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In quantum mechanics, there are some classical bases which are generalized to higher-dimensional

matrices. So, it is useful to express their corresponding operators using the Dirac Bra and Ket. In this

paper, to express the corresponding operators, we review the Kronecker-Pauli matrices and how to

construct them for an N-dimensional system, with N a prime integer, N>2. Then, we give the

expression of the Kronecker-Pauli operators and show that their matrices with respect to the standard

basis fulfill the conditions to form a set of Kronecker-Pauli matrices.
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1. Introduction

In quantum mechanics, some classical bases are generalized to higher-dimensional matrices. For

example, the Gell-Mann matrices are generalized to any dimension without knowing the corresponding

operators in the standard basis (see, for example[1]). Operators are easier to use than higher-dimensional

matrices, which has led to the construction of the Gell-Mann operators by using the Dirac bra and ket

(see, for example[2][3]). So, we study, in this paper, what operators whose matrices in the standard basis

are the matrices in a set of Kronecker-Pauli matrices. Kronecker-Pauli matrices (KPMs) are extensions of

the Pauli strings, studied in[4].

Knowing that the Kronecker product of sets of KPMs is a set of KPMs[5], we study only the case of  -

dimensional, where   is a prime integer,  .

By examining the sets of KPMs, we will construct the Kronecker-Pauli operators. Then, as an example, we

will construct a  - KPMs from the Kronecker-Pauli operators. However, we know that there are at

least two sets of  - KPMs. That will engage a discussion.
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The paper is organized as follows. In the first section, we review the sets of KPMs and how to construct

them. In the second section, we give the expression of the Kronecker-Pauli operators. We finish the paper

with a discussion and conclusion.

2. Sets of Kronecker-Pauli matrices

Definition 1

For    integer  , let us define a set of  - KPMs as a family   of  matrices which

satisfy the following properties[5]:

i.  is the   swap operator;

ii. , for  , (hermiticity);

iii. , for  , (square root of the unit);

iv. Tr , for  , (orthogonality).

where   is the Kronecker symbol.

To construct such a family, the concept of the inverse-symmetric matrix is useful[5].

Definition 2

Let us call an inverse-symmetric matrix an invertible complex matrix   such that   if 

.

Proposition 1

For any   inverse-symmetric matrix  , with only   non-zero elements,   is the unit matrix.

Consider the case of  -dimensional matrices where   is a prime integer. According to this proposition 1,

the choice of inverse-symmetric matrices ensures property iii) of definition 1. To ensure property ii) of

hermiticity, consider a family of inverse-symmetric matrices whose elements are the  -th roots of the

unit. The following proposition[4] ensures properties i) and iv).

In the following proposition, the matrix of an operator is its matrix in the standard basis 

.

Proposition 2

Let  ,  , …,   be operators whose matrices are symmetric permutation matrices with only one unit

in the diagonal.

n n > 1 n × n ( )∏k 0≤k≤ −1n2 n2

= ⊗Sn⊗n
1
n
∑ −1n2

k=0 ∏k ∏k n ⊗ n

=∏k
† ∏k (0 ≤ k ≤ − 1)n2

=∏k
2

In (0 ≤ k ≤ − 1)n2

( ) = n∏k
†∏j δkj (0 ≤ k,   j ≤ − 1)n2

δkj

A = ( )Ai
j =A

j
i

1

Ai
j

≠ 0Ai
j

n × n A n =A
2

In

N N

N

(| 0⟩ ,    | 1⟩ ,    | 2⟩ ,   … ,   | N − 1⟩  )

P1 P2 PN
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 and  ,  , … ,   are operators whose matrices are obtained by replacing the "ones" in 

 by the  -th roots of unity while keeping that they are inverse-symmetrics. We do the same to

the operators  , …,   in order to have the operators

 and  ,  , … , 

………………………………………………………

 and  ,  , … , 

whose matrices are inverse-symmetrics.

If

1. The sum   is equal to the operator whose matrices is the   ones matrix;

2. For any  , for any  , for any

two places in a  -matrix, non-symmetrics with respect to the diagonal where the elements of 

 are   and   and the elements of   are  and   such that

Then

 is the   swap operator and Tr .

The following example was an example from[4], constructed following the hypotheses of Proposition 2

above. The property i) of definition 1 is checked with the help of SCILAB software.

Example 1

,  ,  ,

,  ,

,  ,  ,

=∏0 P1 ∏1 ∏2 ∏N−1

=∏0 P1 N

P2 PN

=  ∏N P2 ∏N+1 ∏N+2 ∏2N−1

=  ∏ −NN 2 PN ∏ −N+1N 2 ∏ −N+2N 2 ∏ −1N 2

+ + … +P1 P2 PN N × N

l ∈ {0,  1,  2,   … ,  N − 1} k,   j ∈ {lN + 1,  lN + 2,    … ,   lN + N − 1}

N × N

∏k e
2iπp

k

N e
2iπr

k

N ∏j e
2iπp

j

N e
2iπr

j

N

≠e
2iπ( + )rk pk

N e
2iπ + )(rj pj

N

= ⊗SN⊗N
1
n
∑ −1n2

k=0 ∏k ∏k N ⊗ N ( ) = N∏k

†∏j δkj
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3. Kronecker-Pauli Operators

The form of a Kronecker-Pauli matrix in a set of KPMs suggests the following definition of a Kronecker-

Pauli operator. For a prime integer  , our goal is to construct a system of operators whose matrices in the

standard basis form a set of  - KPMs.

Definition 2
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Let us define a Kronecker-Pauli operator as the operator

where    is a prime integer,  ,  ,    is a symmetric

permutation on the set 

It is straightforward to check that   is a permutation on   such that  , for

any  ,   and  , if  .

The operator can also be written as the following

In order for the matrices of the operators in this system of operators to form a set of KPMs, we have to

show that these matrices satisfy the hypotheses of Proposition 2 above. Let us write it as a proposition.

Proposition 3

The   matrices, in the standard basis, of the system of Kronecker-Pauli operators  is

a set of  - KPMs.

Proof

For  ,    is a symmetric permutation matrix with only one unit, at  -th row  -th

column, on the diagonal. Let us show that   is the   ones matrix. To do so, let us

take  , with  , and show that there is  ,   is

a term of the operator  .

To finish, show that if   is a term of an operator  , then  . If   is both a

term of    and  , then    and  . Thus, 

 divides   and that implies that  .

If   is even, there is  ,  .

If   is odd, for the case  , let  ,  . For the case  , 

, let  ,  .
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We have seen that for any case    is of the form  , that is    is a term of the

operator  .

Now, let us prove that for  , for  , with 

,  ,  . To do so, let us suppose the contrary, that is suppose

that there are  , for  , with  , 

,  . Then,  . As   is a prime integer,

thus after the Euclid lemma,   divides  , that is  . It is a contradiction.

The proposition is proved.

Example 2

For  ,  ,  ,  , 

whose matrix in the standard basis   is

with  .
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,  .

3. Discussion and Conclusion

Giving    a prime integer,  , a set of  - KPMs is well defined by    symmetric permutation

matrices with on the diagonal only one entry is the unit, on other is the zero and inverse-symmetric

matrices obtained in replacing the units on the   symmetric permutation matrices by  -th roots of the

unit, but in respecting that the hypotheses of the Proposition 2 are satisfied. To construct the system of

operators whose matrices in the standard basis form a set of  - KPMs we have at first defined for

each   a symmetric permutation on  . That gives only one

set of  - KPMs. However, for   there are at least two sets of  - KPMs. That is due to the

definition of the symmetric permutation for constructing the system of Kronecker-Pauli operators, only

one set of  - KPMs is obtained as the matrices in the standard basis. Let us call such a family of

matrices a  -Kronecker-Pauli basis.

Perhaps the other sets of  - KPMs would be formed by the matrices of the constructed system of

Kronecker-Pauli operators in other bases than the standard basis.

But the essential is obtaining a system of operators whose matrices in the standard basis fulfill the

conditions to be as an  -Kronecker-Pauli basis.
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