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In quantum mechanics, there are some classical bases which are generalized to higher-dimensional
matrices. So, it is useful to express their corresponding operators using the Dirac Bra and Ket. In this
paper, to express the corresponding operators, we review the Kronecker-Pauli matrices and how to
construct them for an N-dimensional system, with N a prime integer, N>2. Then, we give the
expression of the Kronecker-Pauli operators and show that their matrices with respect to the standard

basis fulfill the conditions to form a set of Kronecker-Pauli matrices.
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1. Introduction

In quantum mechanics, some classical bases are generalized to higher-dimensional matrices. For
example, the Gell-Mann matrices are generalized to any dimension without knowing the corresponding
operators in the standard basis (see, for examplel?)). Operators are easier to use than higher-dimensional
matrices, which has led to the construction of the Gell-Mann operators by using the Dirac bra and ket
(see, for example[Z]‘[z']). So, we study, in this paper, what operators whose matrices in the standard basis
are the matrices in a set of Kronecker-Pauli matrices. Kronecker-Pauli matrices (KPMs) are extensions of

the Pauli strings, studied in(4],

Knowing that the Kronecker product of sets of KPMs is a set of KPMs!2), we study only the case of N-

dimensional, where NV is a prime integer, N > 3.

By examining the sets of KPMs, we will construct the Kronecker-Pauli operators. Then, as an example, we
will construct a 5 x 5- KPMs from the Kronecker-Pauli operators. However, we know that there are at

least two sets of 5 x 5- KPMs. That will engage a discussion.
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The paper is organized as follows. In the first section, we review the sets of KPMs and how to construct
them. In the second section, we give the expression of the Kronecker-Pauli operators. We finish the paper

with a discussion and conclusion.

2. Sets of Kronecker-Pauli matrices

Definition 1

For n integer n > 1, let us define a set of n x n- KPMs as a family () of n? matrices which

0<k<n?-1

satisfy the following properties[2l:

2
i.Spen = % z;j:gl I1;. ® I 1} is the n ® n swap operator;

i. [T," = I1,, for (0 < k < n? — 1), (hermiticity);

ii. ]_[k2 = I,, for (0 < k < n? — 1), (square root of the unit);

iv. Tr (HkTHJ) = ndy;, for (0 < k, j < n* — 1), (orthogonality).
where §; is the Kronecker symbol.
To construct such a family, the concept of the inverse-symmetric matrix is usefull®l,
Definition 2
Let us call an inverse-symmetric matrix an invertible complex matrix A = (A;) such that A{ = A—li if
A; #0.
Proposition 1

For any n x n inverse-symmetric matrix A, with only n non-zero elements, A?> = I, is the unit matrix.

Consider the case of N-dimensional matrices where N is a prime integer. According to this proposition 1,
the choice of inverse-symmetric matrices ensures property iii) of definition 1. To ensure property ii) of

hermiticity, consider a family of inverse-symmetric matrices whose elements are the N-th roots of the

unit. The following proposition[4l ensures properties i) and iv).

In the following proposition, the matrix of an operator is its matrix in the standard basis
(|0>a |1>7 |2>a teey |N_1> )
Proposition 2

Let P, P9, ..., Py be operators whose matrices are symmetric permutation matrices with only one unit

in the diagonal.
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=P; and , y ey _, are operators whose matrices are obtained by replacin the "ones" in
0 1 2 N-1 g
I I =P by the N-th roots of lll’lity while keepin that they are inverse—symmetrics. We do the same to
0 g

the operators P», ..., P in order to have the operators

[Iy = Poand [y, 1, [Tnior s [lon1

[Inve-n = Pryand[[y2 niq, e nior o [lvea

whose matrices are inverse-symmetrics.

If
1. The sum P; + Py + ... + Py is equal to the operator whose matrices is the IV x N ones matrix;
2.Foranyl€{0,1,2, ..., N—1}, forany k, j€{IN+1,IN+2, ..., IN+ N — 1}, for any
two places ina IV x N-matrix, non-symmetrics with respect to the diagonal where the elements of
2i1rpk 2i7r7‘k 2imp ; 2i7r .
[ aree™ ande™~ andtheelementsof [[;aree™ ande ™~ such that
2im(r g +pp) 2in(r j+p;)
e~ N #eT N
Then

Snen = = "1, ® [1, is the N ® N swap operator and Tr (HkTH].) = N

The following example was an example from[4l constructed following the hypotheses of Proposition 2

above. The property i) of definition 1 is checked with the help of SCILAB software.

Example 1
1 0 000 1 0 0 0 1 0 000
0 0 10 0 0 0 n 0 0 0 0 752 00
x1=[0 1 0 0 0 |[hxe=]0 n* 0 0 0 |xs o 7 0o 0 0 |
0 0 0 0 1 0 0 0 0 n? 0 0 0 0 n*
00 0 1 0 0 0o 0 »* o0 0 0 0 n O
1 0 0 0 0 1 0 000
0 0 7 0 0 0 0 nt 0 0
=10 72 0 0 0fl,xs=]0 n 0 0 0 [
0 0 0 0 g 0 0 0 0 g
0 o 0 7* 0 0 0 0 #n*2 o
0 0 0 01 0 0 0 0 7n 0 0 0 0 n?
01 000 0 1 000 0 1 000
Xs=|0 0 1 0)»@ 0 0 0 =72 0 |Lhxs=| 0 0 0 2 0|,
0 0 0 0 0 0 7»* 0 0 0 0 n 0 O
1 0 0 0 n 0 0 0 0 n” 0 0 0 0

geios.com doi.org/10.32388/BSBYUS


https://www.qeios.com/
https://doi.org/10.32388/BSBYU8

~——
I
=)
—
=
—
o O O
o o T2
[e=) <t
= © T ©

o O O O -
© %o oo
(3]

T O o oo

o o o g o

Il I Il
o™ ® )
— - . N
> - = — = -
< N N
\J\ ~ —— - — ~
o n O O O ~ 00,7/00 o o © o -
o . © o o < -~ @ < o © 9 o
IS o o o
o © © o o oo —~H O ~ -0 o o
S o © OO0 o oo - o 0”0004
S O -4 o o o <o o~ T O o oo
© o+ oo o o - © 9O s T oo oo
© o =
o o o o % < o o o~ o
© o oo = & =° © 99 oo oo =
=~ o o o o
- o o o s~ o o =~ o o - o o oo
000"0/ \nU4n000 00"00
I I I
Il ] Il S Il ]
~ = ~ > ~ =
— - — o~ -
> — > ~ > —
< < — <
N o o oo —/ ~ o o ~ N O o e
o o
o o o - o o o o —
e - > cocoo °° e e e o o o
= oo o @ — o <
- o o o o o oo —- o o - o oo
o o
=] - o o SHES Iy o o o
© e 400 © P o o & 7 9 o oo
o o o o T o o o Y. o
o o o o~ f " ocoocoo 9099 co o o &
CooHo PO TP c oo O hooo oo oo © 9o o
I Il I Il I Il
— A o [=2) — <t
— — — — o o
> > > = = =

2im

.

3. Kronecker-Pauli Operators

The form of a Kronecker-Pauli matrix in a set of KPMs suggests the following definition of a Kronecker-

Pauli operator. For a prime integer IV, our goal is to construct a system of operators whose matrices in the

standard basis form a set of N x N- KPMs.

Definition 2
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Let us define a Kronecker-Pauli operator as the operator

=

2im

—(k=I)n
[L = 2o e o h) (K

=~
Il

where N is a prime integer, n=0,1,2,..., N—1, 1 €{0,1,2,..., N—1}, o is a symmetric

permutation on the set {0,1,2,..., N — 1},

0<o(k)=—k+2[N] <N

It is straightforward to check that o is a permutation on {0,1,2,..., N — 1} such that o (¢(k)) = k, for

anyk € {0,1,2,..., N —1},0(l) = land o(k) # k,if k L.

The operator can also be written as the following

—~ 2 g, 2 i,
Ha,,,n,fkfow““ U | k) (o( k)| =;ew D k) ( — K+ 20[N]|

In order for the matrices of the operators in this system of operators to form a set of KPMs, we have to

show that these matrices satisfy the hypotheses of Proposition 2 above. Let us write it as a proposition.
Proposition 3

The N? matrices, in the standard basis, of the system of Kronecker-Pauli operators (HU In N) is
B 0<im<N-1

asetof N x N- KPMs.
Proof

For n =0, P11 = [],;o is a symmetric permutation matrix with only one unit, at {-th row /-th
column, on the diagonal. Let us show that P; + P» + ... + Py isthe N x N ones matrix. To do so, let us
take j, m € {0,1,2,..., N — 1}, with j # m, and show that thereis € {0,1,2,..., N —1},| j) (m]| is

aterm of the operator P 1 = [[, ;o n-

To finish, show that if | j) { m/ is a term of an operator Py, = Ha,l/707N, thenl =1.If | j) ( m| isboth a

term of Py =][,;on and Py, = Ha,l’,o,N’ then j=-m+ 2l[N] and j= —m+ 2{[N]. Thus,

/+1
N divides I — I and that implies that! = .
If j + miseven,thereis! € {0,1,2,..., N—1},j+ m = 2l.

j+m+N
2 )

If 5 + m is odd, for the case 0 < @ < N,letl = Jj+m =2l — N.Forthecase N < j+n;+N’

j+m—N

0<j+m—N<N,letl =27

,j+m =21+ N.
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We have seen that for any case m is of the form m = —j+ 21 [N], that is | j) (m] is a term of the

operator Py = Hg,l,O,N'

Now, let us prove that for m, n € {1, 2, ..., N—1}, m<n,for j, k€ {0, 1, 2, ..., N — 1}, with
24m f- 247 1/ .
£k o(§) £k en (G=0+(k=Dln # e (=OFE=DIm mg g so, let us suppose the contrary, that is suppose

that there are m,n €{1,2,..., N—-1}, m<mn, for j, ke {0,1,2, ..., N—1}, with j#k,

2i

a(j) £k, e T HE=DIn _ 22 G-)+(k—Dlm. Then, (j + k — 2k)(n — m) = O[N]. As N is a prime integer,

thus after the Euclid lemma, IV divides (j + k — 2k), thatis k = o(j). It is a contradiction.
The proposition is proved.
Example 2

For N =3,n=1,0(0) =2,0(1) =1,0(2) =0

2im 2T
I = 12000+ (1 + e5]0)(2

whose matrix in the standard basis (| 0), 1), [2) )is

0 0 w
Ha’,l,l,3: 0 10
w? 0 0

2im

withw =75 .
Example 3

For N =5,0(0) =0,0(1) =4,0(2) =3,0(3) =2,0(4) = 1,forn =0, 1, 2, 3, 4 we have respectively
the following five matrices which are, in the standard basis (|0), 1), [2), [3), [|4) ),

matrices of the corresponding Kronecker-Pauli operators,

1 0 0 0 0 1 0 0 0 O 1 0 0 0 0
00 001 00 00 n* 0 0 0 0 n
[L=]10 o o 1 o |[,[[L,=]l0 o ” o [,IL=l0o o o n o]
0 0 1 0 O 0 0 n2 0 O 0 0 n* 0 0
0 1 0 0 O 0n 0 o0 O 0 »» 0 0 O
1 0 0 0 O 1 0 0 0 O
0 0 0 0 n 0 0 0 0 7
[L=]10 o nt 0 ,m(o 0 0 72 0
0 0 n 0 O 0 0 23 0 0
0 7% 0 0 0 o nt 0 o0 O
Foro(0) = 2,0(1) =1,0(2) = 0,0(3) = 4,0(4) = 3,forn = 0, 1, 2, 3, 4 we have respectively
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2,forn =0, 1, 2, 3, 4 we have respectively

Foro(0) = 1,0(1) = 0,0(2) = 4,0(3) = 3,0(4)

H17

ILy =

4,forn =0, 1, 2, 3, 4 we have respectively

For o(0) = 3,0(1) = 2,0(2) = 1,0(3) = 0,0(4)
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0 0 0 920 0 0 0 n O
0 0 »* 00 0 0 952 00
[La=f 0 n 0o o o |\ [ls=|0 #¥ 0 0 o0
n” 0 0 0 0 nn 0 0 0 O
0 0 0 0 1 0 0 0 0 1

3. Discussion and Conclusion

Giving N a prime integer, N > 2, a set of N x N- KPMs is well defined by N symmetric permutation
matrices with on the diagonal only one entry is the unit, on other is the zero and inverse-symmetric
matrices obtained in replacing the units on the NV symmetric permutation matrices by N-th roots of the
unit, but in respecting that the hypotheses of the Proposition 2 are satisfied. To construct the system of
operators whose matrices in the standard basis form a set of N x N- KPMs we have at first defined for
eachl € {0, 1, 2, ..., N — 1} a symmetric permutation on {0, 1, 2, ..., N — 1}. That gives only one
set of N x IN- KPMs. However, for N = 5 there are at least two sets of N x N- KPMs. That is due to the
definition of the symmetric permutation for constructing the system of Kronecker-Pauli operators, only
one set of N x N- KPMs is obtained as the matrices in the standard basis. Let us call such a family of

matrices a N x N-Kronecker-Pauli basis.

Perhaps the other sets of N x N- KPMs would be formed by the matrices of the constructed system of

Kronecker-Pauli operators in other bases than the standard basis.

But the essential is obtaining a system of operators whose matrices in the standard basis fulfill the

conditions to be as an IV x IN-Kronecker-Pauli basis.
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