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In quantum mechanics, classical matrix bases such as the Pauli matrices are often generalized to higher
dimensions. So, it is useful to express their corresponding operators using the Dirac Bra and Ket. In this
paper, to express the corresponding operators we review the Kronecker-Pauli matrices and how to
construct them for an N-dimensional system, with N a prime integer, N>2. Then, we give the expression
of the Kronecker-Pauli operators and show that their matrices with respect to the standard basis fulfill
the conditions to form a set of Kronecker-Pauli matrices. Relationship between the Kronecker-Pauli

operators and the Weyl operators has been studied.
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1. Introduction

In quantum mechanics, classical matrix bases such as the Pauli matrices are often generalized to higher

dimensions. For example, the Gell-Mann matrices are generalized to any dimension without knowing the

corresponding operators in the standard basis (see for example, (1], Operators are easier to use than higher-

dimensional matrices, which has led to the construction of the Gell-Mann operators by using the Dirac bra

and ket (see, for example [Z3]). So, we study, in this paper, what operators whose matrices in the standard

basis are the matrices in a set of Kronecker-Pauli matrices. Kronecker-Pauli matrices (KPMs) are extensions
of the Pauli strings, studied in (4],

Knowing that the Kronecker product of sets of KPMs is a set of KPMs (2, we study only the case of N-
dimensional, where N is a prime integer, N > 3.

By examining the sets of KPMs, we will construct the Kronecker-Pauli operators. Then, as an example, we
will construct a 5 x 5- KPMs from the Kronecker-Pauli operators. However, we know that there are at least

two sets of 5 x 5- KPMs. That will engage a discussion.
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The paper is organized as follows. In the first section, we review the sets of KPMs, and how to construct
them. In the second section, we give the expression of the Kronecker-Pauli operators. In the third section,

the relation with the Weyl operators is studied. We finish the paper with a discussion and conclusion.

2. Sets of Kronecker-Pauli matrices

Definition 1

For n integer n > 1, let us define a set of n x n- KPMs as a family ([[,,) of n? matrices which satisfy

0<k<n?-1

the following properties 1.

i Sngn == 222:51 1 ® I, is the n ® n swap operator;

ii. [T," = I, for (0 < k < n? — 1), (hermiticity);

iii. H,f = I,,,for (0 < k < n? — 1), (square root of the unit);

iv. Tr (kanj) = néy;, for (0 < k, j < n? — 1), (orthogonality).
where dy; is the Kronecker symbol.
To construct such a family, the concept of the inverse-symmetric matrix is useful 1)
Definition 2
Let us call an inverse-symmetric matrix an invertible complex matrix A = (A;) such that Af = j if
Ai 0.
Proposition 1
For any n X n inverse-symmetric matrix A, with only n non-zero elements, A?> = I, is the unit matrix.

Consider the case of N-dimensional matrices where NN is a prime integer. According to this proposition 1,
the choice of inverse-symmetric matrices ensures property iii) of definition 1. To ensure property ii) of
hermiticity, consider a family of inverse-symmetric matrices whose elements are the V-th roots of the unit.
The following proposition [4 ensures properties i) and iv).

In the following proposition, the matrix of an operator is its matrix in the standard basis
(|0>, ‘1>a |2>7 ERRS |N_1> )

Proposition 2

Let Py, Ps, .., P be operators whose matrices are symmetric permutation matrices with only one unit in

the diagonal.
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=P; and . are operators whose matrices are obtained by replacing the "ones” in
0 1 2 ) N—1 p y p g
[1, = P1 by the N-th roots of unity while keeping that they are inverse-symmetrics. We do the same to the

operators Ps, ..., Py in order to have the operators

[Ty = Poand [[y. o, [Inios o [lont

IIy2y = Pyvand[[y2 yoq, [Invenios o Ives

whose matrices are inverse-symmetrics.

If
1. Thesum P; + P2 + ... + Py is equal to the operator whose matrices is the IV x N ones matrix;
2.Foranyle€{0,1,2, ..., N—1},forany k, je {IN+1,IN+2, ..., IN+ N — 1}, for any two
placesina N x N-matrix, non-symmetrics with respect to the diagonal where the elements of [ [, are
Zinpk 2i7r7‘]C 2imp . 2imr
e~ ande v andtheelementsof [[;aree™ ande ™~ such that
2in(rg+-py,) 2im(r j+p;)
e~ n e~ n
Then

SneN = % 22:61 1 ® I1}, is the N ® N swap operator and Tr (HkTHj) = Noy;.

The following example was an example from 4 constructed following the hypotheses of Proposition 2

above. The property i) of definition 1 is checked with the help of SCILAB software.

Example 1
1 0 00 0 1 0 0 1 0 0 00
0 0 100 0 0 n 0 0 0 0 2 00
x1=|0 1 0 0 0 |Lbxe=]0 ¢ 0 0 0 |,xs 0o »» 0 0 0 [
0 0 0 0 1 0 0 0 0 g? o0 0 0 o0 nt
0 0 0 1 0 0 0 0 7% 0 0 0 0 n 0
1 0 0 0 0 1 0 0 00
0 0 % 00 0 0 »* 00
xs=|0 »» 0 0 0|/ xs=]0 o 0 0 0 |
0 0 0 0 g 0 0 O n?
0 0o 0 n* 0 0 0 0 72 0
0 0 001 0 0 0 0 7 0 0 0 0 72
01 000 0 1 0 0 0 0 1 000
xs=]10 0 0 1 0)»@ 0 0 0 72 0 fxs=|0 0 0 n* 0]
0 0 1 0 0 0 0o 70 0 0 0 n 0 O
1 0 0 0 O nn 0 0 0 O n” 0 0 0 0
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3. Kronecker-Pauli Operators

The form of a Kronecker-Pauli matrix in a set of KPMs suggests the following definition of a Kronecker-

Pauli operator. For a prime integer NN, our goal is to construct a system of operators whose matrices in the

standard basis form a set of N x N- KPMs.

Definition 2

Let us define a Kronecker-Pauli operator as the operator

doi.org/10.32388/BSBYUS8.3
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where N is a prime integer, n = 0,1,2,..., N—1,1€ {0,1,2,..., N — 1}, ¢ is a symmetric permutation
on the set {0,1,2,..., N — 1}, such that o(o(k)) =k, for any k € {0,1,2,..., N -1}, o(l) =1 and
o(k) # k,ifk # L.

Let us take a function o defined as

0 <o(k) = (—k+2l)modN < N

forany k € {0,1,2,..., N —1}.

o is a symmetric permutation on {0,1,2,..., N—1} such that o(o(k)) =%k, for any

ke{0,1,2,..., N—1},0(l) =land o(k) # k, if k # l. Thus, the operator

=

—1
1., = e 707 | (Zk + 20)modN) ( K (1)
’ 0

B
Il

is a Kronecker-Pauli operator.
However, consider the following operator

2im

IL...= Zezvkl [—rk + (r + 1)lJmodN) ( k|

forr € {1,2,..., N — 1}, where if » = 1 we will get the operator in (1). 7 defined in {0,1,2,..., N — 1} by
1(k) = (—rk + (r + 1))modN. 7(1) = l and 7 (7(k)) = [—r7(k) + (r + 1)l)modN = r2k — v}l + . In order
that 7 was a symmetric permutation r’k—r’l+1=k (r*-1)(k—1)=0, for any
ke {0,1,2,..., N —1}.Thus,for k # I,r = 1,ie (k) = (—k + 2l)modN.

In the rest of this paper we consider the Kroneker-Pauli operator defined in (1).

The operator can also be written as the following

N-1 2im N— i
—kln —kln
IL,.,=> "k kz_: w0 | k) (—k + 20)modN|

In order for the matrices of the operators in this system of operators (1) to form a set of KPMs, we have to

show that these matrices satisfy the hypotheses of Proposition 2 above. Let us write it as a proposition.
Proposition 3

The N? matrices, in the standard basis, of the system of Kronecker-Pauli operators (Hz n N) isaa
e 0<l,;n<N-1

set of N x N- KPMs.
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Proof

Forn =0, Py = Ha,l,O, y s a symmetric permutation matrix with only one unit, at [-th row /-th column,
on the diagonal. Let us show that P, + P> + ...+ Py is the N x N ones matrix. To do so, let us take
j, me€{0,1,2,..., N — 1}, with j # m, and show that thereis/ € {0,1,2,..., N — 1}, | j) ( m| is a term

of the operator Py = [[, ;o n-

If j + miseven, thereis! € {0,1,2,..., N —1},j+m = 2L

If 5+ m is odd, for the case 0 < @ < N,letl = j+";+N,j+m =21 — N. For the case N < @,
0<j+m—N<Nletl=22N i m—21N.
We have seen that for any case m is of the form m = —j + 2 [N], that is | j) ( m/| is a term of the operator

P = HU,Z,O,N .

To finish show that if | j) (m/| isaterm of an operator P, | = [] then! =1I.1f | j) (m| isboth term

ol 0N’
of Py =[], oy and P, = Ha,l’,o,N’ then j = —m + 2[[N] and j = (—m + 2I')N. Thus, N divides

! — I and that implies that I = [ .

Now, let us prove that for m, n € {1, 2, ..., N—1}, m<n, for j, k{0, 1,2, ..., N—1}, with

24 /. 20T /.
j#k o(j) #k, en UTOTEDIn L o SFG=D+E=DIm 1 4o 50, let us suppose the contrary, that is suppose

that therearem, n € {1, 2, ..., N— 1}, m <n,forj, ke {0, 1, 2, ..., N — 1}, with j # k, o(j) # k,
e (G0N _ ZRG-D+(k-D)m, Then, (j+ k — 2k)(n —m) = OmodN. As N is a prime integer, thus

after the Euclid lemma, NV divides (j + k — 2k), that is k = o(j). It is a contradiction.
The proposition is proved.
Example 2

For N =3,n=1,0(0)=2,0(1) =1,6(2) = 0

2im

H1,1,3:eiT|2><0‘+|1><1\ + e%|0><2|

whose matrix in the standard basis (] 0), |1 ), [2) )is

0 0 w
H =0 10
1,1,3

w0 0

2im

withw =¢e75 .
Example 3

For N =5,0(0) =0,0(1) =4,0(2) =3,0(3) =2,0(4) =1,forn =0, 1, 2, 3, 4 we have respectively the

following five matrices which are, in the standard basis (| 0), |1 ), |2), [3), |4 ) ), matricesofthe

geios.com doi.org/10.32388/BSBYUS.3


https://www.qeios.com/
https://doi.org/10.32388/BSBYU8.3

corresponding Kronecker-Pauli operators,
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3,forn =0, 1, 2, 3, 4 we have respectively

2,0(1)=1,0(2) =0,0(3) =4,0(4) =

For o(0)
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2,0(3)=1,0(4) =

For o(0) = 4,0(1) = 3,0(2)

ZT/OOOO

o SO oo

~
I
2
el
=
I
=
=
—_
- o oo

Hll

doi.org/10.32388/BSBYUS8.3

geios.com


https://www.qeios.com/
https://doi.org/10.32388/BSBYU8.3

2,forn =0, 1, 2, 3, 4 we have respectively
4,forn =0, 1, 2, 3, 4 we have respectively

4,0(3) =3,0(4)
1,0(3) =0,0(4)

0,0(2)

0

o o © o -

<
©S T o oo
o O - o o

© o oo

= H4,3,5
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™

45

3,0(1) =2,0(2)

Foro(0) = 1, 0(1)

H16 = H3,0,5

For o(0)

H15 = Hz

The following d2 operators

4. Weyl Operators

Definition 3
geios.com
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are called Weyl operators.

For three-dimensional case, it has been shown that up to a phase factor a Weyl operator is product of two
Kronecker-Pauli operators [4]. Now we can generalize it in playing with operators but not with matrices. We

express the generalization by the following proposition.
Proposition 4

For prime integer N, for N-dimensional case the product of two Kronecker-Pauli operators is a Weyl

operator up to phase factor.
Proof

Forly, ls, n1, na E{O, 1,2, ---, N—l}

k= m=0

N— N-1 .
II 1II = <Z S m |y ( (<K + 20) mod N| ) (Ze%mlﬁ"qmm (—m + 2I,) mod N| )
ly,nq,Nly,ny,N

N-1N-
ZZ 2m(k Wy, —(m ly) n2‘k>< (—k+2lL)mod N| m){ (—m + 2ly) mod N|

k=0 m=0

As the application k — (—k + 2I;) mod N is permutationon {0, 1, 2, ---, N — 1}, then

N—
Z N (=tm (et 2ymod N-la)nal | gy (- (_ (k4 91, ) mod N + 2ly) mod N|
l1,n1,N ly,n9,N k=0

) N-1 .
— 627[11("2—"1)+(l1—12)"2]Ze%[’c(m—nz)]| k) ( [k+2 (s — )] mod N|
k=0

5. Discussion and Conclusion

Giving N a prime integer, N > 2, a set of N x N- KPMs is well defined by N symmetric permutation
matrices with on the diagonal only one entry is the unit, on other is the zero and inverse-symmetric
matrices obtained in replacing the units on the NV symmetric permutation matrices by N-th roots of the
unit, but in respecting that the hypotheses of the Proposition 2 are satisfied. To construct the system of
operators whose matrices in the standard basis form a set of N x V- KPMs we have at first defined for each
le{0, 1,2, ..., N—1} a symmetric permutation on {0, 1, 2, ..., N — 1}. That gives only one set of
N x N- KPMs. However, for N = 5 there are at least two sets of N x N- KPMs. That is due to the definition
of the symmetric permutation for constructing the system of Kronecker-Pauli operators, only one set of
N x N- KPMs is obtained as the matrices in the standard basis. Let us call such a family of matrices a

N x N-Kronecker-Pauli basis.
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Perhaps the other sets of N x N- KPMs would be formed by the matrices of the constructed system of

Kronecker-Pauli operators in other bases than the standard basis.

But the essential is obtaining a system of operators whose matrices in the standard basis fulfill the

conditions to be as an N x IN-Kronecker-Pauli basis.

We have shown that, for N-dimensional case, with IV a prime integer, N>2, the product of two Kronecker-

Pauli operators is a Weyl operator, up to phase factor.

Appendix A. Kronecker Product

Definition 3

For any matrices A = (A? € C™*4 the Kronecker product of

J ) 1<i<n,1<j<p

e C™P, B = (Bi.

J )1§igm,1§j§q

the matrix A by the matrix B is the matrix

AlB AlB ... AlB
A’B A:B .- AlB
aQe=| " 7 ’
A'B A3B -+ AB

Properties

» ) isassociative.

Q) is distributive with respect to the addition.

¢ For any matrices A, B, C,and D

(AQR) B)(C Q) D) = AC (X) BD

» For any invertible matrices A and B

(ARB '=4"'QRB "

¢ For any matrices A and B

AQB) -4 @B’
Proposition 4

Let (4i)icicpy and (By) respectively be some bases of C"™P and C™9. Then,

1<j<mgq

. . i i nmxpq
(A @ Bj),<icpp1<jemg 1S abasis of C .

Proposition 5
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Suppose
YNM;QN; =) AR B
j=1 i=1

with the M;’s, A;’s are elements of C**? and the N;’s, B;’s are elements of C"™°.

Then
D MQQEQN, => 4QKQBE,
j=1 i=1

for any matrix K.

Proof. The proof of this proposition in %l regards a Kronecker product of matrices as an hypermatrix.

Appendix B. Kronecker Commutation Matrices or Swap Matrices

The Kronecker product of matrices is not commutative, but there is a permutation matrix which, in
multiplying to the product, commutes the product. We call such matrix Kronecker commutation matrix or

swap operator.
Definition 4

The permutation matrix K, g , € C"""", such that for any matrices a ¢ cvt b e o

Kn®p(a®b):b®a

is called n @ p-Kronecker commutation matrix ou swap matrix, n ) p-KCM.

Kyg2= yKygs =

o O O
o = O O
S O = O
= O O O

O O OO O oo o =
O O OO0 o B O o O
SO OB OO O o o o
O O O O O O o+~ O
O O OO0+ OO o O
OB O O O O o o O
(=l eoNooNol S ==]
SO O O H O O o o o
_H O O O O O o o o

For constructing n &) p —KCM, we can use the following rule m,
Rule1

Let us start in putting 1 at first row, first column, then let us pass into the second column in going down at
the rate of n rows and put 1 at this place, then pass into the third column in going down at the rate of n rows

and put 1, and so on until there is only for us n-1 rows for going down (then we have obtained as number of 1
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: p). Then pass into the next column which is the (p + 1)-th column, put 1 at the second row of this column
and repeat the process until we have only n-2 rows for going down (then we have obtained as number of 1:
2p). After that pass into the next column which is the (2p + 2)-th column, put 1 at the third row of this
column and repeat the process until we have only n-3 rows for going down (then we have obtained as

number of 1: 3p). Continuing in this way we will have that the element at n x p-th row, nx p-th column is 1.
Proposition 6

Suppose
Kogm=>_ 4 Q)B;
i,j=1
and

K,@q= XT:C’“®D1
k=1

with the A;’s are elements of C™*", the B,’s are elements of C"*™, the C}’s are elements of C**Pand the

Dy’s are elements of CP*?, Then,

Knpgmi =) > A4 QG QB QD

i=1k1=1
Proof

Let (as), (cg), (b,) and (d;) be, respectively, bases of C™*', CP*', C™' and C%'. Then,

(aa Rc; ®b,Qd 5) is a basis of C""™?*! 1t is enough to prove that

> Y 4QGRB QD (1.®:, Q4R ) - R4, Qe B,

ij=1ki=1

We use the proposition 5. From

zs: Ai®B]~ (aa ®b7) = b7®aa

&
we have
. lkl’ A & Cics Q Bjb, Q) Dids = ;m@okcﬂ R a0 R Dids
W o
= b7®§:_10kcﬂ X aa Q) Dids
Moreover
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Z Crep ®aa ®Dld5 = ds ®aa®cﬂ
k=1

and that ends the proof.
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