
21 December 2024, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

Influence Functions for Scalable Data
Attribution in Diffusion Models

Bruno Mlodozeniec1,2, Runa Eschenhagen1, Juhan Bae3,4, Alexander Immer2,5, David Krueger6, Richard

Turner1,7

1. Department of Engineering, University of Cambridge, United Kingdom; 2. Max Planck Institute for Intelligent Systems, Stuttgart, Germany; 3.

Department of Computer Science, University of Toronto, Canada; 4. Vector Institute, Toronto, Canada; 5. Department of Computer Science, ETH

Zürich, Zurich, Switzerland; 6. Mila - Quebec Artificial Intelligence Institute, Montreal, Canada; 7. The Alan Turing Institute, London, United

Kingdom

Diffusion models have led to significant advancements in generative modelling. Yet their widespread

adoption poses challenges regarding data attribution and interpretability. In this paper, we aim to help

address such challenges in diffusion models by developing an influence function framework. Influence

function-based data attribution methods approximate how a model’s output would have changed if some

training data were removed. In supervised learning, this is usually used for predicting how the loss on a

particular example would change. For diffusion models, we focus on predicting the change in the probability

of generating a particular example via several proxy measurements. We show how to formulate influence

functions for such quantities and how previously proposed methods can be interpreted as particular design

choices in our framework. To ensure scalability of the Hessian computations in influence functions, we

systematically develop K-FAC approximations based on generalised Gauss-Newton matrices specifically

tailored to diffusion models. We recast previously proposed methods as specific design choices in our

framework, and show that our recommended method outperforms previous data attribution approaches on

common evaluations, such as the Linear Data-modelling Score (LDS) or retraining without top influences,

without the need for method-specific hyperparameter tuning.

Corresponding author: Bruno Mlodozeniec, bkm28@cam.ac.uk

1. Introduction

Generative modelling for continuous data modalities — like images, video, and audio — has advanced rapidly

propelled by improvements in diffusion-based approaches. Many companies now offer easy access to AI-

generated bespoke image content. However, the use of these models for commercial purposes creates a need for

understanding how the training data influences their outputs. In cases where the model’s outputs are

Qeios

qeios.com doi.org/10.32388/BOJDXM 1

mailto:bkm28@cam.ac.uk
https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

undesirable, it is useful to be able to identify, and possibly remove, the training data instances responsible for

those outputs. Furthermore, as copyrighted works often make up a significant part of the training corpora of

these models[1], concerns about the extent to which individual copyright owners’ works influence the generated

samples arise. Some already characterise what these companies offer as “copyright infringement as a

service”[2], which has caused a flurry of high-profile lawsuits[2][3]. This motivates exploring tools for data

attribution that might be able to quantify how each group of training data points influences the models’

outputs. Influence functions[4][5] offer precisely such a tool. By approximating the answer to the question, “If

the model was trained with some of the data excluded, what would its output be?”, they can help finding data

points most responsible for a low loss on an example, or a high probability of generating a particular example.

However, they have yet to be scalably adapted to the general diffusion modelling setting.

Influence functions work by locally approximating how the loss landscape would change if some of the training

data points were down-weighted in the training loss (illustrated in Figure 5). Consequently, this enables

prediction for how the (local) optimum of the training loss would change, and how that change in the

parameters would affect a measurement of interest (e.g., loss on a particular example). By extrapolating this

prediction, one can estimate what would happen if the data points were fully removed from the training set.

However, to locally approximate the shape of the loss landscape, influence functions require computing and

inverting the Hessian of the training loss, which is computationally expensive. One common approximation of

the training loss’s Hessian is the generalised Gauss-Newton matrix (GGN),[6][7]. The GGN has not been clearly

formulated for the diffusion modelling objective before and cannot be uniquely determined based on its general

definition. Moreover, to compute and store a GGN for large neural networks further approximations are

necessary. We propose using Kronecker-Factored Approximate Curvature (K-FAC),[8][9] to approximate the

GGN. It is not commonly known how to apply it to neural network architectures used in diffusion models; for

example,[10] resort to alternative Hessian approximation methods because “[K-FAC] might not be applicable to

general deep neural network models as it highly depends on the model architecture”. However, based on recent

work, it is indeed clear that it can be applied to architectures used in diffusion models[11][12], which typically

combine linear layers, convolutions, and attention[13].

In this work, we describe a scalable approach to influence function-based approximations for data attribution

in diffusion models, using a K-FAC approximation of GGNs as Hessian approximations. We articulate a design

space based on influence functions, unify previous methods for data attribution in diffusion models[14]

[15] through our framework, and argue for the design choices that distinguish our method from previous ones.

One important design choice is the GGN used as the Hessian approximation. We formulate different GGN

matrices for the diffusion modelling objective and discuss their implicit assumptions. We empirically ablate

variations of the GGN and other design choices in our framework and show that our proposed method

qeios.com doi.org/10.32388/BOJDXM 2

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

outperforms the existing data attribution methods for diffusion models as measured by common data

attribution metrics like the Linear Data-modelling Score[16] or retraining without top influences. Finally, we

also discuss interesting empirical observations that challenge our current understanding of influence functions

in the context of diffusion models.

Figure 1. Most influential training data points as identified by K-FAC Influence Functions for samples generated

by a denoising diffusion probabilistic model trained on CIFAR-10. The top influences are those whose omission

from the training set is predicted to most increase the loss of the generated sample. Negative influences are those

predicted to most decrease the loss, and the most neutral are those that should change the loss the least.

2. Background

This section introduces the general concepts of diffusion models, influence functions, and the GGN.

2.1. Diffusion Models

bordercolor=orange!50bordercolor=orange!50todo: bordercolor=orange!50BM: Notation: change to for

space/better formatting?

Diffusion models are a class of probabilistic generative models that fit a model parameterised by

parameters to approximate a training data distribution , with the primary aim being to sample

new data [17][13][18]. This is usually done by augmenting the original data with fidelity levels as

 with an augmentation distribution that satisfies the following criteria: 1) the

x(t),x(0:t)
,xt x0:t

(x)pθ

θ ∈ Rdparam q(x)

x ∼ (⋅)pθ x T

= [, … ,]x(0:T) x(0) x(T) q()x(0:T)

qeios.com doi.org/10.32388/BOJDXM 3

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

highest fidelity equals the original training data , 2) the lowest fidelity has a distribution

that is easy to sample from, and 3) predicting a lower fidelity level from the level directly above it is simple to

model and learn. To achieve the above goals, is typically taken to be a first-order Gaussian auto-regressive

(diffusion) process: , with hyperparameters set so that the law

of approximately matches a standard Gaussian distribution . In that case, the reverse conditionals

 are first-order Markov, and if the number of fidelity levels is high enough,

they can be well approximated by a diagonal Gaussian, allowing them to be modelled with a parametric model

with a simple likelihood function, hence satisfying (3) [18]. The marginals

 also have a simple Gaussian form, allowing for the

augmented samples to be sampled as:

Diffusion models are trained to approximate the reverse conditionals by

maximising log-probabilities of samples conditioned on , for all timesteps . We can note

that has a Gaussian distribution with mean given by:

as in Equation (1). In other words, the mean is a mixture of the sample and the noise that was applied to

 to produce it. Hence, we can choose to analogously parameterise as

. That way, the model simply predicts the noise that was added to

the data to produce . The variances are usually chosen as hyperparameters[13]. With that

parameterisation, the negative expected log-likelihood , up to scale and shift

independent of or , can be written as[13][18]:1

This leads to a training loss for the diffusion model that is a sum of per-diffusion timestep training

losses:2

The parameters are then optimised to minimise the loss averaged over a training dataset :

Other interpretations of the above procedure exist in the literature[19][20][21][22].

x(0) q() = q(x)x(0) x(T)

q

q(|) = N (| , (1 − I)x(t) x(0:t−1) x(t) λtx
(t−1) λt)2 λt

x(T) N (0, I)

q(|) = q(|)x(t−1) x(t:T) x(t−1) x(t) T

q(|) = N (| , (1 −)I)x(t) x(0) x(t) ∏t
=1t′ λtx

(0) ∏t
=1t′ λ2

t′

= + (1 − , with ∼ N (0, I).x(t) ∏
=1t′

t

λtx
(0) ∏

=1t′

t

λ2
t′)

1/2ϵ(t) ϵ(t) (1)

(|) ≈ q(|)pθ x(t−1) x(t) x(t−1) x(t)

x(t−1) x(t) t = 1, … ,T

q(| ,)x(t−1) x(t) x(0)

(,) = (−) , with~μt−1|t,0 x(t) ϵ(t) 1

λt
x(t) 1 − λ2

t

(1 − ∏t
=1t′ λ2

t′)1/2ϵ(t)
ϵ(t) =

def (−)x(t) ∏t
=1t′ λt′x(0)

(1 − ∏t
=1t′ λ2

t′)1/2

x(t) ϵ(t)

x(0) (|)pθ xt−1 x(t)

N (| (, ()), I)xt−1 μt−1|t,0 x(t) ϵt
θ
x(t) σ2

t ()ϵ
(t)
θ

x(t) ϵ(t)

x(t) σ2
t

[− logp(|)]Eq(, |)xt−1 x(t) x(0) xt−1 x(t)

θ x(0)

(θ,) = [∥ − ()]ℓt x(0) E ,ϵ(t) x(t) ϵ(t) ϵt
θ
x(t) ∥2 ∼ N (0, I)ϵ(t)

= + (1 −x(t) ∏t
=1t′ λtx

(0) ∏t
=1t′ λ2

t′)1/2ϵ(t)
(2)

ℓ ()ϵt
θ
x(t)

ℓ(θ,x) = [(θ,x)] ∼ Uniform([T]).E
t
~ ℓ

t
~ t

~

D = {xn}Nn=1

(D) = arg (θ) (θ) ℓ(θ,).θ∗ min
θ
LD LD =

def 1

N
∑
n=1

N

xn (3)

qeios.com doi.org/10.32388/BOJDXM 4

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

2.2. Influence Functions

The aim of influence functions is to answer questions of the sort “how would my model behave were it trained

on the training dataset with some datapoints removed”. To do so, they approximate the change in the optimal

model parameters in Equation (3) when some training examples , , are removed

from the dataset . To arrive at a tractable approximation, it is useful to consider a continuous relaxation of

this question: how would the optimum change were the training examples down-weighted by in

the training loss:

The function (well-defined if the optimum is unique) is the response function. Setting to

 recovers the minimum of the original objective in Eq. (3) with examples removed.

Under suitable assumptions (see Appendix A), by the Implicit Function Theorem[23], the response function is

continuous and differentiable at . Influence functions can be defined as a linear approximation to the

response function by a first-order Taylor expansion around :

as . See Appendix A for a formal derivation and conditions. The optimal parameters with examples

 removed can be approximated by setting to and dropping the terms.

Usually, we are not directly interested in the change in parameters in response to removing some data, but

rather the change in some measurement function at a particular test input (e.g. per-example test

loss). We can further make a first-order Taylor approximation to at —

 — and combine it with Eq. (5) to get a simple linear

estimate of the change in the measurement function:

2.2.1. Generalised Gauss-Newton matrix

Computing the influence function approximation in Eq. (5) requires inverting the Hessian

. In the context of neural networks, the Hessian itself is generally computationally

intractable and approximations are necessary. A common Hessian approximation is the generalised Gauss-

Newton matrix (GGN). We will first introduce the GGN in an abstract setting of approximating the Hessian for a

(xj)j∈I I = { , … , } ⊆ [N]i1 iM

D

(xj)j∈I ε ∈ R

(ε) = arg ℓ(θ,) − ε ℓ(θ,)r−I min
θ

1

N
∑
n=1

N

xn ∑
j∈I

xj (4)

: R →r−I Rdparam ε

1/N (, … ,)xi1 xiM

ε = 0

r−I ε = 0

(ε)r−I = (0) + ε + o(ε)r−I

d ()r−I ε′

dε′

∣

∣
∣

=0ε′

= (D) + ℓ(,)ε + o(ε),θ∗ ∑
j∈I

(())∇2
θ∗LD θ∗ −1

∇θ∗ θ∗ xj

(5)

ε → 0

(xi)i∈I ε 1/N o(ε)

m((D),)θ∗ x′ x′

m(⋅,)x′ (D)θ∗

m(θ,) = m(,) + m(,)(θ −) + o(∥θ −)x′ θ∗ x′ ∇⊤
θ∗ θ∗ x′ θ∗ θ∗∥2

m((ε),) = m(,) + m(,) ℓ(,)ε + o(ε).r−I x′ θ∗ x′ ∑
j∈I

∇⊤
θ∗ θ∗ x′ (())∇2

θ∗LD θ∗ −1
∇θ∗ θ∗ xj (6)

(θ) ∈∇2
θ
LD R ×dparam dparam

qeios.com doi.org/10.32388/BOJDXM 5

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

general training loss , to make it clear how different variants can be arrived at for diffusion

models in the next section.

In general, if we have a function of the form , with a convex function, the GGN for an

expectation is defined as

where is the Jacobian of . Whenever is (locally) linear, the is equal to the Hessian

. Therefore, we can consider the GGN as an approximation to the Hessian in which we “linearise”

the function . Note that any decomposition of results in a valid GGN as long as is convex[7].3 We give

two examples below.

Option 1. A typical choice would be for to be the neural network function on a training datapoint , and for

 to be the loss function (e.g. -loss), with the expectation being taken over the empirical (training) data

distribution; we call the GGN for this split . The GGN with this split is exact for linear neural networks

(or when the model has zero residuals on the training data)[7].

Option 2. Alternatively, a different GGN can be defined by using a trivial split of the loss into the identity

map and the loss , and again taking the expectation over the empirical data distribution.

With this split, the resulting GGN is

This is also called the empirical Fisher[24]. Note that is only equal to the Hessian under the arguably

more stringent condition that — the composition of the model and the loss function — is linear. This is

in contrast to , for which only the mapping from the parameters to the model output needs to be

(locally) linear. Hence, we might prefer to use for Hessian approximation whenever we have a

nonlinear loss, which is the case for diffusion models.

3. Scalable influence functions for diffusion models

In this section, we discuss how we adapt influence functions to the diffusion modelling setting in a scalable

manner. We also recast data attribution methods for diffusion models proposed in prior work[14][15] as the

result of particular design decisions in our framework, and argue for our own choices that distinguish our

method from the previous ones.

L(θ) = [ρ(θ, z)]Ez

ρ(θ, z) ∘ (θ)hz fz hz

[ρ(θ, z)]Ez

GGN(θ) = [(θ) ((θ)) (θ)] ,Ez ∇⊤
θ
fz ∇2

(θ)fz
hz fz ∇θfz

(θ)∇θfz fz fz GGN

[ρ(θ, z)]Ez ∇2
θ

fz ρ(θ, z) hz

fz z

hz ℓ2 Ez

GGNmodel

→ GG (θ)
:= mapping from parameters to model outputfz

:= loss function (e.g.~ -loss)hz ℓ2
Nmodel (7)

ρ(θ, z)

:= idhz :=ρ(⋅, z)fz

→ GG (θ) = [ρ(θ, z) ρ(θ, z)] .
:=ρ(⋅, z)fz

:= idhz
N loss Ez ∇θ ∇⊤

θ
(8)

GGN loss

ρ(⋅, z)

GGNmodel

GGNmodel

qeios.com doi.org/10.32388/BOJDXM 6

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

3.1. Approximating the Hessian

In diffusion models, we want to compute the Hessian of the loss of the form

where is the expectation over the empirical data distribution.4

We will describe how to formulate different GGN approximations for this setting.

3.1.1. GGN for diffusion models

Option 1. To arrive at a GGN approximation, as discussed in Section 2.2.1, we can partition the function

 into the model output and the -loss function . This results in the

GGN:

where is the identity matrix. This correspond to “linearising” the neural network . For diffusion models, the

dimensionality of the output of is typically very large (e.g. for CIFAR), so computing the

Jacobians explicitly is still intractable. However, we can express as

where ; see Appendix B for the derivation. This formulation lends itself

to a Monte Carlo approximation, since we can now compute gradients using auxiliary targets sampled from

the model’s output distribution, as shown in Equation (10). can be interpreted as a kind of Fisher

information matrix[25][7], but it is not the Fisher for the marginal model distribution .

Option 2. Analogously to Equation (8), we can also consider the trivial decomposition of into the identity

map and the loss, effectively “linearising” . The resulting GGN is:

where is the diffusion training loss defined in Equation (2). This Hessian approximation turns

out to be equivalent to the ones considered in the previous works on data attribution for diffusion models[14][15]

[10]. In contrast, in this work, we opt for in Equation (9), or equivalently , since it is arguably a

better-motivated approximation of the Hessian than (c.f. Section 2.2.1).

In[15], the authors explored substituting different (theoretically incorrect) training loss functions into the

influence function approximation. In particular, they found that replacing the loss with the

(θ) = [ℓ(θ,)] = [[[∥ − ()]]] ,LD Exn xn Exn E
t
~ E

,x()t
~

ϵ()t
~ ϵ()t

~

ϵ t
~

θ
x()t

~

∥2

[⋅] = (⋅)Exn
1
N
∑N

n=1

θ ↦ ∥ − ()ϵ(t) ϵt
θ
x(t) ∥2 θ ↦ ()ϵt

θ
x(t) ℓ2 ∥ − ⋅ϵ(t) ∥2

→ (θ) = [[[() (2I) ()]]] ,
:= ()fz ϵ t

~

θ
x()t

~

:= ∥ − ⋅hz ϵ()t
~

∥2
GGNmodel

D Exn E
t
~ E

,x()t
~

ϵ()t
~ ∇⊺

θ
ϵ t

~

θ
x()t

~

∇θϵ
t
~

θ
x()t

~
(9)

I ϵt
θ

ϵ t
~

θ
32 × 32 × 3

∇θϵ
t
θ

GGNmodel
D

(θ) = [[[[(θ) (θ]]]] , ∼ N ((), I)FD Exn E
t
~ E

x
()t

~

n

Eϵmod gn gn)⊺ ϵmod ϵ t
~

θ
x

()t
~

n (10)

(θ) = ∥ − () ∈gn ∇θ ϵmod ϵ t
~

θ
x

()t
~

n ∥2 Rdparam

ϵmod

FD

(x)pθ

ℓ(⋅,x)

ℓ(⋅,x)

→ (θ) = [ℓ(θ,) ℓ(θ,)] ,
:= ℓ(⋅,)fz xn

:= idhz
GGNloss

D Exn ∇θ xn ∇⊤
θ

xn (11)

ℓ(θ,x) GGNloss
D

GGNmodel
D FD

GGNloss
D

∥ − ()ϵ(t) ϵt
θ
x(t) ∥2

qeios.com doi.org/10.32388/BOJDXM 7

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

square norm loss (effectively replacing the “targets” with) gave the best results. Note that the

targets do not appear in the expression for in Equation (9).5

Hence, in our method substituting different targets would not affect the Hessian approximation. In [15],

replacing the targets only makes a difference to the Hessian approximation because they use (an

empirical Fisher) to approximate the Hessian.

3.1.2. K-FAC for diffusion models

While and do not require computing full Jacobians or the Hessian of the neural network model,

they involve taking outer products of gradients of size , which is still intractable. Kronecker-Factored

Approximate Curvature K-FAC[8][9] is a common scalable approximation of the GGN to overcome this problem.

It approximates the GGN with a block-diagonal matrix, where each block corresponds to one neural network

layer and consists of a Kronecker product of two matrices. Due to convenient properties of the Kronecker

product, this makes the inversion and multiplication with vectors needed in Equation (6) efficient enough to

scale to large networks. K-FAC is defined for linear layers, including linear layers with weight sharing like

convolutions[11]. This covers most layer types in the architectures typically used for diffusion models. When

weight sharing is used, there are two variants – K-FAC-expand and K-FAC-reduce[12]. For our recommended

method, we choose to approximate the Hessian with a K-FAC approximation of , akin to[26].

For the parameters of layer , the GGN in Equation (10) is approximated by

with being the inputs to the th layer for data point and being the gradient of the -

loss w.r.t. the output of the th layer, and denoting the Kronecker product.6 The approximation trivially

becomes an equality for a single data point and also for deep linear networks with -loss[27][12]. We

approximate the expectations in Equation (12) with Monte Carlo samples and use K-FAC-expand whenever

weight sharing is used since the problem formulation of diffusion models corresponds to the expand setting

in[12]; in the case of convolutional layers this corresponds to[11]. Lastly, to ensure the Hessian approximation is

well-conditioned and invertible, we follow standard practice and add a damping term consisting of a small

scalar damping factor times the identity matrix. We ablate these design choices in Section 4 (Figures 4, 7 and 9).

3.2. Gradient compression and query batching

In practice, we recommend computing influence function estimates in Equation (6) by first computing and

storing the approximate Hessian inverse, and then iteratively computing the preconditioned inner products

 for different training datapoints . Following[26], we use query

∥ ()ϵt
θ
x(t) ∥2 ϵ(t) 0

ϵ(t) GGNmodel
D

GGNloss
D

(θ)FD GGNloss
D

Rdparam

FD

θl l FD

() ≈ [[]] ⊗ [[]] ,FD θl
1

N 2
∑
n=1

N

E
t
~ E

,x
()t

~

n ϵ()t
~ a

(l)
n a

(l)⊤
n ∑

n=1

N

E
t
~ E

, ,x
()t

~

n ϵ()t
~

ϵ
()t

~

mod

b
(l)
n b

(l)⊤
n (12)

∈a
(l)
n Rd lin l x

()t
~

n ∈b
(l)
n Rd lout ℓ2

l ⊗

ℓ2

m(,x) ℓ(,)∇⊤
θ∗ θ∗ (())∇2

θ∗LD θ∗ −1
∇θ∗ θ∗ xj xj

qeios.com doi.org/10.32388/BOJDXM 8

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

batching to avoid recomputing the gradients when attributing multiple samples . We also use

gradient compression; we found that compression by quantisation works much better for diffusion models

compared to the SVD-based compression used by[26] (see Appendix C), likely due to the fact that gradients

 are not low-rank in this setting.

3.3. What to measure

For diffusion models, arguably the most natural question to ask might be, for a given sample generated from

the model, how did the training samples influence the probability of generating a sample ? For example, in the

context of copyright infringement, we might want to ask if removing certain copyrighted works would

substantially reduce the probability of generating . With influence functions, these questions could be

interpreted as setting the measurement function to be the (marginal) log-probability of generating

 from the diffusion model: .

Computing the marginal log-probability introduces some challenges. Diffusion models have originally been

designed with the goal of tractable sampling, and not log-likelihood evaluation.[13][17] only introduce a lower-

bound on the marginal log-probability.[20] show that exact log-likelihood evaluation is possible, but it only

makes sense in settings where the training data distribution has a density (e.g. uniformly dequantised data),

and it only corresponds to the marginal log-likelihood of the model when sampling deterministically[21].7 Also,

taking gradients of that measurement, as required for influence functions, is non-trivial. Hence, in most cases,

we might need a proxy measurement for the marginal probability. We consider a couple of proxies in this work:

1. Loss. Approximate with the diffusion loss in Equation (2) on that particular example. This

corresponds to the ELBO with reweighted per-timestep loss terms (see Figure 18).

2. Probability of sampling trajectory. If the entire sampling trajectory that generated sample is

available, consider the probability of that trajectory .

3. ELBO. Approximate with an Evidence Lower-Bound (eq. (5))[13].

Initially, we might expect ELBO to be the best motivated proxy, as it is the only one with a clear link to the

marginal log-probability. Probability of sampling trajectory might also appear sensible, but it doesn’t take into

account the fact that there are multiple trajectories that all lead to the same final sample , and it has

the disadvantage of not being reparameterisation invariant.8 We empirically investigate these different proxies

in Section 4.

ℓ(,)∇θ∗ θ∗ xj x

ℓ(θ,)∇θ xn

x

x

x

m(θ,x)

x log (x)pθ

log (x)pθ ℓ(θ,x)

x(0:T) x

() = p() (|)pθ x(0:T) xT ∏T
t=1 pθ x(t−1) x(t)

log (x)pθ

x(0:T) x(0)

qeios.com doi.org/10.32388/BOJDXM 9

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

4. Experiments

Evaluating Data Attribution.

To evaluate the proposed data attribution methods, we primarily focus on two metrics: Linear Data Modelling

Score (LDS) and retraining without top influences. LDS measures how well a given attribution method can predict

the relative magnitude in the change in a measurement as the model is retrained on (random) subsets of the

training data. For an attribution method that approximates how a measurement would

change if a model was trained on an altered dataset , LDS measures the Spearman rank correlation between

the predicted change in output and actual change in output after retraining on different subsampled datasets:

where are independently subsampled versions of the original dataset , each containing of the points

sampled without replacement. However, a reality of deep learning is that, depending on the random seed used

for initialisation and setting the order in which the data is presented in training, training on a fixed dataset can

produce different models with functionally different behaviour. Hence, for any given dataset , different

measurements could be obtained depending on the random seed used. To mitigate the issue, [16] propose to use

an ensemble average measurement after retraining as the “oracle” target:

where are the parameters resulting from training on with a particular seed .

Retraining without top influences, on the other hand, evaluates the ability of the data attribution method to

surface the most influential data points – namely, those that would most negatively affect the measurement

 under retraining from scratch on a dataset with these data points removed. For each method,

we remove a fixed percentage of the most influential datapoints from to create the new dataset , and report

the change in the measurement relative to (measurement by the model trained on the

full dataset).

In all experiments, we look at measurements on samples generated by the model trained on . We primarily

focus on Denoising Diffusion Probabilistic Models (DDPM) [13] throughout.8

Baselines

We compare influence functions with K-FAC and (MC-Fisher; 10) as the Hessian approximation (K-

FAC Influence) to TRAK as formulated for diffusion models in [14][15]. In our framework, their method can be

tersely described as using (Empirical Fisher) in Equation (11) as a Hessian approximation instead of

a(D, ,x)D
′ m((D),x)θ∗

D
′

spearman[;] ,(a(D, ,x))D
~
i

M

i=1
(m((),x))θ∗

D
~
i

M

i=1

D
~
i D 50%

D
′

LDS = spearman ; ,
⎡

⎣
(a(D, ,x))D

~
i

M

i=1
(m((),x))

1

K
∑
k=1

K

θ
~∗

k D
~
i

M

i=1

⎤

⎦
(13)

() ∈θ
~∗

k D
′ Rdparam D

′ k

m((),x)θ∗ D
′

D
′

D D
′

m((),x)θ∗ D
′ m((D),x)θ∗

D

D

GGNmodel
D

GGNloss
D

qeios.com doi.org/10.32388/BOJDXM 10

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

 (MC-Fisher) in Equation (10), and computing the Hessian-preconditioned inner products using

random projections [28] rather than K-FAC. We also compare to the ad-hoc changes to the

measurement/training loss in the influence function approximation (D-TRAK) that were shown by [15] to give

improved performance on LDS benchmarks. Note that, the changes in D-TRAK were directly optimised for

improvements in LDS scores in the diffusion modelling setting, and lack any theoretical motivation. Hence, a

direct comparison for the changes proposed in this work (K-FAC Influence) is TRAK; the insights from D-TRAK

are orthogonal to our work. These are the only prior works motivated by predicting the change in a model’s

measurements after retraining that have been applied to the general diffusion modelling setting that we are

aware of. We also compare to naïvely using cosine similarity between the CLIP [29] embeddings of the training

datapoints and the generated sample as a proxy for influence on the generated samples. Lastly, we report LDS

results for the oracle method of “Exact Retraining”, where we actually retraining a single model to predict the

changes in measurements.

GGNmodel
D

qeios.com doi.org/10.32388/BOJDXM 11

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

Figure 2. Linear Data-modelling Score (LDS) for different data attribution methods. Methods that substitute in

incorrect measurement functions into the approximation are separated and plotted with [red circle]. We plot

results for both the best Hessian-approximation damping value with [gray circle] and a “default” damping value

with [gray empty circle] (where applicable). Where applicable, the numerical results are reported in black for the

best damping value, and for the “default” damping value in (gray). “(m. loss)” implies that the appropriate

measurement function was substituted with the loss measurement function in the approximation. Results

for the exact retraining method (oracle), are shown with [gold circle] ;. Standard error in the LDS score estimate

is indicated with ‘ ’, where the mean is taken over different generated samples on which the change in

measurement is being estimated.

LDS

The LDS results attributing the loss and ELBO measurements are shown in Figures 2a and 2b. K-FAC Influence

outperforms TRAK in all settings. K-FAC Influence using the loss measurement also outperforms the

benchmark-tuned changes in D-TRAK in all settings as well. In Figures 2a and 2b, we report the results for both

the best damping values from a sweep (see Appendix D), as well as for “default” values following

recommendations in previous work (see Appendix G.4). TRAK and D-TRAK appear to be significantly more

sensitive to tuning the damping factor than K-FAC Influence. They often don’t perform at all if the damping

ℓ(θ,x)

± x

qeios.com doi.org/10.32388/BOJDXM 12

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

factor is too small, and take a noticeable performance hit if the damping factor is not tuned to the problem or

method (see Figures 8 and 10 in Appendix D). However, in most applications, tuning the damping factor would

be infeasible, as it requires retraining the model many times over to construct an LDS benchmark, so this is a

significant limitation. In contrast, for K-FAC Influence, we find that generally any sufficiently small value

works reasonably well if enough samples are taken for estimating the loss and measurement gradients (see

Figures 7 and 9).

Retraining without top influences

The counterfactual retraining results are shown in Figure 3 for CIFAR-2, CIFAR-10, with and of the

data removed. In this evaluation, influence functions with K-FAC consistently pick more influential training

examples (i.e. those which lead to a higher loss reduction) than the baselines.

Figure 3. Changes in measurements under counterfactual retraining without top influences for the loss

measurement. The standard error in the estimate of the mean is indicated with error bars and reported after ‘ ’,

where the average is over different generated samples for which top influences are being identified.

Hessian Approximation Ablation

In Figure 4, we explore the impact of the Hessian approximation design choices discussed in Section 3.1. We use

K-FAC to approximate the GGN in all cases, with either the “expand” or the “reduce” variant (Section 3.1.2). We

find that the better-motivated “MC-Fisher” estimator in Equation (9) does indeed perform better

than the “empirical Fisher” in Equation (11) used in TRAK and D-TRAK. Secondly, we find that K-FAC expand

significantly outperforms K-FAC reduce, which stands in contrast to the results in the second-order

2% 10%

±

GGNmodel

qeios.com doi.org/10.32388/BOJDXM 13

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

optimisation setting where the two are on par with one another[12]. There are multiple differences from our

setting to the one from the previous optimisation results: we use a square loss instead of a cross entropy loss, a

full dataset estimate, a different architecture, and evaluate the approximation in a different application.

Notably, the expand variant is the better justified one since the diffusion modelling problem corresponds to the

expand setting in[12]. Hence, our results all seem to imply that a better Hessian approximation directly results

in better downstream data attribution performance. However, we do not directly evaluate the approximation

quality of the estimates and also do not sweep over the damping value for all variants.

Figure 4. Ablation over the different Hessian approximation variants introduced in Section 3.1. We ablate two

versions of the GGN: the “MC” Fisher in Equation (9) and the “Empirical” Fisher in Equation (11), as well as two

settings for the K-FAC approximation: “expand” and “reduce”[12].

4.1. Potential challenges to use of influence functions for diffusion models

One peculiarity in the LDS results, similar to the findings in[15], is that substituting the loss measurement for

the ELBO measurement when predicting changes in ELBO actually works better than using the correct

measurement (see Figure 2b “K-FAC Influence (measurement loss)”).9 To try and better understand the

properties of influence functions for predicting the numerical change in behaviour after retraining, in this

section we perform multiple ablations and report different interesting phenomena resulting from these that

give some insight into the challenges of using influence functions in this setting.

As illustrated in Figure 18, gradients of the ELBO and training loss measurements, up to a constant scaling,

consist of the same per-diffusion-timestep loss term gradients , but with a different weighting. To

try and break-down why approximating the change in ELBO with the training loss measurement gives higher

LDS scores, we first look at predicting the change in the per-diffusion-timestep losses while substituting

different per-diffusion-timestep losses into the K-FAC influence approximation. The results are shown in

Figure 11, leading to the following observation:

(θ,x)∇θℓt

ℓt

qeios.com doi.org/10.32388/BOJDXM 14

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

Observation 1. Higher-timestep losses act as better proxies for lower-timestep losses.

More specifically, changes in losses can in general be well approximated by substituting measurements

 into the influence approximation with . In some cases, using the incorrect timestep even results in

significantly better LDS scores than the correct timestep .

Based on Observation 1, it is clear that influence function-based approximations have limitations when being

applied to predict the numerical change in loss measurements. We observe another pattern in how they can fail:

Observation 2. Influence functions predict both positive and negative influence on loss, but, in practice, removing

data points predominantly increases loss.

We show in Figures 15 and 16 that influence functions tend to overestimate how often removal of a group data

points will lead to improvements in loss on a generated sample (both for aggregate diffusion training loss in

Section 2.1, and the per-diffusion-timestep loss in Equation (2)).

Lastly, although ELBO is perhaps the measurement with the most direct link to the marginal probability of

sampling a particular example, we find it has some peculiar properties. The below observation particularly puts

its usefulness as a measurement function into question:

Observation 3.ELBO is close to constant on generated samples, irrespective of which examples were removed from

the training data.

As illustrated in Figure 17, ELBO measurement is close to constant for any given sample generated from the

model, no matter which subset of the training data is removed. In particular, it is extremely rare that if one

sample is more likely to be generated than another sample by one model (as measured by ELBO), it will be less

likely to be generated than another by a model trained on a different random subset of the data. This implies

that the standard DDPM ELBO might be a poor proxy for the real question we intend to ask: “how likely is a

given sample to be generated by a model?”. It would appear improbable that the true probabilities of generating

any given sample are close-to unaffected by resampling what data subset the model was trained on.

(θ,x)ℓt

ℓt

ℓt′ > tt′ > tt′

= tt′

50%

qeios.com doi.org/10.32388/BOJDXM 15

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

5. Discussion

In this work, we extended the influence functions approach to the diffusion modelling setting, and showed

different ways in which the GGN Hessian approximation can be formulated in this setting. Our proposed

method with recommended design choices improves performance copmared to existing techniques across

various data attribution evaluation metrics. Nonetheless, experimentally, we are met with two contrasting

findings: on the one hand, influence functions in the diffusion modelling setting appear to be able to identify

important influences. The surfaced influential examples do significantly impact the training loss when

retraining the model without them (Figure 3), and they appear perceptually very relevant to the generated

samples. On the other hand, they fall short of accurately predicting the numerical changes in measurements

after retraining. Thes appears to be especially the case for measurement functions we would argue are most

relevant in the image generative modelling setting – proxies for marginal probability of sampling a particular

example. This appears to be both due to the limitations of the influence functions approximation, but also due

to the shortcomings of the considered proxy measurements (Section 4.1).

Despite these shortcomings, influence functions can still offer valuable insights: they can serve as a useful

exploratory tool for understanding model behaviour in a diffusion modelling context, and can help guide data

curation, identifying examples most responsible for certain behaviours. To make them useful in settings where

numerical accuracy in the predicted behaviour after retraining is required, such as copyright infringement, we

believe more work is required into 1)finding better proxies for marginal probability than ELBO and probability

of sampling trajectory , and 2) even further improving the influence function approximation.

Appendix A. Derivation of Influence Functions

In this section, we state the implicit function theorem (Appendix A.1). Then, in Appendix A.2, we introduce the

details of how it can be applied in the context of a loss function parameterised by a continuous

hyperparameter (which is, e.g., controlling how down-weighted the loss terms on some examples are, as in

Section 2.2).

L(ϵ, θ)

ϵ

qeios.com doi.org/10.32388/BOJDXM 16

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

Figure 5. Illustration of the influence function approximation for a 1-dimensional parameter space .

Influence funcitons consider the extended loss landscape , where the loss

 for some datapoint (alternatively, group of datapoints) is down-weighted by . By linearly

extrapolating how the optimal set of parameters would change around (), we can predicted how the

optimal parameters would change when the term is fully removed from the loss ().

A.1. Implicit Function Theorem

Theorem 1 (Implicit Function Theorem[23]) Let be a continuously differentiable function, and

let have coordinates . Fix a point with , where is

the zero vector. If the Jacobian matrix of

is invertible, then there exists an open set containing such that there exists a unique function

 such that , and for all . Moreover, is continuously differentiable.

Remark 1 (Derivative of the implicit function) Denoting the Jacobian matrix of as:

the derivative of in Theorem 1 can be written as:

θ ∈ R

L(ϵ, θ) ℓ(, θ) − ϵℓ(, θ)=
def 1

N
∑N

n=1 xn xj

ℓ(, θ)xj xj ϵ

θ ϵ = 0 ω

ℓ(, θ)xj ω0

F : × →Rn Rm Rm

×Rn Rm (x, y) (a, b) = (, … , , , … ,)a1 an b1 bm F(a, b) = 0 0 ∈ Rm

F(a, b) ∈∇y Rm×m y ↦ F(a, y)

[F(a, b) = (a, b),∇y]ij
∂Fi

∂yj

U ⊂ Rn a

g : U → Rm g(a) = b F(x, g(x)) = 0 x ∈ U g

x ↦ F(x, y)

[F(x, y) = (x, y),∇x]ij
∂Fi

∂xj

: U →
∂g

∂x
Rm×n g : U → Rm

= −[F(x, g(x)) F(x, g(x)).
∂g(x)

∂x
∇y]−1∇x (14)

qeios.com doi.org/10.32388/BOJDXM 17

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

This can readily be seen by noting that, for :

Hence, since is differentiable, we can apply the chain rule of differentiation to get:

Rearranging gives equation (14).

A.2. Applying the implicit function theorem to quantify the change in the optimum of a loss

Consider a loss function that depends on some hyperparameter (in Section 2.2, this

was the scalar by which certain loss terms were down-weighted) and some parameters . At the

minimum of the loss function , the derivative with respect to the parameters will be zero. Hence,

assuming that the loss function is twice continuously differentiable (hence is continuously differentiable),

and assuming that for some we have a set of parameters such that and the Hessian

 is invertible, we can apply the implicit function theorem to the derivative of the loss function

, to get the existence of a continuously differentiable function such that

 for in some neighbourhood of .

Now might not necessarily be a minimum of . However, by making the further assumption that

 is strictly convex we can ensure that whenever , is a unique minimum, and so represents

the change in the minimum as we vary . This is summarised in the lemma below:

Lemma 1. Let be a twice continuously differentiable function, with coordinates denoted by

, such that is strictly convex . Fix a point such that . Then,

by the Implicit Function Theorem applied to , there exists an open set containing such that there exists a

unique function such that , and is the unique minimum of for all .

Moreover, is continuously differentiable with derivative:

Remark 2. For a loss function of the form (such as that in (4)), in

the equation above simplifies to:

The above lemma and remark give the result in Equation (5). Namely, in section 2.2:

x ∈ U

F(, g()) = 0 ∀ ∈ Ux
′

x
′

x
′ ⇒ = 0.

dF(x, g(x))

dx

g

0 = = F(x, g(x)) + F(x, g(x)) .
dF(x, g(x))

dx
∇x ∇y

∂g(x)

∂x

L : × → RRn Rm ϵ ∈ Rn

θ ∈ Rm

L(ϵ, θ) θ

∂L
∂ϵ

∈ϵ′ Rn θ⋆ (,) = 0∂L
∂ϵ

ϵ′ θ⋆

(,)L∂2

∂θ2 ϵ′ θ⋆

: × →∂L
∂ϵ

Rn Rm Rm g

(ϵ, g(ϵ)) = 0∂L
∂ϵ

ϵ ϵ′

g(ϵ) θ ↦ L(ϵ, θ)

L (ϵ, θ) = 0∂L
∂θ

θ g(ϵ)

ε

L : × → RRn Rm

(ϵ, θ) ∈ ×Rn Rm θ ↦ L(ϵ, θ) ∀ϵ ∈ Rn (,)ϵ′ θ⋆ (,) = 0∂L
∂θ

ϵ′ θ⋆

∂L
∂θ

U ⊂ Rn θ⋆

g : U → Rm g() =ϵ′ θ⋆ g(ϵ) θ ↦ L(ϵ, θ) ϵ ∈ U

g

= − (ε, g(ε))
∂g(ε)

∂ε
[(ε, g(ε))]

L∂ 2

∂θ2

−1
L∂ 2

∂ε∂θ
(15)

L : R × Rm
L(ε, θ) = (θ) + ε (θ)L1 L2 (ε, g(ε))L∂2

∂ε∂θ

(ε, g(ε)) = (g(ε))
L∂ 2

∂ε∂θ

∂L2

∂θ
(16)

qeios.com doi.org/10.32388/BOJDXM 18

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

Appendix B. Derivation of the Fisher “GGN” formulation for Diffusion

Models

As discussed in Section 2.2.1 partitioning the function into the model output

 and the loss function is a natural choice and results in

Note that we used

We can substitute with

where the mean of the Gaussian is chosen to be the model output . Furthermore, by using the “score”

trick:

we can rewrite:

where the last equality follows by the chain rule of differentiation. We can thus rewrite the expression for the

 in (17) as

L(ε, θ) = − ε = − ℓ(θ,)ℓ(θ,)
1

N
∑
i=1

N

xi

  
L1

ℓ(θ,)
1

M
∑
j=1

M

xij

  
L2

⟹

 eq. (16) L∂ 2

∂ε∂θ

1

M
∑
j=1

M ∂

∂θ
xij

= ℓ(θ,)⟹

 eq. (15) ∂g(ε)

∂ε
[(ε, g(ε))]

L∂ 2

∂θ2

−1
1

M
∑
j=1

M ∂

∂θ
xij

θ ↦ ∥ − ()ϵ(t) ϵt
θ
x(t) ∥2

θ ↦ ()ϵt
θ
x(t) ℓ2

(θ)GGNmodel
D = [[(∥ − ((]]

1

N
∑
n=1

N

E
t
~ E

,x()t
~

ϵ()t
~ ∇⊤

θ
ϵ t

~

θ
x()t)

~

∇2

(ϵ t
~

θ
x()t)

~ ϵ()t
~

ϵ t
~

θ
x()t)

~

∥2∇θϵ
t
~

θ
x()t)

~

= [[((]] .
2

N
∑
n=1

N

E
t
~ E

,x()t
~

ϵ()t
~ ∇⊤

θ
ϵ t

~

θ
x()t)

~

∇θϵ
t
~

θ
x()t)

~
(17)

∥ − (= I.
1

2
∇2

(ϵ t
~

θ
x()t)

~ ϵ()t
~

ϵ t
~

θ
x()t)

~

∥2

I

I = [− logp(| ()] , p(| () = N (| (, I),Eϵmod

1

2
∇2

(ϵ t
~

θ
x()t)

~ ϵmod ϵ t
~

θ
x()t)

~

ϵmod ϵ t
~

θ
x()t)

~

ϵmod ϵ t
~

θ
x()t)

~

(ϵ t
~

θ
x()t)

~

[logp(∣ ())]Eϵmod ∇2

()ϵ t
~

θ
x()t

~ ϵmod ϵ t
~

θ
x()t

~
= − [logp(∣ ()) logp(∣ ())]Eϵmod ∇

()ϵ t
~

θ
x()t

~ ϵmod ϵ t
~

θ
x()t

~

∇⊤

()ϵ t
~

θ
x()t

~ ϵmod ϵ t
~

θ
x()t

~

= − [∥ − () ∥ − ()] ,Eϵmod

1

2
∇

()ϵ t
~

θ
x()t

~ ϵmod ϵ t
~

θ
x()t

~

∥2 1

2
∇⊤

()ϵ t
~

θ
x()t

~ ϵmod ϵ t
~

θ
x()t

~

∥2

() ()∇⊤
θ
ϵ t

~

θ
x()t

~

∇θϵ
t
~

θ
x()t

~
= −2 () [logp(∣ ())] ()∇⊤

θ
ϵ t

~

θ
x()t

~
Eϵmod ∇2

()ϵ t
~

θ
x()t

~ ϵmod ϵ t
~

θ
x()t

~

∇θϵ
t
~

θ
x()t

~

= [() ∥ − () ∥ − () ()]
1

2
Eϵmod ∇⊤

θ
ϵ t

~

θ
x()t

~

∇
()ϵ t

~

θ
x()t

~ ϵmod ϵ t
~

θ
x()t

~

∥2 1

2
∇⊤

()ϵ t
~

θ
x()t

~ ϵmod ϵ t
~

θ
x()t

~

∥2∇θϵ
t
~

θ
x()t

~

= [∥ − () ∥ − ()] ,
1

2
Eϵmod ∇θ ϵmod ϵ t

~

θ
x()t

~

∥2∇⊤
θ

ϵmod ϵ t
~

θ
x()t

~

∥2

GGN

qeios.com doi.org/10.32388/BOJDXM 19

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

Appendix C. Gradient compression ablation

In Figure 6, we ablate different compression methods by computing the per training datapoint influence scores

with compressed query (measurement) gradients, and looking at the Pearson correlation and the rank

correlation to the scores compute with the uncompressed gradients. We hope to see a correlation of close to

, in which case the results for our method would be unaffected by compression. We find that using

quantisation for compression results in almost no change to the ordering over training datapoints, even when

quantising down to bits. This is in contrast to the SVD compression scheme used in [26]. This is likely because

the per-example gradients naturally have a low-rank (Kronecker) structure in the classification, regression, or

autoregressive language modelling settings, such as that in [26]. On the other hand, the diffusion training loss

and other measurement functions considered in this work do not have this low-rank structure. This is because

computing them requires multiple forward passes; for example, for the diffusion training loss we need to

average the mean-squared error loss in Equation (2) over multiple noise samples and multiple diffusion

timesteps. We use bit quantisation with query gradient batching [26] for all KFAC experiments throughout this

work.

Figure 6. Comparison of gradient compression methods for the influence function

approximation.

(θ)GGNmodel
D

g(θ)

= [[(θ) (θ]]
1

N
∑
n=1

N

E
t
~ E

, ,x()t
~

ϵ()t
~

ϵmod
∇θgn ∇θgn)⊤

∥ − () .=
def

ϵmod ϵ t
~

θ
x()t

~
∥2

100%

8

ϵ(t)

8

qeios.com doi.org/10.32388/BOJDXM 20

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

Appendix D. Damping LDS ablations

We report an ablation over the LDS scores with GGN approximated with different damping factors for TRAK/D-

TRAK and K-FAC influence in Figures 7 to 10. The reported damping factors for TRAK are normalised by the

dataset size so that they correspond to the equivalent damping factors for our method when viewing TRAK as

an altenrative approximation to the GGN (see Section 3.1).

Figure 7. Effect of damping on the LDS scores for K-FAC influence on CIFAR-2. In this plot,

K-FAC GGN approximation was always computed with samples, and the number of

samples used for computing a Monte Carlo estimate of the training loss/measurement

gradient is indicated on the legend.

1000

qeios.com doi.org/10.32388/BOJDXM 21

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

Figure 8. Effect of damping on the LDS scores for TRAK (random projection) based influence

on CIFAR-2. 250 samples were used for Monte Carlo estiamtion of all quantities (GGN and the

training loss/measurement gradients). In the legend: Target indicates what measurement

we’re trying to predict the change in after retraining, Measure indicates what measurement

function was substituted into the influence function approximation, and Train.Loss

indicates what function was substituted for the training loss in the computation of the GGN

and gradient of the training loss in the influence function approximation.

Figure 9. Effect of damping on the LDS scores for K-FAC based influence on CIFAR-10.

 samples were used for computing the K-FAC GGN approximation, and for computing

a Monte Carlo estimate of the training loss/measurement gradients. indicates a NaN result

(the computation was not sufficiently numerically stable with that damping factor).

100 250

×

qeios.com doi.org/10.32388/BOJDXM 22

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

Figure 10. Effect of damping on the LDS scores for TRAK (random projection) based influence

on CIFAR-10. samples were used for Monte Carlo estiamtion of all quantities (GGN and

the training loss/measurement gradients). In the legend: Target indicates what measurement

we’re trying to predict the change in after retraining, Measure indicates what measurement

function was substituted into the influence function approximation, and Train.Loss

indicates what function was substituted for the training loss in the computation of the GGN

and gradient of the training loss in the influence function approximation.

Appendix E. Empirical ablations for challenges to use of influence

functions for diffusion models

In this section, we describe the results for the observations discussed in Section 4.1.

Observation 1 is based on Figures 11 and 12. Figure 11 shows the LDS scores on CIFAR-2 when attributing per-

timestep diffusion losses (see Equation (2)) using influence functions, whilst varying what (possibly wrong)

per-timestep diffusion loss is used as a measurement function in the influence function approximation

(Equation (6)). Figure 12 is a counter-equivalent to Figure 16 where instead of using influence functions to

approximate the change in measurement, we actually retrain a model on the randomly subsampled subset of

data and compute the measurement.

250

ℓt

ℓt′

qeios.com doi.org/10.32388/BOJDXM 23

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

Figure 11. Rank correlation (LDS scores) between influence function estimates with different

measurement functions and different true measurements CIFAR-2. The plot shows how well

different per-timestep diffusion losses work as measurement functions in the influence

function approximation, when trying to approximate changes in the actual measurements

when retraining a model.

A natural question to ask with regards to Observation 1 is: does this effect go away in settings where the

influence function approximation should more exact? Note that, bar the non-convexity of the training loss

function , the influence function approximation in Equation (6) is a linearisation of the actual change in the

measurement for the optimum of the training loss functions with some examples down-weighted by around

. Hence, we might expect the approximation to be more exact when instead of fully removing some data

points from the dataset (setting), we instead down-weight their contribution to the training loss by a

smaller non-zero factor. To investigate whether this is the case, we repeat the LDS analysis in Figures 11 and 12,

but with ; in other words, the training loss terms corresponding to the “removed” examples are

simply down-weighted by a factor of in the retrained models. The results are shown in Figures 13 and 14.

Perhaps somewhat surprisingly, a contrasting effect can be observed, where using per-timestep diffusion

losses for larger times yields a higher absolute rank correlation, but with the opposing sign. The negative

correlation between measurement for can also be observed for the true measurements in the

retrained models in Figure 14. We also observe that in this setting, influence functions fail completely to predict

changes in with the correct measurement function for .

ℓt

LD

ε

ε = 0

ε = 1/N

ε = 1/2N

1/2

,ℓt ℓt′ t ≠ t′

ℓt t ≤ 200

qeios.com doi.org/10.32388/BOJDXM 24

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

Figure 12. Rank correlation between true measurements for losses at different diffusion

timesteps on CIFAR-2.

Figure 13. Rank correlation (LDS scores) between influence function estimates with different

measurement functions and different true measurements CIFAR-2, but with the retrained

models trained on the full dataset with a random subset of examples having a down-weighted

contribution to a training loss by a factor of .×0.5

qeios.com doi.org/10.32388/BOJDXM 25

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

Figure 14. Rank correlation between true measurements for losses at different diffusion

timesteps on CIFAR-2, but with the retrained models trained on the full dataset with a

random subset of examples having a down-weighted contribution to a training loss by a

factor of .

Observation 1. Figure 15 shows the changes in losses after retraining the model on half the data removed

against the predicted changes in losses using K-FAC Influence for two datasets: CIFAR-2 and CIFAR-10. In both

cases, for a vast majority of retrained models, the loss measurement on a sample increases after retraining. On

the other hand, the influence functions predict roughly evenly that the loss will increase and decrease. This

trend is amplified if we instead look at influence predicted for per-timestep diffusion losses (Equation (2))

for earlier timesteps , which can be seen in Figure 16. On CIFAR-2, actual changes in measurements

are actually always positive, which the influence functions approximation completely misses. For all plots, K-

FAC Influence was ran with a damping factor of and samples for all gradient computations.

×0.5

ℓt

t , ,ℓ1 ℓ50 ℓ100

10−8 250

qeios.com doi.org/10.32388/BOJDXM 26

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

Figure 15. Change in diffusion loss in Section 2.1 when retraining with random subsets of

 of the training data removed, as predicted by K-FAC influence (-axis), against the

actual change in the measurement (-axis). Results are plotted for measurements for

 samples generated from the diffusion model trained on all of the data. The scatter color

indicates the sample for which the change in measurement is plotted. The figure shows that

influence functions tend to overestimate how often the loss will decrease when some training

samples are removed; in reality, it happens quite rarely.

ℓ

50% x

y ℓ(x, θ)

50 x

x

qeios.com doi.org/10.32388/BOJDXM 27

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

Figure 16. Change in per-diffusion-timestep losses when retraining with random subsets

of of the training data removed, as predicted by K-FAC influence (-axis), against the

actual change in the measurement (-axis). Results are plotted for the CIFAR-2 dataset, for

measurements for samples generated from the diffusion model trained on all of

the data. The scatter color indicates the sample for which the change in measurement is

plotted. The figure shows that: 1) influence functions predict that the losses will increase or

decrease roughly equally frequently when some samples are removed, but, in reality, the

losses almost always increase; 2) for sufficiently large time-steps (), this pattern seems to

subside. Losses in the range seem to work well for predicting changes in other

losses Figure 11.

Observation 3. Lastly, the observations that the ELBO measurements remain essentially constant for models

trained on different subsets of data is based on Figure 17. There, we plot the values of the ELBO measurement

ℓt

50% x

y

(x, θ)ℓt 50 x

x

ℓt

ℓ500

ℓt 200 − 500

qeios.com doi.org/10.32388/BOJDXM 28

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

for different pairs of models trained on different subsets of data, where we find near perfect correlation. The

only pairs of models that exhibit an ELBO measurement correlation of less that are the CIFAR-2 model

trained on the full dataset compared to any model trained on a subset, which is likely due to the fact that

the subset models are trained for half as many gradient iterations, and so may have not fully converged

yet. For CIFAR-10, where we train for as many training steps due to a larger dataset size, we observe near-

perfect correlation in the ELBO measurements across all models. Each ELBO measurement was computed with a

Monte-Carlo estimate using samples.

Figure 17. Correlation of the measurements on different data points (samples generated

from the model trained on full data), for models trained on different subsets of data. Each subplot plots

 measurements for generated samples , as measured by two models trained from scratch

on different subsets of data, with the -label and the -label identifying the respective split of data used

for training (either full dataset, or randomly subsampled -subset). Each subplot shows the Pearson

correlation coefficient () and the Spearman rank correlation () for the measurements as

measured by the two models trained on different subsets of data. The two parts of the figure show results

for two different datasets: CIFAR-2 on the left, and CIFAR-10 on the right.

0.99

50%

50%

5×

5000

ELBO(x, θ) x

ELBO(x, θ) 200 x

x y

50%

r ρ ELBO(x, θ)

qeios.com doi.org/10.32388/BOJDXM 29

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

Figure 18. The diffusion loss and diffusion ELBO as formulated in [13] (ignoring the

reconstruction term that accounts for the quantisation of images back to pixel space) are equal

up to the weighting of the individual per-diffusion-timestep loss terms and a constant

independent of the parameters. This plot illustrates the relatives difference in the weighting

for per-diffusion-timestep losses applied in the ELBO vs. in the training loss.

Appendix F. LDS results for probability of sampling trajectory

The results for the “log probability of sampling trajectory” measurements are shown in Figure 19. The

probability of sampling trajectory appears to be a measurement with a particularly low correlation across

different models trained with the same data, but different random seeds. This is perhaps unsurprising, since

the measurement comprises the log-densities of particular values of latent variables.

Figure 19. Linear Data-modelling Score (LDS) for the probability of sampling trajectory. The

plot follows the same format as that of Figures 2a and 2b. Overall, probability of the sampling

trajectory appears to be a difficult proxy for the marginal probability of sampling a given

example, given that it suffers from the same issues as the ELBO on CIFAR-2 (it’s better

approximated by the wrong measurement function), and there is extremely little correlation

in the measurement across the retrained models on larger datasets (CIFAR-10).

1000

qeios.com doi.org/10.32388/BOJDXM 30

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

Appendix G. Experimental details

In this section, we describe the implementation details for the methods and baselines, as well as the evaluations

reported in Section 4.

G.1. Datasets

We focus on the following dataset in this paper:

CIFAR-10 CIFAR-10 is a dataset of small RGB images of size [30]. We use images (the train split)

for training.

CIFAR-2 For CIFAR-2, we follow [15] and create a subset of CIFAR-10 with examples of images only

corresponding to classes car and horse. examples of class car and examples of class horse are

randomly subsampled without replacement from among all CIFAR-10 images of that class.

G.2. Models

For all CIFAR datasets, we train a regular Denoising Diffusion Probabilistic Model using a standard U-Net

architecture as described for CIFAR-10 in [13]. This U-Net architecture contains both convolutional and

attention layers. We use the same noise schedule as described for the CIFAR dataset in [13].

Sampling

We follow the standard DDPM sampling procedure with a full timesteps to create the generated samples as

described by [13]. DDPM sampling usually gives better samples (in terms of visual fidelity) than Denoising

Diffusion Implicit Models (DDIM) sampling [31] when a large number of sampling steps is used. As described in

Section 2.1, when parameterising the conditionals with neural networks as

 we have a choice in how to set the variance hyperparameters . The

 hyperparameters do not appear in the training loss; however, they do make a difference when sampling. We

use the “small” variance variant from §3.2 [13], i.e. we set:

G.3. Details on data attribution methods

TRAK

For TRAK baselines, we adapt the implementation of [16][14] to the diffusion modelling setting. When running

TRAK, there are several settings the authors recommend to consider: 1) the projection dimension for the

32 × 32 50000

5000

2500 2500

1000

()pθ x(t−1) ∣∣x(t)

N ((, ()), I)x(t−1) ∣∣μt−1|t,0 x(t) ϵt
θ
x(t) σ2

t { }σ2
t

T

t=1

σ2
t

= (1 −)σ2
t

1 − ∏t−1
=1t′ λt′

1 − ∏t
=1t′ λt′

λt

dproj

qeios.com doi.org/10.32388/BOJDXM 31

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

random projections, 2) the damping factor , and 3) the numerical precision used for storing the projected

gradients. For (1), we use a relatively large projection dimension of as done in most experiments in [15].

We found that the projection dimension affected the best obtainable results significantly, and so we couldn’t

get away with a smaller one. We also found that using the default float16 precision in the TRAK codebase for

(3) results in significantly degraded results (see 20, and so we recommend using float32 precision for these

methods for diffusion models. In all experiments, we use float32 throughout. For the damping factor, we

report the sweeps over LDS scores in Figures 8 and 10, and use the best result in each benchmark, as these

methods fail drastically if the damping factor is too small. The damping factor reported in the plots is

normalised by the dataset size , to match the definition of the GGN, and to make it comparable with the

damping reported for other influence functions methods introduced in this paper. For non-LDS experiments,

we use the best damping value from the corresponding LDS benchmark.

CLIP cosine similarity

One of the data attribution baselines used for the LDS experiments is CLIP cosine similarity [29]. For this

baseline, we compute the CLIP embeddings [29] of the generated sample and training datapoints, and consider

the cosine similarity between the two as the “influence” of that training datapoint on that particular target

sample. See [16] for details of how this influence is aggregated for the LDS benchmark. Of course, this

computation does not in any way depend on the diffusion model or the measurement function used, so it is a

pretty naïve method for estimating influence.

K-FAC

We build on the https://github.com/f-dangel/curvlinops package for our implementation of K-FAC for

diffusion models. Except for the ablation in Figure 4, we use the K-FAC expand variant throughout. We compute

K-FAC for PyTorch nn.Conv2d and nn.Linear modules (including in attention), ignoring the parameters in the

normalisation layers.

Compression

For all K-FAC influence functions results, we use int8 quantisation for the query gradients.

Monte Carlo computation of gradients and the GGN for influence functions

Computing the per-example training loss in Section 2.1, the gradients of which are necessary for

computing the influence function approximation (Equation (6)), includes multiple nested expectations over

diffusion timestep and noise added to the data . This is also the case for the in Equation (9) and

for the gradients in the computation of in Equation (11), as well as for the computation of

λ

32768

N

ℓ(θ,)xn

t
~

ϵ(t) GGNmodel
D

ℓ(θ,)∇θ xn GGNloss
D

qeios.com doi.org/10.32388/BOJDXM 32

https://github.com/f-dangel/curvlinops
https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

the measurement functions. Unless specified otherwise, we use the same number of samples for a Monte Carlo

estimation of the expectations for all quantities considered. For example, if we use samples, that means that

for the computation of the gradient of the per-example-loss we’ll sample tuples of

 independently times to form a Monte Carlo estimate. For , we explicitly iterate over all

training data points, and draw samples of for each datapoint. For , we explicitly iterate

over all training data points, and draw samples of to compute the gradients before

taking an outer product. Note that, for , because we’re averaging over the samples before taking the

outer product of the gradients, the estimator of the GGN is no longer unbiased. Similarly, samples are also

used for computing the gradients of the measurement function.

For all CIFAR experiments, we use samples throughout for all methods (including all gradient and GGN

computations for K-FAC Influence, TRAK, D-TRAK), unless explicitly indicated in the caption otherwise.

Figure 20. LDS scores on for TRAK (random projection) based influence on CIFAR-2 when

using half-precision (float16) for influence computations. Compare with Figure 8. NaN

results are indicated with .

G.4. Damping

For all influence function-like methods (including TRAK and D-TRAK), we use damping to improve the

numerical stability of the Hessian inversion. Namely, for any method that computes the inverse of the

approximation to the Hessian , we add a damping factor to the diagonal

before inversion:

where is a identity matrix. This is particularly important for methods where the Hessian

approximation is at a high risk of being low-rank (for example, when using the empirical GGN in Equation (11),

K

ℓ(θ,)∇θ xn

(, ,)t
~
ϵ()t

~
x()t

~
K GGNmodel

D

K (, ,)t
~
ϵ()t

~
x

()t
~

n GGNloss
D

K (, ,)t
~
ϵ()t

~
x

()t
~

n ℓ(θ,)∇θ xn

GGNloss
D

K

250

×

H ≈ = ∑ ℓ(theta,)∇2
θ
LD ∇2

θ
1
N

xn λ

(H + λI ,)−1

I ×dparam dparam

qeios.com doi.org/10.32388/BOJDXM 33

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

which is the default setting for TRAK and D-TRAK). For TRAK/D-TRAK, the approximate Hessian inverse is

computed in a smaller projected space, and so we add to the diagonal directly in that projected space, as done

in [15]). In other words, if is the projection matrix (see [16] for details), then damped Hessian-

inverse preconditioned vector inner products between two vectors (e.g. the gradients in

Equation (6)) would be computed as:

where is an approximation to the Hessian in the projected space.

For the “default” values used for damping for TRAK, D-TRAK and K-FAC Influence, we primarily follow

recommendations from prior work. For K-FAC Influence, the default is a small damping value throughout

added for numerical stability of inversion, as done in prior work[32]. For TRAK-based methods,[16] recommend

using no damping. Hence, we use the lowest numerically stable value of as the default value throughout.

Note that all damping values reported in this paper are reported as if being added to the GGN for the Hessian of

the loss normalised by dataset size. This differs from the damping factor in the TRAK implementation

(https://github.com/MadryLab/trak), which is added to the GGN for the Hessian of an unnormalised loss (

). Hence, the damping values reported in[15] are larger by a factor of (the dataset size) than the

equivalent damping values reported in this paper.

G.5. LDS Benchmarks

For all LDS benchmarks[16], we sample sub-sampled datasets (in 13), and we train models with

different random seeds (in 13), each with of the examples in the full dataset, for a total of

 retrained models for each benchmark. We compute the LDS scores for samples generated by the model

trained on the full dataset.

Monte Carlo sampling of measurements

For all computations of the “true” measurement functions for the retrained models in the LDS benchmarks we

use samples to estimate the measurement.

G.6. Retraining without top influences

For the retraining without top influences experiments (Figure 3), we pick samples generated by the model

trained on the full dataset, and, for each, train a model with a fixed percentage of most influential examples for

that sample removed from the training dataset, using the same procedure as training on the full dataset (with

the same number of training steps). We then report the change in the measurement on the sample for which top

influences were removed.

λ

P ∈ R ×dproj dparam

, ∈v1 v2 Rdparam

(P (H + λI P .v1)⊤)−1 v2

H ≈ P ∈∇2
θ
LDP

⊤ R ×dproj dproj

10−8

10−9

ℓ(θ,)∑n xn N

100 M := 100 5

K := 5 50%

500 200

5000

5

qeios.com doi.org/10.32388/BOJDXM 34

https://github.com/MadryLab/trak
https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

Monte Carlo sampling of measurements

Again, for all computations of the “true” measurement functions for the original and the retrained models used

for calculating the difference in loss after retraining we use samples to estimate the measurement.

G.7. Training details

For CIFAR-10 and CIFAR-2 we again follow the training procedure outlined in[13], with the only difference

being a shortened number of training iterations. For CIFAR-10, we train for steps (compared to

 in[13]) for the full model, and steps for the subsampled datasets (410 epochs in each case). On

CIFAR-2, we train for steps for the model trained on the full dataset, and steps for the subsampled

datasets (epochs). We train for significantly longer than[15], as we noticed the models trained using their

procedure were somewhat significantly undertrained (some per-diffusion-timestep training losses

 have not converged). We also use a cosine learning-rate schedule for the CIFAR-2 models.

G.8. Handling of data augmentations

In the presentation in Section 2, we ignore for the sake of clear presentation the reality that in most diffusion

modelling applications we also apply data augmentations to the data. For example, the training loss in

Equation (3) in practice often takes the form:

where is the data point after applying a (random) data augmentation to it. This needs to be taken into

account 1) when defining the GGN, as the expectation over the data augmentations can either be considered

as part of the outer expectation , or as part of the loss (see 2.2.1), 2) when computing the per-example train

loss gradients for influence functions, 3) when computing the loss measurement function.

When computing in Equation (9), we treat data augmentations as being part of the out “empirical

data distribution”. In other words, we would simply replace the expectation in the definition of the GGN

with a nested expectation :

with now being sampled from the diffusion process conditioned on the augmented sample .

The terms changing from the original equation are indicated in yellow. The “Fisher” expression amenable to

MC sampling takes the form:

5000

160000

800000 80000

32000 16000

800

(θ,x)ℓt

LD

= [ℓ(θ,)] ,LD

1

N
∑
n=1

N

Ex
~
n

x~n

x~n xn

Ex
~
n

Ez ρ

GGNmodel
D

Exn

ExnEx
~
n

(θ) = [[[[() (2I) ()]]]] .GGNmodel
D Exn Ex

~
n

E
t
~ E

,x()t
~

ϵ()t
~ ∇⊤

θ
ϵ t

~

θ
x()t

~

∇θϵ
t
~

θ
x()t

~

x()t
~

q(|)x()t
~
x~n x~n

(θ) = [[[[(θ) (θ]]]] ,FD Exn Ex
~
n

E
t
~ E

,x
()t

~

n ϵ()t
~ Eϵmod gn gn)⊤

qeios.com doi.org/10.32388/BOJDXM 35

https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

where, again, .

When computing in Equation (11), however, we treat the expectation over daea augmentations as being

part of the loss , in order to be more compatible with the implementations of TRAK[16] in prior works that rely

on an empirical GGN[15][14].10 Hence, the GGN in Equation (11) takes the form:

where is the per-example loss in expectation over data-augmentations. This is how the Hessian

approximation is computed both when we’re using K-FAC with in presence of data augmentations,

or when we’re using random projections (TRAK and D-TRAK).

When computing the training loss gradient in influence function approximation in equation (5), we again

simply replace the per-example training loss with the per-example training loss averaged over data

augmentations , so that the training loss can still be written as a finite sum of per-example losses

as required for the derivation of influence functions.

For the measurement function in Equation (6), we assume we are interested in the log probability of (or loss

on) a particular query example in the particular variation in which it has appeared, so we do not take data

augmentations into account in the measurement function.

Lastly, since computing the training loss gradients for the influence function approximation for diffusion

models usually requires drawing MC samples anyways (e.g. averaging per-diffusion timestep losses over the

diffusion times and noise samples), we simply report the total number of MC samples per data point,

where data augmentations, diffusion time , etc. are all drawn independently for each sample.

Acknowledgments

We thank Jihao Andreas Lin for useful discussions on compression, and help with implementation of

quantisation and SVD compression. We would also like to thank Kristian Georgiev for sharing with us the

diffusion model weights used for analysis in[14], and Felix Dangel for help and feedback on implementing

extensions to the curvlinops package used for the experiments in this paper. Richard E. Turner is supported by

Google, Amazon, ARM, Improbable, EPSRC grant EP/T005386/1, and the EPSRC Probabilistic AI Hub (ProbAI,

EP/Y028783/1).

Footnotes

1 Note that the two random variables are deterministic functions of one-another.

∼ N ((), I),ϵmod ϵ t
~

θ
x

()t
~

n

(θ) = ∥ − ()gn ∇θ ϵmod ϵ t
~

θ
x

()t
~

n ∥2

GGNloss
D

ρ

(θ)GGNloss
D = [[[ℓ(θ,)]] [[ℓ(θ,)]]]Exn ∇θ Ex

~
n

x~n ∇⊤
θ Ex

~
n

x~n

= [(θ,) (θ,)] ,Exn ∇θℓ
~

x~n ∇⊤
θ

ℓ
~

x~n

ℓ
~

GGNmodel
D

ℓ(,)θ⋆ xj

(,)ℓ
∼
θ⋆ xj LD

m

t
∼

ϵ(t)

t
∼

,x(t) ϵ(t)

qeios.com doi.org/10.32388/BOJDXM 36

https://github.com/f-dangel/curvlinops
https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

2 Equivalently, a weighted sum of per-timestep negative log-likelihoods

3 is typically required to be convex to guarantee the resulting GGN is a positive semi-definite (PSD) matrix. A

valid non-PSD approximation to the Hessian can be formed with a non-convex as well; all the arguments

about the exactness of the GGN approximation for a linear would still apply. However, the PSD property helps

with numerical stability of the matrix inversion, and guarantees that the GGN will be invertible if a small

damping term is added to the diagonal.

4 Generally, might also subsume the expectation over data augmentations applied to the training data

points (see Appendix G.8 for details on how this is handled).

5 This is because the Hessian of an -loss w.r.t. the model output is a multiple of the identity matrix.

6 For the sake of a simpler presentation this does not take potential weight sharing into account.

7 Unless the trained model satisfies very specific “consistency” constraints (Theorem 2[20]).

8 We can rescale the latent variables without affecting the marginal distribution , but changing the

probability density of any particular trajectory. Better LDS results can sometimes be obtained when looking at

validation examples [15], but diffusion models are used primarily for sampling, so attributing generated

samples is of primary practical interest.

9 Note that, unlike[15], we only change the measurement function for a proxy in the influence function

approximation, keeping the Hessian approximation and training loss gradient in Equation (6) the same.

10 The implementations of these methods store the (randomly projected) per-example training loss gradients

for each example before computing the Hessian approximation. Hence, unless data augmentation is considered

to be part of the per-example training loss, the number of gradients to be stored would be increased by the

number of data augmentation samples taken.

References

1. ^Schuhmann C, Beaumont R, Vencu R, Gordon C, Wightman R, Cherti M, Coombes T, Katta A, Mullis C, Wortsman

M, Schramowski P, Kundurthy S, Crowson K, Schmidt L, Kaczmarczyk R, Jitsev J (2022). "LAION-5B: An open larg

e-scale dataset for training next generation image-text models". arXiv. Available from: https://arxiv.org/abs/221

0.08402.

2. a, bSaveri J, Butterick M. "Image Generator Litigation". https://imagegeneratorlitigation.com/, 2023. Accessed: 20

24-07-06.

3. ^Saveri J, Butterick M (2023). "Language Model Litigation". https://llmlitigation.com/. Accessed: 2024-07-06.

− log (|).pθ xt−1 x(t)

hz

hz

fz

Exn

ℓ2

x(t) (x)pθ

qeios.com doi.org/10.32388/BOJDXM 37

https://arxiv.org/abs/2210.08402
https://arxiv.org/abs/2210.08402
https://imagegeneratorlitigation.com/
https://llmlitigation.com/
https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

4. ^Koh PW, Liang P. Understanding black-box predictions via influence functions. In: Precup D, Teh YW, editors. Pro

ceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research.

2017;70:1885-1894. Available from: https://proceedings.mlr.press/v70/koh17a.html.

5. ^Bae J, Ng N, Lo A, Ghassemi M, Grosse R. If Influence Functions are the Answer, Then What is the Question? arXiv

[Internet]. 2022 Sep [cited 2023 Jun 12]; Available from: https://arxiv.org/abs/2209.05364.

6. ^Schraudolph NN (2002). "Fast Curvature Matrix-Vector Products for Second-Order Gradient Descent". Neural co

mputation. 14 (7).

7. a, b, c, dMartens J (2020). "New insights and perspectives on the natural gradient method". JMLR. 21 (146).

8. a, bHeskes T (2000). "On 'natural' learning and pruning in multilayered perceptrons". Neural Computation. 12

(4).

9. a, bMartens J, Grosse R. "Optimizing neural networks with Kronecker-factored approximate curvature". In: ICML;

2015.

10. a, bKwon Y, Wu E, Wu K, Zou J. "DataInf: Efficiently Estimating Data Influence in LoRA-tuned LLMs and Diffusion

Models." In: The Twelfth International Conference on Learning Representations; 2023 Oct.

11. a, b, cGrosse R, Martens J (2016). "A Kronecker-factored approximate Fisher matrix for convolution layers". In: IC

ML.

12. a, b, c, d, e, f, gEschenhagen R, Immer A, Turner RE, Schneider F, Hennig P (2023). "Kronecker-Factored Approxim

ate Curvature for Modern Neural Network Architectures". In: NeurIPS.

13. a, b, c, d, e, f, g, h, i, j, k, l, m, nHo J, Jain A, Abbeel P (2020). "Denoising Diffusion Probabilistic Models". In: Advances

in Neural Information Processing Systems, vol. 33, pp. 6840-6851. Curran Associates, Inc.

14. a, b, c, d, e, f, gGeorgiev K, Vendrow J, Salman H, Park SM, Madry A. The Journey, Not the Destination: How Data Gu

ides Diffusion Models. arXiv. December 2023. Available from: arXiv:2312.06205.

15. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, pZheng X, Pang T, Du C, Jiang J, Lin M. Intriguing Properties of Data Attribution on

Diffusion Models. arXiv. 2024 Mar. doi:10.48550/arXiv.2311.00500.

16. a, b, c, d, e, f, g, hPark SM, Georgiev K, Ilyas A, Leclerc G, Madry A. TRAK: Attributing Model Behavior at Scale. arXiv.

April 2023. doi:10.48550/arXiv.2303.14186.

17. a, bSohl-Dickstein J, Weiss EA, Maheswaranathan N, Ganguli S. Deep Unsupervised Learning Using Nonequilibriu

m Thermodynamics. 2015 Nov. doi:10.48550/arXiv.1503.03585.

18. a, b, cTurner RE, Diaconu CD, Markou S, Shysheya A, Foong AYK, Mlodozeniec B. "Denoising Diffusion Probabilisti

c Models in Six Simple Steps". 2024. Available from: arXiv:2402.04384.

19. ^Song Y, Ermon S (2020). "Generative Modeling by Estimating Gradients of the Data Distribution". arXiv. arXiv:1

907.05600 [cs.LG].

qeios.com doi.org/10.32388/BOJDXM 38

https://proceedings.mlr.press/v70/koh17a.html
https://arxiv.org/abs/2209.05364
https://arxiv.org/abs/2312.06205
https://doi.org/10.48550/arXiv.2311.00500
https://doi.org/10.48550/arXiv.2303.14186
https://doi.org/10.48550/arXiv.1503.03585
https://arxiv.org/abs/2402.04384
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/1907.05600
https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

20. a, b, cSong Y, Sohl-Dickstein J, Kingma DP, Kumar A, Ermon S, Poole B. Score-Based Generative Modeling throug

h Stochastic Differential Equations. 2021 Feb. doi:10.48550/arXiv.2011.13456.

21. a, bSong Y, Durkan C, Murray I, Ermon S. Maximum Likelihood Training of Score-Based Diffusion Models. arXiv.

October 2021. Available from: arXiv:2101.09258.

22. ^Kingma DP, Salimans T, Poole B, Ho J. Variational Diffusion Models. arXiv. April 2023. Available from: https://ar

xiv.org/abs/2107.00630.

23. a, bKrantz SG, Parks HR. The Implicit Function Theorem. Boston, MA: Birkhäuser; 2003. ISBN 978-1-4612-6593-

1 978-1-4612-0059-8. doi:10.1007/978-1-4612-0059-8.

24. ^Kunstner F, Balles L, Hennig P (2019). "Limitations of the Empirical Fisher Approximation for Natural Gradient

Descent". In: NeurIPS.

25. ^Amari S. Natural gradient works efficiently in learning. Neural computation. 10 (2), 1998.

26. a, b, c, d, e, fGrosse R, Bae J, Anil C, Elhage N, Tamkin A, Tajdini A, Steiner B, Li D, Durmus E, Perez E, Hubinger E, L

ukošiūtė K, Nguyen K, Joseph N, McCandlish S, Kaplan J, Bowman SR. Studying Large Language Model Generaliza

tion with Influence Functions. arXiv. 2023 Aug. arXiv: 2308.03296.

27. ^Bernacchia A, Lengyel M, Hennequin G (2018). "Exact natural gradient in deep linear networks and its applicati

on to the nonlinear case". In: NeurIPS.

28. ^Dasgupta S, Gupta A (2003). "An elementary proof of a theorem of Johnson and Lindenstrauss". Random Structu

res & Algorithms. 22 (1): 60–65. doi:10.1002/rsa.10073.

29. a, b, cRadford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, Sastry G, Askell A, Mishkin P, Clark J, Krueger G,

Sutskever I (2021). "Learning Transferable Visual Models From Natural Language Supervision". arXiv. Available f

rom: https://arxiv.org/abs/2103.00020.

30. ^Krizhevsky A. Learning Multiple Layers of Features from Tiny Images. Technical report. University of Toronto; 20

09. Available from: http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf.

31. ^Song J, Meng C, Ermon S. "Denoising Diffusion Implicit Models". arXiv. October 2022. doi:10.48550/arXiv.2010.0

2502.

32. ^Bae J, Lin W, Lorraine J, Grosse R (2024). "Training Data Attribution via Approximate Unrolled Differentiation".

arXiv. https://arxiv.org/abs/2405.12186.

Declarations

Funding: Richard E. Turner is supported by Google, Amazon, ARM, Improbable, EPSRC grant EP/T005386/1,

and the EPSRC Probabilistic AI Hub (ProbAI, EP/Y028783/1).

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/BOJDXM 39

https://doi.org/10.48550/arXiv.2011.13456
https://arxiv.org/abs/2101.09258
https://arxiv.org/abs/2107.00630
https://arxiv.org/abs/2107.00630
https://doi.org/10.1007/978-1-4612-0059-8
https://arxiv.org/abs/2308.03296
https://doi.org/10.1002/rsa.10073
https://arxiv.org/abs/2103.00020
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.48550/arXiv.2010.02502
https://doi.org/10.48550/arXiv.2010.02502
https://arxiv.org/abs/2405.12186
https://www.qeios.com/
https://doi.org/10.32388/BOJDXM

