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In quantum mechanics, classical matrix bases such as the Pauli matrices are often generalized to
higher dimensions. So, it is useful to express their corresponding operators using the Dirac Bra and
Ket. In this paper, to express the corresponding operators we review the Kronecker-Pauli matrices and
how to construct them for an N-dimensional system, with N a prime integer, N>2. Then, we give the
expression of the Kronecker-Pauli operators and show that their matrices with respect to the standard

basis fulfill the conditions to form a set of Kronecker-Pauli matrices.
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1. Introduction

In quantum mechanics, classical matrix bases such as the Pauli matrices are often generalized to higher

dimensions. For example, the Gell-Mann matrices are generalized to any dimension without knowing the

corresponding operators in the standard basis (see for example, [1}). Operators are easier to use than

higher-dimensional matrices, which has led to the construction of the Gell-Mann operators by using the

Dirac bra and ket (see, for example 21031y, So, we study, in this paper, what operators whose matrices in

the standard basis are the matrices in a set of Kronecker-Pauli matrices. Kronecker-Pauli matrices

(KPMs) are extensions of the Pauli strings, studied in (4],

Knowing that the Kronecker product of sets of KPMs is a set of KPMs (2] we study only the case of N-

dimensional, where NV is a prime integer, N > 3.

By examining the sets of KPMs, we will construct the Kronecker-Pauli operators. Then, as an example, we
will construct a 5 x 5- KPMs from the Kronecker-Pauli operators. However, we know that there are at

least two sets of 5 x 5- KPMs. That will engage a discussion.
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The paper is organized as follows. In the first section, we review the sets of KPMs, and how to construct
them. In the second section, we give the expression of the Kronecker-Pauli operators. We finish the paper

with a discussion and conclusion.

2. Sets of Kronecker-Pauli matrices

Definition 1

For n integer n > 1, let us define a set of n x n- KPMs as a family () of n? matrices which

0<k<n?-1

satisfy the following properties Bl

2
i.Spen = % z;j:gl I1;. ® I 1} is the n ® n swap operator;

i. [T," = I1,, for (0 < k < n? — 1), (hermiticity);

ii. ]_[k2 = I,, for (0 < k < n? — 1), (square root of the unit);

iv. Tr (HkTHJ) = ndy;, for (0 < k, j < n* — 1), (orthogonality).
where §; is the Kronecker symbol.
To construct such a family, the concept of the inverse-symmetric matrix is useful Bl
Definition 2
Let us call an inverse-symmetric matrix an invertible complex matrix A = (A;) such that A{ = A—li if
A; #0.
Proposition 1

For any n x n inverse-symmetric matrix A, with only n non-zero elements, A?> = I, is the unit matrix.

Consider the case of N-dimensional matrices where N is a prime integer. According to this proposition 1,
the choice of inverse-symmetric matrices ensures property iii) of definition 1. To ensure property ii) of

hermiticity, consider a family of inverse-symmetric matrices whose elements are the N-th roots of the

unit. The following proposition /4l ensures properties i) and iv).

In the following proposition, the matrix of an operator is its matrix in the standard basis
(|0>a |1>7 |2>a teey |N_1> )
Proposition 2

Let P, P9, ..., Py be operators whose matrices are symmetric permutation matrices with only one unit

in the diagonal.
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=P; and , y ey _, are operators whose matrices are obtained by replacin the "ones" in
0 1 2 N-1 g
I I =P by the N-th roots of lll’lity while keepin that they are inverse—symmetrics. We do the same to
0 g

the operators P», ..., P in order to have the operators

[Iy = Poand [y, 1, [Tnior s [lon1

[Inve-n = Pryand[[y2 niq, e nior o [lvea

whose matrices are inverse-symmetrics.

If
1. The sum P; + Py + ... + Py is equal to the operator whose matrices is the IV x N ones matrix;
2.Foranyl€{0,1,2, ..., N—1}, forany k, j€{IN+1,IN+2, ..., IN+ N — 1}, for any
two places ina IV x N-matrix, non-symmetrics with respect to the diagonal where the elements of
2i1rpk 2i7r7‘k 2imp ; 2i7r .
[ aree™ ande™~ andtheelementsof [[;aree™ ande ™~ such that
2im(r g +pp) 2in(r j+p;)
e~ N #eT N
Then

Snen = = "1, ® [1, is the N ® N swap operator and Tr (HkTH].) = N

The following example was an example from 4 constructed following the hypotheses of Proposition 2

above. The property i) of definition 1 is checked with the help of SCILAB software.

Example 1
1 0 000 1 0 0 0 1 0 000
0 0 10 0 0 0 n 0 0 0 0 752 00
x1=[0 1 0 0 0 |[hxe=]0 n* 0 0 0 |xs o 7 0o 0 0 |
0 0 0 0 1 0 0 0 0 n? 0 0 0 0 n*
00 0 1 0 0 0o 0 »* o0 0 0 0 n O
1 0 0 0 0 1 0 000
0 0 7 0 0 0 0 nt 0 0
=10 72 0 0 0fl,xs=]0 n 0 0 0 [
0 0 0 0 g 0 0 0 0 g
0 o 0 7* 0 0 0 0 #n*2 o
0 0 0 01 0 0 0 0 7n 0 0 0 0 n?
01 000 0 1 000 0 1 000
xs=|10 0 0 1 0)»@ 0 0 0 =72 0 |Lhxs=| 0 0 0 2 0|,
0 0 0 0 0 0 7»* 0 0 0 0 n 0 O
1 0 0 0 n 0 0 0 0 n” 0 0 0 0
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3. Kronecker-Pauli Operators

The form of a Kronecker-Pauli matrix in a set of KPMs suggests the following definition of a Kronecker-

Pauli operator. For a prime integer IV, our goal is to construct a system of operators whose matrices in the

standard basis form a set of N x N- KPMs.

Definition 2

doi.org/10.32388/BSBYUS8.2
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Let us define a Kronecker-Pauli operator as the operator

=

2im

—(k=I)n
[L = 2o e o h) (K

=~
Il

where N is a prime integer, n=0,1,2,..., N—1, 1 €{0,1,2,..., N—1}, o is a symmetric
permutation on the set {0,1,2,..., N — 1}, such that o (c(k)) = k&, for any k € {0,1,2,..., N — 1},

o(l) = land o(k) # k,ifk # L.

Let us take a function o defined as
0<o(k)=—-k+2]N]< N

forany k € {0,1,2,..., N —1}.

o is a symmetric permutation on {0,1,2,..., N—1} such that o(o(k)) =% for any

ke {0,1,2,..., N—1},0(l) =land o(k) # k, if k # . Thus, the operator
20

iy = Yo e “ —k+20N]) (K @)

is a Kronecker-Pauli operator.

However, consider the following operator

-1

21
I, =D ew " —rk+ (r+ 1)IN)) (K|
o k=0
for re€{1,2,..., N—1}, where if r=1 we will get the operator in (1). 7 defined in
{0,1,2,..., N -1} by 7(k) = —rk + (r + 1)I[N]. () =1 and

7(1(k)) = —r7(k) + (r + D)I[N] = v’k — r?l +1. In order that 7 was a symmetric permutation
r’k—r’l+l=Fk (r*-1)(k—1)=0, for any k€ {0,1,2,..., N—1}. Thus, for k#1[, r=1, ie

7(k) = —k + 2I[N].
In the rest of this paper we consider the Kroneker-Pauli operator defined in (1).
The operator can also be written as the following

2im

L= R ek =3 e¥® 0" k) ( —k+ 2N

In order for the matrices of the operators in this system of operators (1) to form a set of KPMs, we have to

show that these matrices satisfy the hypotheses of Proposition 2 above. Let us write it as a proposition.

Proposition 3
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The N2 matrices, in the standard basis, of the system of Kronecker-Pauli operators (Hz n N) isa
T 0<in<N-1

aset of N x N- KPMs.
Proof

For n=0, P.1 = Ha,z,o,N is a symmetric permutation matrix with only one unit, at /-th row [-th
column, on the diagonal. Let us show that P, + P, + ... + Py is the N x N ones matrix. To do so, let us
take j, m € {0,1,2,..., N — 1}, with j # m, and show that thereis! € {0,1,2,..., N — 1}, | j) (m]| is

aterm of the operator Priq =[], ;.-

If j + miseven,thereis! € {0,1,2,..., N—1},j+ m = 2l.

If 7+ m is odd, for the case 0 < ]+m+N < N,letl = J+m+N j+m =2l — N.Forthecase N < @,
0<j+m—N<N,letl="1 ,]+m_2l+N

We have seen that for any case m is of the form m = —j + 2{ [N], that is | j) (m| is a term of the
operator Pri1 = [[, ;o n-

To finish show that if | j) (m/| is a term of an operator P, = HU,II)O’N, then ! =1.1If | j) (m| is both

term of P =[], oy and P, = HU’II’O’N, then j=—m+2([N] and j= —m + 2I'[N]. Thus,

'+

N divides I — {' and that implies that | = l.

Now, let us prove that for m, n € {1, 2, ..., N—1}, m<mn, for j, k€ {0, 1, 2, ..., N — 1}, with
J# ko(j) #k, e% (G=0+(k=Dln =+ ezzlvl[(jfm(k*l)]m. To do so, let us suppose the contrary, that is suppose
that there are m, n € {1,2,..., N—1}, m<n, for 4, k{0, 1,2, ..., N—1}, with j#k,

o(j) # k, e (F=D+(k=DIn _ ZR G-+ (k-Dlm, Then, (5 + k — 2k)(n — m) = O[N]. As N is a prime integer,

thus after the Euclid lemma, N divides (j + k — 2k), that is k = o(3). It is a contradiction.
The proposition is proved.
Example 2
For N =3,n=1,0(0)=2,0(1) =1,0(2) =0
[L.,=¢ 1200+ + ¢ [0)(2

whose matrix in the standard basis (| 0), 1), [2) )is

o o

H1,1,3_

o
(=R =
o o &

€

20T

withw =€e75 .
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Example 3

For N =5,0(0) =0,0(1) =4,0(2) =3,0(3) =2,0(4) =1,forn =0, 1, 2, 3, 4 we have respectively
the following five matrices which are, in the standard basis (|0), 1), [2), [3), [|4) ),

matrices of the corresponding Kronecker-Pauli operators,

1 0 0 0 O 1 0 0 0 O
00 00 1 00 00 nt
Il =1loos=]0 0o o 1 o |, IL=Ilsis=]l0 0 0o = o0 [
00 1 0 0 00 72 0 0
0O 1 0 0 O 0 7 0 0 O
1 0 0 0 O 1 0 0 0 O
0 O 0 0 nd [ 0 0 0 0 n?
[L=1Ilas=]0 o0 0 n 0 |\ILh=1Ilss=]0 o0 nt 0 |
0 0 »* 0 O 0 0 n 0 O
0 2 0 0 O 0 n» 0 0 O
1 0 0 0
0 O 0 0 g
I=1lsys=|0 0 0 72> 0
0 0 ¥ 0 0
o nt 0 o0 O

0 0 1 0 0 0 n 0 0

01 000 0 1 0 0O
IIs=1lios=]1 0o o o o |, Il;=ILixs=|n* 0 0o 0o o0 [,

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 7% 0

0 0 52 00 0 0 2 00

0 1 0 0O 0 1 0 0 O
[Is=Ilss=]|7* 0 0 0o o |[,\IL= ILss=|»* 0o 0 0o 0 |

0 0 0 0 ¢ 0 0 0 0 n*

0 0 0 n* 0 0 0 0 7nn 0

0 0 nt 0 0

0 1 0 0 O
HlO = H1,4,5 =|n 0 0 0 0

0 0 0 0 n?

0 0 0 7 0

Foro(0) =4,0(1) = 3,0(2) =2,0(3) =1,0(4) = 0,forn =0, 1, 2, 3, 4 we have respectively

(0 0 0 0 1\ 0 0 0 0 n?

00 0 1 0 0 0 0mn o0

[l =1Iles=]10 0 1 0 0 |, [[,=IL,s=| 0 0 1 0 0 [
0O 1 0 0 O 0 174 0 0 O
10 0 0 0 B0 0 0 0/
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12,5 7

H13 = Hz

3,0(4) = 2,forn =0, 1, 2, 3, 4 we have respectively

For o(0) = 1,0(1) = 0,0(2) = 4,0(3)

06 7

Hlﬁ = H3

—
™
(en)
OOT/
o O O (=)
o O
[a]
o =
= o o o
o = o o
[\
I
0
o
=
I
D
=
\J M
—
[a\]
(=) <
oo ¥ o o &
o O O 0000
o O o O
o 3n o
s o o o o o
© = o o O o
I Il
0 0
o <
= =
Il I
00 [=}
= =

4,forn =0, 1, 2, 3, 4 we have respectively

For o(0) = 3,0(1) = 2,0(2) = 1,0(3) = 0,0(4)
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4. Discussion and Conclusion

Giving N a prime integer, N > 2, a set of N x N- KPMs is well defined by N symmetric permutation
matrices with on the diagonal only one entry is the unit, on other is the zero and inverse-symmetric
matrices obtained in replacing the units on the NV symmetric permutation matrices by N-th roots of the
unit, but in respecting that the hypotheses of the Proposition 2 are satisfied. To construct the system of
operators whose matrices in the standard basis form a set of N x N- KPMs we have at first defined for
eachl {0, 1, 2, ..., N — 1} a symmetric permutation on {0, 1, 2, ..., N — 1}. That gives only one
set of N x N- KPMs. However, for N = 5 there are at least two sets of N x N- KPMs. That is due to the
definition of the symmetric permutation for constructing the system of Kronecker-Pauli operators, only
one set of N x N- KPMs is obtained as the matrices in the standard basis. Let us call such a family of

matrices a N x N-Kronecker-Pauli basis.

Perhaps the other sets of N x N- KPMs would be formed by the matrices of the constructed system of

Kronecker-Pauli operators in other bases than the standard basis.

But the essential is obtaining a system of operators whose matrices in the standard basis fulfill the

conditions to be as an IV x IN-Kronecker-Pauli basis.

Appendix A. Kronecker Product

Definition 3

For any matrices A = (A; eC?,B= (Bi. € C™*14, the Kronecker product of

>19§n,1sj‘§p J >1Si§m,1sj‘gq

the matrix A by the matrix B is the matrix

AlB AIB ... AIB
A’B A’B ... A2’B
a@p- | NP AE A
A"B A"B ... A'B

Properties

» ) isassociative.
» @ is distributive with respect to the addition.

o For any matrices A, B, C,and D

(AQ)B)(C QD) = AC (K BD
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e For any invertible matrices A and B

(ARB) ' =4"QB"

o For any matrices A and B

(AR B)" =4" Q) B"

Proposition 4

Let (4i)i<jcn, and (Bj) respectively be some bases of C™* and C™*Y. Then,

1<j<mgq

. A i i nmxpq
(Ai @ Bj),<icnpi<jcmg isabasisof C .
Proposition 5

Suppose
2 MQN; =) AQB:
j=1 =1

with the M’s, A;’s are elements of C?*? and the N,’s, B;’s are elements of C"**.

Then
> M;QEQN, => 4 QKQE,
j=1 i=1

for any matrix K.

Proof. The proof of this proposition in [l regards a Kronecker product of matrices as an hypermatrix.

Appendix B. Kronecker Commutation Matrices or Swap Matrices

The Kronecker product of matrices is not commutative, but there is a permutation matrix which, in
multiplying to the product, commutes the product. We call such matrix Kronecker commutation matrix

or swap operator.
Definition 4

The permutation matrix K, g , € C"*"”, such that for any matrices a € C"* Lbecr!

Kn®p(a®b) = b®a

is called n ) p-Kronecker commutation matrix ou swap matrix, n &) p-KCM.

geios.com doi.org/10.32388/BSBYUS.2
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K2®2: :K3®3:

S O O

o = O O

o O = O

= o O O
OB O O O O o o o
O O O+ O O o o o
= O O O O O O o O

O O O o B OO o o
O O OO O o= o o

O O OO o oo o
O O OO o B O o o
S O H O O O O O O
O O OO O O o = o

For constructing n Q) p —KCM, we can use the following rule m
Rule1

Let us start in putting 1 at first row, first column, then let us pass into the second column in going down
at the rate of n rows and put 1 at this place, then pass into the third column in going down at the rate of n
rows and put 1, and so on until there is only for us n-1 rows for going down (then we have obtained as
number of 1: p). Then pass into the next column which is the (p + 1)-th column, put 1 at the second row of
this column and repeat the process until we have only n-2 rows for going down (then we have obtained as
number of 1: 2p). After that pass into the next column which is the (2p + 2)-th column, put 1 at the third
row of this column and repeat the process until we have only n-3 rows for going down (then we have
obtained as number of 1: 3p). Continuing in this way we will have that the element at nx p-th row, nxp-

th columnis 1.

Proposition 6
Suppose
S
Kngm =) 4QB
ij=1
and

Kygq= ZC’“®D1
fei=1

with the A4;’s are elements of C™*", the B,’s are elements of C"*™, the C}’s are elements of C**Pand the

D;’s are elements of C?*4. Then,

Knp@mg = Z ZA“'@C’“@BJ@DZ

i,=1 k=1

Proof

geios.com doi.org/10.32388/BSBYUS.2
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Let (as), (cs), (b,) and (ds) be, respectively, bases of C™*', CP*!, C™' and C%'. Then,

(aa Rc;Rb,Qd 5) is a basis of C"”™¢*! It is enough to prove that

i: zT:Ai®Ck®Bj®DZ (e, R6:R4) =0.Q 4, R Re,

ij=1kil=1

We use the proposition 5. From

;A R B; (aa®bﬁ,) =b,@a

we have
Zl ;Aiaa &) Cres R) Biby R) Dids = ;:lb7 R Cres R aa Q) Dids
1= pe
=5, k;z_:lckcﬂ ) aa Q) Dids
Moreover
;qua Qe @ Dids = ds @ o, Qe
and that ends the proof.
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