. This plot illustrates the relatives di�erence in the weighting

for per-di�usion-timestep losses applied in the ELBO vs. in the training loss.

Appendix F. LDS results for probability of sampling trajectory

The results for the “log probability of sampling trajectory” measurements are shown in Figure 19. The

probability of sampling trajectory appears to be a measurement with a particularly low correlation across

di�erent models trained with the same data, but di�erent random seeds. This is perhaps unsurprising, since

the measurement comprises the log-densities of particular values of   latent variables.

Figure 19. Linear Data-modelling Score (LDS) for the probability of sampling trajectory. The

plot follows the same format as that of Figures 2a and 2b. Overall, probability of the sampling

trajectory appears to be a di�cult proxy for the marginal probability of sampling a given

example, given that it su�ers from the same issues as the ELBO on CIFAR-2 (it’s better

approximated by the wrong measurement function), and there is extremely little correlation

in the measurement across the retrained models on larger datasets (CIFAR-10).
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qeios.com doi.org/10.32388/BOJDXM 30

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM


Appendix G. Experimental details

In this section, we describe the implementation details for the methods and baselines, as well as the evaluations

reported in Section 4.

G.1. Datasets

We focus on the following dataset in this paper:

CIFAR-10 CIFAR-10 is a dataset of small RGB images of size   [30]. We use   images (the train split)

for training.

CIFAR-2 For CIFAR-2, we follow  [15]  and create a subset of CIFAR-10 with    examples of images only

corresponding to classes car and horse.    examples of class car and    examples of class horse are

randomly subsampled without replacement from among all CIFAR-10 images of that class.

G.2. Models

For all CIFAR datasets, we train a regular Denoising Di�usion Probabilistic Model using a standard U-Net

architecture as described for CIFAR-10 in  [13]. This U-Net architecture contains both convolutional and

attention layers. We use the same noise schedule as described for the CIFAR dataset in [13].

Sampling

We follow the standard DDPM sampling procedure with a full   timesteps to create the generated samples as

described by  [13]. DDPM sampling usually gives better samples (in terms of visual �delity) than Denoising

Di�usion Implicit Models (DDIM) sampling [31] when a large number of sampling steps is used. As described in

Section 2.1, when parameterising the conditionals    with neural networks as 

 we have a choice in how to set the variance hyperparameters  . The 

 hyperparameters do not appear in the training loss; however, they do make a di�erence when sampling. We

use the “small” variance variant from §3.2 [13], i.e. we set:

G.3. Details on data attribution methods

TRAK

For TRAK baselines, we adapt the implementation of [16][14] to the di�usion modelling setting. When running

TRAK, there are several settings the authors recommend to consider: 1) the projection dimension   for the
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random projections, 2) the damping factor  , and 3) the numerical precision used for storing the projected

gradients. For (1), we use a relatively large projection dimension of   as done in most experiments in [15].

We found that the projection dimension a�ected the best obtainable results signi�cantly, and so we couldn’t

get away with a smaller one. We also found that using the default float16 precision in the TRAK codebase for

(3) results in signi�cantly degraded results (see 20, and so we recommend using float32 precision for these

methods for di�usion models. In all experiments, we use float32 throughout. For the damping factor, we

report the sweeps over LDS scores in Figures 8 and 10, and use the best result in each benchmark, as these

methods fail drastically if the damping factor is too small. The damping factor reported in the plots is

normalised by the dataset size  , to match the de�nition of the GGN, and to make it comparable with the

damping reported for other in�uence functions methods introduced in this paper. For non-LDS experiments,

we use the best damping value from the corresponding LDS benchmark.

CLIP cosine similarity

One of the data attribution baselines used for the LDS experiments is CLIP cosine similarity  [29]. For this

baseline, we compute the CLIP embeddings [29] of the generated sample and training datapoints, and consider

the cosine similarity between the two as the “in�uence” of that training datapoint on that particular target

sample. See  [16]  for details of how this in�uence is aggregated for the LDS benchmark. Of course, this

computation does not in any way depend on the di�usion model or the measurement function used, so it is a

pretty naïve method for estimating in�uence.

K-FAC

We build on the https://github.com/f-dangel/curvlinops package for our implementation of K-FAC for

di�usion models. Except for the ablation in Figure 4, we use the K-FAC expand variant throughout. We compute

K-FAC for PyTorch nn.Conv2d and nn.Linear modules (including in attention), ignoring the parameters in the

normalisation layers.

Compression

For all K-FAC in�uence functions results, we use int8 quantisation for the query gradients.

Monte Carlo computation of gradients and the GGN for in�uence functions

Computing the per-example training loss    in Section 2.1, the gradients of which are necessary for

computing the in�uence function approximation (Equation (6)), includes multiple nested expectations over

di�usion timestep   and noise added to the data  . This is also the case for the   in Equation (9) and

for the gradients   in the computation of    in Equation (11), as well as for the computation of
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the measurement functions. Unless speci�ed otherwise, we use the same number of samples for a Monte Carlo

estimation of the expectations for all quantities considered. For example, if we use   samples, that means that

for the computation of the gradient of the per-example-loss    we’ll sample tuples of 

 independently   times to form a Monte Carlo estimate. For  , we explicitly iterate over all

training data points, and draw   samples of   for each datapoint. For  , we explicitly iterate

over all training data points, and draw   samples of   to compute the gradients   before

taking an outer product. Note that, for  , because we’re averaging over the samples before taking the

outer product of the gradients, the estimator of the GGN is no longer unbiased. Similarly,   samples are also

used for computing the gradients of the measurement function.

For all CIFAR experiments, we use    samples throughout for all methods (including all gradient and GGN

computations for K-FAC In�uence, TRAK, D-TRAK), unless explicitly indicated in the caption otherwise.

Figure 20. LDS scores on for TRAK (random projection) based in�uence on CIFAR-2 when

using half-precision (float16) for in�uence computations. Compare with Figure 8. NaN

results are indicated with  .

G.4. Damping

For all in�uence function-like methods (including TRAK and D-TRAK), we use damping to improve the

numerical stability of the Hessian inversion. Namely, for any method that computes the inverse of the

approximation to the Hessian  , we add a damping factor    to the diagonal

before inversion:

where    is a    identity matrix. This is particularly important for methods where the Hessian

approximation is at a high risk of being low-rank (for example, when using the empirical GGN in Equation (11),
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which is the default setting for TRAK and D-TRAK). For TRAK/D-TRAK, the approximate Hessian inverse is

computed in a smaller projected space, and so we add   to the diagonal directly in that projected space, as done

in [15]). In other words, if   is the projection matrix (see [16] for details), then damped Hessian-

inverse preconditioned vector inner products between two vectors    (e.g. the gradients in

Equation (6)) would be computed as:

where   is an approximation to the Hessian in the projected space.

For the “default” values used for damping for TRAK, D-TRAK and K-FAC In�uence, we primarily follow

recommendations from prior work. For K-FAC In�uence, the default is a small damping value   throughout

added for numerical stability of inversion, as done in prior work[32]. For TRAK-based methods,[16] recommend

using no damping. Hence, we use the lowest numerically stable value of   as the default value throughout.

Note that all damping values reported in this paper are reported as if being added to the GGN for the Hessian of

the loss normalised by dataset size. This di�ers from the damping factor in the TRAK implementation

(https://github.com/MadryLab/trak), which is added to the GGN for the Hessian of an unnormalised loss (

). Hence, the damping values reported in[15] are larger by a factor of   (the dataset size) than the

equivalent damping values reported in this paper.

G.5. LDS Benchmarks

For all LDS benchmarks[16], we sample   sub-sampled datasets (  in 13), and we train   models with

di�erent random seeds (   in 13), each with    of the examples in the full dataset, for a total of 

 retrained models for each benchmark. We compute the LDS scores for   samples generated by the model

trained on the full dataset.

Monte Carlo sampling of measurements

For all computations of the “true” measurement functions for the retrained models in the LDS benchmarks we

use   samples to estimate the measurement.

G.6. Retraining without top in�uences

For the retraining without top in�uences experiments (Figure 3), we pick    samples generated by the model

trained on the full dataset, and, for each, train a model with a �xed percentage of most in�uential examples for

that sample removed from the training dataset, using the same procedure as training on the full dataset (with

the same number of training steps). We then report the change in the measurement on the sample for which top

in�uences were removed.
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Monte Carlo sampling of measurements

Again, for all computations of the “true” measurement functions for the original and the retrained models used

for calculating the di�erence in loss after retraining we use   samples to estimate the measurement.

G.7. Training details

For CIFAR-10 and CIFAR-2 we again follow the training procedure outlined in[13], with the only di�erence

being a shortened number of training iterations. For CIFAR-10, we train for    steps (compared to 

  in[13]) for the full model, and    steps for the subsampled datasets (410 epochs in each case). On

CIFAR-2, we train for   steps for the model trained on the full dataset, and   steps for the subsampled

datasets (  epochs). We train for signi�cantly longer than[15], as we noticed the models trained using their

procedure were somewhat signi�cantly undertrained (some per-di�usion-timestep training losses 

 have not converged). We also use a cosine learning-rate schedule for the CIFAR-2 models.

G.8. Handling of data augmentations

In the presentation in Section 2, we ignore for the sake of clear presentation the reality that in most di�usion

modelling applications we also apply data augmentations to the data. For example, the training loss    in

Equation (3) in practice often takes the form:

where    is the data point   after applying a (random) data augmentation to it. This needs to be taken into

account 1) when de�ning the GGN, as the expectation over the data augmentations   can either be considered

as part of the outer expectation  , or as part of the loss   (see 2.2.1), 2) when computing the per-example train

loss gradients for in�uence functions, 3) when computing the loss measurement function.

When computing    in Equation (9), we treat data augmentations as being part of the out “empirical

data distribution”. In other words, we would simply replace the expectation    in the de�nition of the GGN

with a nested expectation  :

with   now being sampled from the di�usion process   conditioned on the augmented sample  .

The terms changing from the original equation are indicated in yellow. The “Fisher” expression amenable to

MC sampling takes the form:
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where, again,  .

When computing   in Equation (11), however, we treat the expectation over daea augmentations as being

part of the loss  , in order to be more compatible with the implementations of TRAK[16] in prior works that rely

on an empirical GGN[15][14].10 Hence, the GGN in Equation (11) takes the form:

where    is the per-example loss in expectation over data-augmentations. This is how the Hessian

approximation is computed both when we’re using K-FAC with   in presence of data augmentations,

or when we’re using random projections (TRAK and D-TRAK).

When computing the training loss gradient in in�uence function approximation in equation (5), we again

simply replace the per-example training loss    with the per-example training loss averaged over data

augmentations  , so that the training loss   can still be written as a �nite sum of per-example losses

as required for the derivation of in�uence functions.

For the measurement function   in Equation (6), we assume we are interested in the log probability of (or loss

on) a particular query example in the particular variation in which it has appeared, so we do not take data

augmentations into account in the measurement function.

Lastly, since computing the training loss gradients for the in�uence function approximation for di�usion

models usually requires drawing MC samples anyways (e.g. averaging per-di�usion timestep losses over the

di�usion times    and noise samples  ), we simply report the total number of MC samples per data point,

where data augmentations, di�usion time  , etc. are all drawn independently for each sample.
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Footnotes

1 Note that the two random variables   are deterministic functions of one-another.

∼ N ( ( ), I),ϵmod ϵ t
~

θ
x

( )t
~

n

(θ) = ∥ − ( )gn ∇θ ϵmod ϵ t
~

θ
x

( )t
~

n ∥2

GGNloss
D

ρ

(θ)GGNloss
D = [ [ [ℓ(θ, )]] [ [ℓ(θ, )]]]Exn ∇θ Ex

~
n

x~n ∇⊤
θ Ex

~
n

x~n

= [ (θ, ) (θ, )] ,Exn ∇θℓ
~

x~n ∇⊤
θ

ℓ
~

x~n

ℓ
~

GGNmodel
D

ℓ( , )θ⋆ xj

( , )ℓ
∼
θ⋆ xj LD

m

t
∼

ϵ(t)

t
∼

,x(t) ϵ(t)

qeios.com doi.org/10.32388/BOJDXM 36

https://github.com/f-dangel/curvlinops
https://www.qeios.com/
https://doi.org/10.32388/BOJDXM


2 Equivalently, a weighted sum of per-timestep negative log-likelihoods 

3   is typically required to be convex to guarantee the resulting GGN is a positive semi-de�nite (PSD) matrix. A

valid non-PSD approximation to the Hessian can be formed with a non-convex   as well; all the arguments

about the exactness of the GGN approximation for a linear   would still apply. However, the PSD property helps

with numerical stability of the matrix inversion, and guarantees that the GGN will be invertible if a small

damping term is added to the diagonal.

4 Generally,    might also subsume the expectation over data augmentations applied to the training data

points (see Appendix G.8 for details on how this is handled).

5 This is because the Hessian of an  -loss w.r.t. the model output is a multiple of the identity matrix.

6 For the sake of a simpler presentation this does not take potential weight sharing into account.

7 Unless the trained model satis�es very speci�c “consistency” constraints (Theorem 2[20]).

8 We can rescale the latent variables    without a�ecting the marginal distribution  , but changing the

probability density of any particular trajectory. Better LDS results can sometimes be obtained when looking at

validation examples  [15], but di�usion models are used primarily for sampling, so attributing generated

samples is of primary practical interest.

9 Note that, unlike[15], we only change the measurement function for a proxy in the in�uence function

approximation, keeping the Hessian approximation and training loss gradient in Equation (6) the same.

10 The implementations of these methods store the (randomly projected) per-example training loss gradients

for each example before computing the Hessian approximation. Hence, unless data augmentation is considered

to be part of the per-example training loss, the number of gradients to be stored would be increased by the

number of data augmentation samples taken.
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