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Synthetic video generation using foundation models has gained signi�cant attention due to its

realism and broad applications. However, while these models excel at generating visually coherent and

high-quality video frames, they often overlook commonsense reasoning and physical law violations,

leading to abnormal content.

Existing score-based evaluations like VideoScore[1] mainly focus on general video quality and do not

take these abnormalities into account, and offer no explanations of the evaluation results. A more

promising evaluation approach is to leverage multi-modal large language models (MLLMs) as

interpretable video evaluators, following the approach of FactScore[2]. However, how well MLLMs can

detect these abnormalities in synthetic videos is underexplored. Motivated by a more interpretable

video generation evaluation, we introduce VideoHallu, a benchmark built from synthetic videos

produced by popular models like Veo2[3], Sora[4], and Kling[5], paired with expert-crafted question-

answering pair examples easily solvable with human-level perception and reasoning across multiple

categories. We evaluate several State-of-the-Art (SoTA) MLLMs with our benchmark, including GPT-

4o[6], Gemini-2.5-Pro[7], Qwen-2.5-VL[8], and forefront models like Video-R1[9] and VideoChat-R1[10].

Despite the strong performance of R1 MLLMs on real-world video benchmarks like MVBench[11] and

MovieChat[12], these models still struggle and hallucinate on basic commonsense and physics

reasoning tasks in synthetic videos, highlighting synthetic video hallucination as an underexplored

challenge. Moreover, we post-train current SoTA MLLMs with Group Relative Policy Optimization

(GRPO)[13] using both real-world and synthetic commonsense/physics datasets. Our results show

improved overall accuracy compared to the base model, achieving the highest performance among all

models, highlighting the importance of integrating high-quality counterexamples to enhance
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commonsense and physics reasoning in MLLMs’ language priors. Our data is available at

https://github.com/zli12321/VideoHallu.git.

Zongxia Li and Xiyang Wu equally contributed to this work.

Correspondence: papers@team.qeios.com — Qeios will forward to the authors

1. Introduction

Figure 1. Hallucinations in Synthetic Video Understanding. Synthetic videos often exhibit counterfactual or

common-sense-violating behaviors due to current video generation model limitations. While prior evaluation

works mainly score video quality and consistency, our work, VideoHallu, probes hallucinations caused by

misapplied common sense in video-dependent questions. We design both common sense QA (answerable

without video) and video-dependent QA (requiring video context). Evaluations show that SoTA MLLMs often

hallucinate on video-dependent QA, relying on language priors instead of video inputs.

Foundational video generation models[14] have attracted signi�cant attention due to their recent success

in AI-Generated Content (AIGC). Their realistic and high-�delity outputs open broad applications across

multimedia[15][16], entertainment and content creativity[17], robotics and embodied AI[18]. Despite the
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promise of current video generation models, many critical �aws emerge during deployment. A key

limitation lies in their failure to faithfully generate reality-grounded videos beyond following basic input

prompt instructions and enhancing general video quality such as resolution[1]. Many state-of-the-art

(SoTA) video generation models like Gemini-2.5-Pro[7], GPT-4o[19] and Qwen2.5-VL[8] (Figure. 1) exhibit

hallucination issues such as inconsistent motion dynamics[20], and violations of real-world common-

sense[21] and basic physics laws[22][23]. These shortcomings suggest that video generation models mainly

optimize input-output alignment, re�ected in the loss designs of CogVideo[24]  and LaVie[25], without

truly learning or applying real-world commonsense and physical laws. Instead, they tend to super�cially

imitate training data appearance and dynamics, rather than fundamentally understand the underlying

principles of real-world behavior.

Detecting problematic generations make evaluating video generation more crucial, especially at scale[23]

[26]. Socre-based evaluation methods such as VideoScore[1]  or DEVIL[27]  produce a set of video quality

scores without explanations, and they suffer from out-of-distribution data (newer released video

generation models) and do not align with human visual judgments, as Figure. 1 suggests. One promising

approach to facilitate a more interpretable video generation evaluation is by leveraging MLLMs for

synthetic video understanding and evaluation. MLLMs offer insights into video understanding through

their grasp of driving principles and commonsense knowledge, and can detect abnormalities by breaking

down input prompts into subsets of questions and individually querying the video like FactScore[2] style,

facilitating a more interpretable evaluation of video generation. However, current MLLMs are highly

prone to hallucinations when evaluating synthetic videos. As shown in Figure.  1, even SoTA models

hallucinate when presented with synthetic videos that are visually �awed and counter-intuitive, despite

their strong performance on real-world videos[11][28]. We attribute this to the scarcity of high-quality and

high-�delity synthetic annotated videos in previous MLLMs’ training data, as most are trained with real-

world video data source[29][8][7][30]. Due to the lack of synthetic videos in the training data, MLLMs can

only rely on their LLM backbones to reason, treating commonsense and physical knowledge as default

ground truth assumptions without considering the actual visual input[31], which introduces biases

stemming from the LLM’s strong prior knowledge. While these biases may not surface on real-world

videos, they cause severe hallucinations on synthetic videos, which often contain counterintuitive

phenomenons that violate commonsense and physical knowledge (Figure.  1). Furthermore, although

chain-of-thought reasoning often mitigates hallucinations in real-world understanding[32], the

reasoning itself inherits deep-rooted hallucinations within MLLMs’ language priors due to the scarcity of
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annotated negative examples in synthetic video understanding tasks. Current MLLMs are unsuitable for

reliably detecting commonsense violations in synthetic videos.

We propose VideoHallu, a benchmark consisting of expert-crafted, diverse question-answering pairs

spanning context alignment, consistency, commonsense, and physical law reasoning of synthetically

generated videos to bridge the gap between video generation and synthetic video evaluation. These

reasoning-heavy tasks require an in-depth understanding of visual cues and language-based knowledge

to answer our questions. We evaluate several SoTA video understanding models and provide a detailed

analysis of their current failures on synthetic video understanding. Additionally, we use curriculum

learning[33]  and Group Relative Policy Optimization (GRPO)[13]  to post-train an MLLM using datasets

combining real-world (VideoLLaVA[34], PhysBench[22]) and synthetic videos (VideoHallu) to validate the

effectiveness of improving reasoning abilities on synthetic video tasks through post-training. Our goal is

to improve commonsense and physical law reasoning into synthetic video understanding. We hope

VideoHallu and our RFT (Reinforcement Fine Tuning) framework offer insights into mitigating

hallucinations and advancing video understanding and evaluation for synthetic videos. Our

contributions include:

We propose a novel benchmark VideoHallu, to test synthetic video understanding and evaluation

tasks, featuring expert-annotated, diverse question-answer pairs covering alignment, spatial-

temporal consistency, commonsense, and physical reasoning tasks.

We conduct evaluation experiments on several state-of-the-art video understanding models using

VideoHallu. Results show that the top-performing models achieve only a modest overall accuracy of

51.4%, with a highly uneven performance across perceptual-heavy and reasoning-heavy questions—

exhibiting a gap of over 20% accuracy between the two.

We use curriculum learning and GRPO to �ne-tune QWen2.5-VL-7B using a small subset in

combination of real-world and synthetic video understandings–Video-LLaVA-80K [34], Physbench [22],

and VideoHallu. Our results show that even a limited amount of RFT synthetic data (800) yields a

notable 3% overall accuracy improvement, with signi�cant gains in commonsense and physics

reasoning question accuracy, highlighting its strong potential for future exploration.
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2. Related Work

2.1. Hallucination in Vision-language Models

Hallucinations in MLLMs—i.e., the tendency to generate outputs that are inconsistent with the target

texts, images, or videos  [35][36]—remain a long-standing challenge. Previous works have focused on

developing benchmarks or pipelines to trigger hallucinations  [31][37][38], as well as mitigating them

through instruction tuning [39] or by enhancing the model’s visual and textual representations [40]. Since

hallucination arises from con�icts between the language priors of MLLMs and the actual visual

inputs [38], it can be even more severe in video understanding than in static image understanding—due to

the complex entanglement of spatial-temporal information across the timeline and the contextual cues

associated with entities within frames. A line of prior work, such as VideoHallucer[41]  and

EventHallusion[42], has aimed to establish benchmarks for evaluating model hallucination on both

entities and events within videos, while also proposing methods to enhance the video understanding

capabilities of MLLMs. HAVEN  [43]  further investigates the causes of hallucinations in video

understanding models and introduces a video-thinking framework that incorporates reasoning and

re�ective thinking to mitigate hallucinations. However, most prior works on hallucination—particularly

in the video domain—rely on real-world factual data, rather than synthetic data generated by generative

models. Hallucination in generative video understanding models remains an open and largely

unexplored research area.

2.2. Video Understanding Models

Video understanding is a fundamental task in computer vision  [44][45]. Traditional video

understanding [46][47] focuses on understanding the events happening over the timeline throughout the

video. The emergence of foundation models in video understanding tasks  [48][49]  has enabled the

development of general-purpose models capable of understanding videos across diverse domains, by

leveraging large-scale training data and knowledge encoding through increased model capacity. Prior

works mainly focus on using the instruction tuning framework [50] to unify the representation of video

and language prompt into the same representation space [34][30] or scale up the visual-language models

into the video domain [8][19][7]. Given the diverse deployment scenarios for video understanding models,

recent works have focused on designing or distilling lightweight expert models for tasks such as video
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question answering  [51][52][53]. These models aim to enable applications on edge devices and have

achieved competitive performance compared to large-scale models while using only a fraction of the

parameters. Meanwhile, rule-based reinforcement learning has also been applied during the �ne-tuning

process [9][10] to encourage models to exhibit self-improvement and chain-of-thought reasoning abilities

in video understanding. Despite the success of existing large models in real-world video understanding,

their limitations—such as poor performance in probing commonsense and physical law violations in

videos, as well as hallucinations in question answering—continue to hinder their broader adoption

across diverse application scenarios. [54].

2.3. Evaluation of Video Generation Models

Video generation models[3][5][55][25][56][24] have a wide range of applications, including content creation,

robotic environment simulation, and training[49]. However, the limited performance of video generation

models—characterized by cross-modal misalignment[21] and frequent violations of commonsense[22]—

remains a key bottleneck to their broader adoption and application. Many efforts have been devoted to

designing comprehensive benchmarks for evaluating the quality of generated videos[57][58], as well as

developing model judges[59] to assess the �delity and coherence of generated content. Early explorations

have primarily focused on incorporating human perception and preference annotations into the

evaluation of video generation models[21][60], or on developing versatile evaluators that assess multiple

dimensions of video quality, including spatial-temporal consistency, cross-modal alignment, and visual

�delity[1]. As video generation models continue to advance, recent efforts have shifted toward context-

level evaluation of dynamic properties and actions, with a growing emphasis on assessing the

representation of commonsense knowledge implicitly embedded in generation prompts[61], particularly

those related to physical laws[62][63]. Notable investigations in this direction leverage human preference

data to �ne-tune evaluation models for detecting violations of physical laws arising from entity

motion[23], or broader commonsense violations in layout generation and state transitions within large-

scale scenes or dynamic entity interactions, often through the design of expert-informed metrics[64].

Despite substantial progress in this �eld, many open questions remain, as prior work has largely focused

on quantitative evaluation of video quality rather than offering interpretable assessments or insights into

entity-wise motion understanding and reasoning over evaluation outcomes—gaps that this work aims to

address.
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3. VideoHallu: Benchmark for Synthetic Video Understanding and

Evaluation

3.1. Preliminary

Synthetic Videos

This work focuses on video understanding tasks using synthetic videos—i.e., videos generated by

foundation models from textual prompts. Ideally, such videos should not only align with the prompts but

also exhibit real-world plausibility, including: (1) smooth temporal changes in entities, (2) object

geometry and dynamics consistent with common sense, and (3) entity motion that adheres to physical

laws unless stated otherwise. We manually curate prompts to evaluate how well video generation models

align with our prede�ned categories. For each prompt, we generate videos using seven SoTA models:

Sora[4], Veo2[3], Kling[5], Runway Gen2[56], PixVerse[65], LaVie[25], and CogVideo[24].

An example prompt for our synthetic video generation is:

Generate a scene of a feather and a heavy rock are released at the same height and begin to

fall to the ground on Earth.

We keep prompts simple and speci�c to avoid confusing the generation models.

Synthetic Video Understanding and Evaluation

Despite growing interest in video generation, synthetic videos generated by current foundation models

remain far from �awless. Visual abnormalities and counterintuitive phenomena are common,

underscoring the need for models that can both evaluate video quality and detect such anomalies.

MLLMs are emerging as prominent candidates for serving as comprehensive video judges. However,

beyond basic quality assessment or scene description, synthetic video understanding requires models to:

(1) detect, localize, and characterize anomalies; (2) apply commonsense and physical reasoning to assess

plausibility; and (3) resist hallucinations when visual input con�icts with their language priors. This

threefold challenge sets a higher standard for MLLMs, requiring them to approach human-level video

perception to perform effectively.
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3.2. Case study: Can MLLMs understand complex concepts as humans do in synthetic videos,

and are current video evaluation models truly reliable?

A natural approach to using MLLMs as video judges, which can be done using either score-based models,

VideoScore[1]  and WorldScore[64]  that assign scores to aspects like visual quality, alignment with

prompts, and factual consistency, or prompt video understanding MLLMs with target-speci�c questions

and performing answer matching or directly give a quality rating score[26]. To assess whether both kinds

of models can handle synthetic video understanding tasks with awareness of anomalies, we present a

case study as part of our assessment:

We �rst generate a synthetic video by prompting two video generation models, Veo2[3]  and Runway

Gen2[56], as follows

A feather and a heavy rock are released into the air and start to fall.

As shown in Figure  1, the Veo2-generated video exhibits a commonsense violation, while the Runway

Gen2 video is misaligned with the prompt and lacks physical consistencies. This case is designed to

evaluate whether video judge models can resolve con�icts between their language priors and actual

visual observations.

We �rst apply VideoScore[1] to assess both videos across metrics like visual quality, text-video alignment,

and consistency. Both videos receive similar, modest scores across all metrics. However, the

misalignment in the Runway Gen2 video is clearly noticeable, suggesting a gap in VideoScore’s ability to

detect such issues, which is consistent to conclusion[26] that MLLMs are still far from being as quali�ed

video judges than humans do. Meanwhile, Veo2 video contains a commonsense violation not covered by

VideoScore’s evaluation scope, which explains its deceptively favorable score.

In the second stage, we conduct video-dependent question-answering using SoTA MLLMs on

commonsense-related prompts, where models are required to answer based on video observations.

Results show that all models—GPT-4o[19], Gemini-2.5-Pro[7], and Qwen-2.5-VL[8]—answered incorrectly

(Figure  5), stating the rock reached the ground �rst, despite the clear visual evidence to the contrary.

Moreover, when prompted with commonsense-only questions (i.e., without video context), all models

gave the same response, indicating they defaulted to language priors. These results suggest that MLLMs

are prone to hallucinations in synthetic video understanding and often rely on priors rather than actual

visual input, unlike human perception.
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This case study demonstrates that, unlike human perception, current MLLMs struggle to identify

abnormalities in synthetic videos that con�ict with real-world commonsense, even when the issues are

perceptually obvious. The failures stem from limited video perception capabilities and con�icts between

language priors and visual observations, often leading to hallucinations. To address this gap, a

comprehensive benchmark focused on commonsense and physical reasoning in synthetic video

understanding is essential for exploring and guiding MLLMs toward deeper, more reliable visual

reasoning.

Figure 2. Question Categorization of VideoHallu. We design our benchmark, VideoHallu, with four question

categories to probe hallucinations in synthetic video understanding, covering perceptual understanding to

abstract reasoning. (a) Alignment checks if the model correctly identi�es and understands entities using

visual and textual cues. (b) Spatial-temporal Consistency examines whether the model can track entity

motion across frames. (c) Common Sense Reasoning tests if the model can reason based on its knowledge.

(d) Physics assesses if the model applies physical laws to entity motions and procedural understanding.

3.3. Video Understanding and Evaluation Categorization

We draw inspiration from basic video quality evaluation de�nitions from MVBench[11]  and

WorldModelBench[23]  to �rst organize the current challenges of video generations and evaluations in

four basic categories (Figure  2). Given the probing target of each question-answering pair and the

demand for reasoning abilities or prior knowledge of the LLM backbone to solve the question provided,

we divide all question-answering pairs into four major categories with many sub-categories.
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Alignment: This question checks whether the model accurately identi�es basic entity details and ensures

the video content fully aligns with the prompt without omissions or discrepancies.

Entity Counting (A-EC): Quanti�es how many entities are present in the scene.

Entity Properties (A-EP): Focuses on visual features such as color, shape, and texture that de�ne an

entity’s appearance.

Entity Recognition and Classi�cation (A-ERAC): Identi�es and categorizes entities based on

attributes like shape, color, and texture.

Spatial Relationships (A-SR): Examines the relative positions of mostly static entities as described in

the prompt.

Spatial-Temporal Consistency: This question evaluates whether the model can detect smooth,

consistent changes in objects, actions, and viewpoints over time, without abrupt or abnormal transitions

in space or time.

Camera Dynamics (SC-CD): Covers variations in camera movement, angle, and viewpoint.

Spatial Dynamics (SC-SD): Focuses on entity motion, changing positions, and interactions,

identifying any inconsistencies or abrupt spatial changes.

Temporal Dynamics (SC-TD): Tracks changes in entities or scenes over time, including appearance

shifts, transformations, and abnormal appearances or disappearances.

Common Sense Reasoning: This question assesses the model’s ability to apply general knowledge and

reasoning to detect con�icts between common sense and the visual context, ensuring it interprets the

prompt correctly without misunderstanding or hallucinating entities or actions.

Knowledge (CS-K): Assesses the model’s ability to apply general knowledge of everyday phenomena,

including object geometry, layout, and state transitions.

Reasoning (CS-R): Tests the model’s ability to interpret problem cues—including emotional or

environmental hints—and solve them through re�ection and chain-of-thought.

Physics: This question assesses the model’s ability to detect physical inconsistencies, such as violations

of gravity, motion dynamics, or conservation laws, requiring careful reasoning about object properties

and movements even if not explicitly stated.

Conservation (P-C): Assesses understanding of mass and energy conservation, ensuring entity

quantities remain constant unless acted upon by external forces.
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Constraints and Properties (P-CAP): Checks understanding of physical constraints and properties,

such as rigid bodies blocking motion or light behavior like re�ection.

Motion (P-M): Evaluates the model’s grasp of motion-related physics—like gravity, linear/circular

motion, relative movement, and �uid dynamics—spotting inconsistencies or abrupt changes.

State Transition (P-ST): Tests knowledge of physics-driven state changes, including heat effects,

phase transitions, and dynamic interactions.

Our goal is to move beyond basic metrics like frame consistency or resolution and instead provide a

deeper, more rigorous evaluation by identifying visual abnormalities across prede�ned categories. To

this end, we craft targeted adversarial questions designed to explicitly reveal these anomalies. Our core

motivation is to assess whether current SoTA MLLMs can effectively detect and interpret such

abnormalities—an essential step toward scalable, interpretable video evaluation. We extend these video

generation evaluation principles to form our video understanding criteria.

3.4. Data Collection

We �rst manually crafted 141 adversarial prompts that are challenging for video generation models to

generate, including our four prede�ned categories. For each question-answering pair, each annotator

assigns them a super category and a sub category. We gather �ve expert-level human annotators to craft

3233 question-answering pairs over generated videos, many of which are intentionally designed as

reasoning-heavy questions to probe the counter-intuitive or misaligned with the input prompts to test

whether video understanding can detect the abnormalities in these videos (Figure 4).1 Our questions are

meant to challenge current SoTA video generation models that requires understanding of the real world

physics and commonsense reasoning abilities, and easily cause unusual phenomenons in the generated

videos. For example, the process of a glass breaking, or the process of a bullet shooting into a watermelon are

abstract concepts that are challenging for video generation and requiring complex understanding of the

real world physics and commonsense reasoning abilities, and easily cause unusual phenomenons in the

generated videos. However, being able to detect these abnormalities is a key component for facilitating

more robust and interpretable video evaluation, but current SoTA MLLMs struggle at identifying them,

which we study in detail in Section 4.
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4. Experiment and Results

In this section, we evaluate 16 SoTA MLLMs on our curated test dataset (Table 1). For models not trained

with reinforcement learning, we use standard prompting to elicit direct answers. For those trained with

reinforcement learning or chain-of-thought supervised �netuning (e.g., Video-R1-cot[9] and VideoChat-

R1-think[10]), we prompt them to reason step by step by analyzing key video frames before generating a

�nal answer. Figure  4 highlights hallucinations produced by SoTA models across all four categories in

synthetic video understanding tasks, with the hallucinated contexts marked within each answer.

Additional examples are included in Appendix A.

Evaluation: LLM-as-a-judge[66][67][68]  has shown promising improvement and high correlation with

human judgments compared to previous work for simple and easy gold and generated answer

comparison. Since our answers include free-form and open-eneded question-answer pairs, we use GPT-

4-as-a-Judge to judge the correctness of model generated response with our written gold answers. We

extract the �nal answer from Video-R1-cot and Videochat-R1-think as the generated response for GPT-4

to judge. To ensure the robustness and correctness of LLM-as-a-Judge in our dataset, we randomly

sample 200 answer pairs with length greater than �ve words and annotate their correctness, with a

99.3% human-GPT agreements.
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Model

Alignment S-T Consistency Commonsense Physics

OverallA-

EC

A-

EP

A-

ERAC

A-

SR

SC-

CD

SC-

SD

SC-

TD
CS-K CS-R P-C

P-

CAP

P-

M

P-

ST

MLLMs:  7B

SmolVLM-

3B[53]
17.3 9.9 12.1 7.1 11.9 12.0 17.3 6.6 13.0 9.5 0.0 12.2 0.0 13.4

InternVL3-

2B[69]
44.3 49.3 58.0 26.2 16.7 32.4 35.0 44.3 31.9 33.3 23.5 37.8 30.0 39.9

Qwen2.5-VL-

3B[8]
44.3 49.8 59.8 40.5 40.5 33.1 37.7 42.6 42.0 38.1 23.5 40.0 60.0 42.9

MLLMs

Video-

LLaVA[34]
44.9 40.4 48.3 21.4 38.1 29.6 33.7 37.7 30.4 57.1 17.6 41.1 20.0 37.5

LLaVA-

NeXT[70]
44.9 53.7 50.6 26.2 31.0 35.2 33.0 36.1 36.2 57.1 29.4 26.7 0.0 39.1

Video-

LLaMA[30]
53.5 51.2 56.3 42.9 54.8 43.0 38.6 42.6 34.8 42.9 17.6 38.9 50.0 45.0

InternVL3-9B 45.9 55.7 58.0 40.5 40.5 37.3 42.9 50.8 39.1 47.6 29.4 46.7 50.0 46.4

InternVL3-38B 52.4 57.1 54.6 45.2 40.5 38.0 42.9 50.8 40.6 23.8 41.2 38.9 60.0 46.6

InternVL3-14B 49.2 53.2 57.5 50.0 42.9 37.3 42.9 44.3 40.6 38.1 47.1 47.8 60.0 46.7

Qwen2.5-VL-

7B
53.5 63.1 65.5 54.8 47.6 42.3 43.9 50.8 42.0 42.9 58.8 45.6 40.0 51.0

Qwen2.5-VL-

32B
54.6 60.1 67.8 52.4 59.5 42.3 40.7 55.7 58.0 42.9 52.9 51.1 40.0 51.4

MLLMs: R1-�netuned

VideoChat-

R1[10]
47.0 55.2 63.2 38.1 42.9 34.5 32.2 65.6 39.1 42.9 52.9 44.4 60.0 44.2

<
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Model

Alignment S-T Consistency Commonsense Physics

OverallA-

EC

A-

EP

A-

ERAC

A-

SR

SC-

CD

SC-

SD

SC-

TD
CS-K CS-R P-C

P-

CAP

P-

M

P-

ST

VideoChat-R1-

think
47.0 56.7 63.2 42.9 42.9 34.5 34.1 67.2 40.6 52.4 47.1 43.3 40.0 45.3

Video-R1-

CoT[9]
55.1 55.2 63.2 42.9 40.5 47.2 39.2 55.7 46.4 28.6 35.3 47.8 40.0 48.3

Video-R1-SFT-

CoT
53.5 55.7 68.4 38.1 45.2 45.1 40.3 45.9 47.8 33.3 41.2 50.0 50.0 50.6

Video-R1-SFT 50.3 60.6 69.0 40.5 47.6 43.7 42.6 57.4 46.4 38.1 52.9 48.9 60.0 50.6

Video-R1 51.4 62.1 67.8 35.7 40.5 45.1 43.7 52.5 46.4 38.1 58.8 50.0 60.0 50.8

MLLMs: Black-Box

GPT-4o[6] 45.4 58.1 61.5 45.2 40.5 35.9 37.3 54.1 34.8 47.6 47.1 46.7 50.0 45.5

Gemini-2.5-

Flash[7]
54.1 60.0 65.0 60.0 49.2 55.1 42.9 47.1 37.8 40.0 45.2 47.2 41.4 49.6

Gemini-2.5-

Pro[7]
56.8 61.6 65.5 57.1 50.0 41.5 40.9 52.5 46.4 38.1 47.1 35.6 40.0 49.8

Table 1. SoTA MLLM Evaluation on VideoHallu. We evaluate diverse SoTA models across sizes and training

strategies, reporting both overall and sub-category accuracies. Qwen2.5-VL-32B achieves the highest overall

performance among all models.
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Figure 3. SoTA MLLM Evaluation on VideoHallu Across Sub-Categories. We evaluate SoTA MLLMs on

VideoHallu, with results broken down by sub-category. From left to right, we show: (a) models under 7B

parameters; (b) models between 7B–38B; (c) R1 �ne-tuned models; and (d) large black-box MLLMs. While

many perform well on alignment tasks, they remain prone to hallucinations in reasoning-heavy tasks, with

notably weaker performance on physics and commonsense reasoning.

4.1. Results and Analysis

MLLMs struggle to detect counterintuitive phenomena and abnormalities in generated

videos.

Qwen-VL series (7B/32B) achieves the highest overall accuracy at around 51% (Table 1). However, even the

best models often fail to answer simple visual questions about synthetic videos, relying heavily on

language priors or prior knowledge from real-world videos, which leads to unfaithful or incorrect

assumptions from real-life data (Figure 5). Qwen2.5-VL’s advantage stems from broader training dataset

coverage, a vision encoder tailored for video tasks, and strong cross-modal alignment. In contrast,

models like GPT-4o treat video inputs as frame sets without modeling temporal dynamics, falling behind

other competitive SoTA models–Gemini-2.5-pro and Gemini-2.5-Flash.

Despite Qwen2.5-VL’s lead, the overall accuracy remains below 60% across all models. The performance

across sub-categories is uneven: models excel at tasks requiring direct observation (e.g., instruction-

following, alignment, spatial-temporal consistency), but struggle with reasoning-intensive questions

involving common sense or physics knowledge. Within each category, perception-oriented tasks like

entity recognition yield higher accuracy than reasoning-heavy ones like spatial relations or entity

counting, where language priors and visual priors from real-life videos often introduce hallucinations.

This highlights current models’ limited capacity for integrating memorized knowledge into multi-modal

reasoning.

qeios.com doi.org/10.32388/BXC6X1 15

https://www.qeios.com/
https://doi.org/10.32388/BXC6X1


Larger models tend to achieve higher accuracy, but their performance is ultimately

constrained by the capabilities of the vision encoder.

We evaluate models across a range of sizes, from small open-source models like InternVL3-2B to large

closed-source ones like Gemini-2.5-Pro and GPT-4o. Generally, larger models demonstrate stronger

language and visual reasoning abilities on all categories Our results con�rm this trend: within the same

series, such as Qwen and InternVL series, larger models outperform smaller ones across tasks. However,

for models within the same series (Qwen2.5-VL, InterVL3), accuracy gains reach peak on synthetic videos

once the model size exceeds 7B, showing that further improvements in video understanding rely less on

scaling the language model and more on enhancing the vision encoder and the quality of training data. In

addition, overall performance is also highly relevant to how models perceive video inputs. GPT-4o tends

to treat videos frame-by-frame, aiding frame-level alignment checks but harming inter-frame motion

tracking, which again shows the importance of vision encoder architecture in video understanding.

Figure 4. Hallucination showcases for SoTA models on VideoHallu. We collect hallucination cases observed

during SoTA MLLM evaluations on synthetic video tasks. Each example includes the generation prompt, key

frames, questions, human-annotated ground truth, and hallucinated answers from GPT-4o, Qwen2.5-VL, and

Gemini-2.5-Pro, with hallucinations marked in Red. Video examples are available (here).
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4.2. Does Chain-of-Thought Reinforcement Learning Help Synthetic Video Understanding?

Chain-of-thought reasoning encourages models to rely more on prior language knowledge,

often at the expense of visual grounding, which increases the risk of hallucinations.

Despite the recent success of the DeepSeek series[13], where Reinforcement Fine-Tuning (RFT) methods

like GRPO[71] have enhanced reasoning in small models like Qwen2-VL-7B on math problems, our results

show limitations of chain-of-though RL algorithms. In Table  1, we evaluate two RFT-trained video

understanding models, Video-R1[9] and VideoChat-R1[10], under different prompt styles: short-answer to

directly generate the answers (Video-R1, VideoChat-R1) and chain-of-thought to �rst think step by step

then generate the �nal answer (Video-R1-CoT, VideoChat-R1-think). Both RFT models underperform

their base model (Qwen2.5-VL-7B), and short-answer prompt style outperform those explicitly prompted

for reasoning. This suggests that current RFT approaches, often based on limited, homogeneous data,

boost performance on in-distribution tasks (e.g., real-world video understanding) but fail to generalize to

synthetic videos. While chain-of-thought RFT can enhance performance on reasoning-heavy tasks like

math problems, it is less effective for synthetic video understanding, where videos often depict

counterintuitive or abnormal phenomena that con�ict with real-life phenomenons. In such cases,

encouraging extensive reasoning can cause the LLM backbone to rely too heavily on real-world

commonsense knowledge, overlooking synthetic visual evidence and leading to hallucinated responses.

GRPO-based RFT further ampli�es this issue by encouraging models to develop their own reasoning

patterns using weak supervision and non-semantic rewards like ROUGE[72], which poorly correlate with

human judgment[73][68]. This misalignment creates a "perception gap" between model and human

reasoning, often resulting in hallucinations—particularly on reasoning-heavy questions—explaining the

weaker performance of chain-of-thought RFT models on our benchmark.

4.3. Can MLLMs learn counter-intuitive commonsense knowledge from synthetic data and

curriculum learning?

Although Video-R1 is trained on massive number of diverse datasets, it still falters on synthetic video

understanding, or even show lower to no improvement on VideoHallu. In this section, we use curriculum

learning[33] to train Qwen2.5-VL-7B on three datasets in the order of dif�culty– 4,500 from the video QA

subsection of Video-LLaVA, 1,000 from PhysBench[22], and 800 from VideoHallu. We aim to study two
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research questions: 1. Can we improve MLLMs’ reasoning and understanding abilities on synthetic videos

through reinforcement learning �netuning? 2. Does curriculum learning help video understanding? We combine

the training dataset for GRPO training from the following three sources: One partition of VideoHallu

dataset, the subsection of the open-end question-answering dataset of Video-LLaMA, along with the

videos with physical law knowledge from PhysBench[22]. The combination of the �ne-tuning dataset is

inspired by the �ne-tuning procedure of Video-R1[9], where we try to improve the models’ video

understanding abilities over common sense and physical laws by designing the entire training process in

a curriculum manner with three datasets.

General-Real-World (GRW): The dataset for real-world video question-answering (Video-LLaMA[34]), to

improve the base models’ ability in video understanding. We sample 3,000 videos from this dataset as the

training set.

Physics-Real-World (PRW): PhysBench[22] focuses on real-world common and physical knowledge, while

this stage is to assist the model to understanding the indications and procedures, further re�ne the

representations of physical and common sense-related knowledge, with the language prior within the

video understanding model. We sample 1,000 videos from the dataset as the training set.

Synthetic Reasoning (SR): The dataset contains all synthetic videos question-answering (VideoHallu),

focusing on common and physical knowledge. This stage helps the model overcome potential

hallucinations within the language priors when reasoning over synthetic video and become more

sensitive in probing common sense and physics violations in synthetic videos. Our training set size is

800 video QA pairs.

Speci�cally, we use GRPO to train Qwen2.5-VL-7B on three datasets separately �rst– GRW-R1-7B, PRW-

R1-7B, SR-R1-7B. We use Answer-Equivalence BERT[68], which has been �ne-tuned speci�cally on

answer-correctness pairs, to evaluate the correctness of generated answers compared to the gold answer.

The reward is de�ned as the similarity score between the embedding representations of the predicted

answer   and the gold answer  , calculated similarly to BERTScore[74] as follows:

where   and   denote the embedding vectors of the predicted and gold answers from the

�netuned BERT, respectively. We train each model group with one epoch with gradient accumulation step

of 1. We use the saved checkpoints for GRW and PRW and then train the model on the synthetic dataset to

apred agold

Reward( , ) = ,apred agold

E E( )( )apred
⊤

agold

∥E( )∥ ⋅ ∥E( )∥apred agold

(1)

E( )agold E( )apred
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perform curriculum learning. Our results (Table 2) show that only training on general-world data does

not improve model’s understanding abilities on synthetic video understanding, but adding physics

knowledge can improve synthetic video understanding robustness mainly in the physics domain. In

addition, we show that curriculum learning to �rst learn general physics knowledge from the data, then

from synthetic videos can help models gain most understanding on synthetic video understanding.
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Model

Alignment S-T Consistency Commonsense Physics

OverallA-

EC

A-

EP

A-

ERAC

A-

SR

SC-

CD

SC-

SD

SC-

TD
CS-K CS-R P-C

P-

CAP

P-

M

P-

ST

MLLMs: Previous SoTA

GPT-4o 45.4 58.1 61.5 45.2 40.5 35.9 37.3 54.1 34.8 47.6 47.1 46.7 50.0 45.5

InternVL3-

14B
49.2 53.2 57.5 50.0 42.9 37.3 42.9 44.3 40.6 38.1 47.1 47.8 60.0 46.7

Gemini-2.5-

Pro
56.8 61.6 65.5 57.1 50.0 41.5 40.9 52.5 46.4 38.1 47.1 35.6 40.0 49.8

Video-R1 51.4 62.1 67.8 35.7 40.5 45.1 43.7 52.5 46.4 38.1 58.8 50.0 60.0 50.8

Qwen2.5-VL-

7B
53.5 63.1 65.5 54.8 47.6 42.3 43.9 50.8 42.0 42.9 58.8 45.6 40.0 51.0

Qwen2.5-VL-

32B
54.6 60.1 67.8 52.4 59.5 42.3 40.7 55.7 58.0 42.9 52.9 51.1 40.0 51.4

Training Separately

GRW-R1-7B 48.7 60.3 67.5 34.9 51.7 49.1 42.9 57.7 60.0 62.2 56.9 42.7 50.0 51.5

PRW-R1-7B 49.3 60.3 67.1 41.9 55.2 43.9 57.1 57.7 60.0 64.9 54.9 41.3 70.0 52.2

SR-R1-7B 50.7 58.7 68.3 48.8 56.9 50.9 66.7 61.5 61.4 54.1 56.9 43.4 70.0 53.4

Curriculum Learning

GRW+SR-R1-

7B
51.3 59.8 68.9 51.2 53.5 42.1 47.6 57.7 56.4 56.8 60.0 46.2 60.0 52.1

PRW+SR-R1-

7B
50.7 58.7 67.7 53.5 55.2 47.4 62.0 61.6 62.1 56.8 56.9 44.8 80.0 54.2

Table 2. Fine-Tuned Model Evaluation on VideoHallu. We evaluate models �ne-tuned on either domain-

speci�c sub-datasets or curriculum-based composite datasets. Results show that models trained only on

general real-world videos yield little to no gains on synthetic video understanding. Incorporating general
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physics data improves physics reasoning, and a curriculum starting with real-world physics followed by

synthetic data leads to a 2.8% performance boost.

Figure 5. Evaluation Breakdown of Fine-Tuned Models. We show results for (a) previous SoTA MLLMs, (b)

models �ne-tuned on sub-datasets, and (c) models �ne-tuned on the full dataset via curriculum learning.

Compared to the baseline (Qwen2.5-VL-7B), reinforcement �ne-tuning on commonsense and physics data

improves models’ reasoning and overall performance in synthetic video understanding.

4.4. Discussions

Throughout the entire evaluations over our benchmark and the reinforcement �ne-tuning over pre-

trained MLLMs, we gather essential insights to accelerate further improvement over future MLLMs for

synthetic video understanding. We list them as follows:

1. Visual encoders constrain MLLMs’ performance in synthetic video understanding.

In Section  4.1, all MLLMs evaluated suffer from hallucination in synthetic video tasks, achieving poor

overall accuracy below 52% and consistently performing better on perception-oriented tasks (e.g.,

alignment, spatial-temporal consistency) than on reasoning-heavy tasks involving commonsense and

physical reasoning. This gap partly stems from how MLLMs perceive videos: current visual encoders

struggle to capture context-level temporal and spatial dynamics. Instead of �exibly encoding entity-level,

semantic-sensitive information critical for synthetic video understanding, MLLMs tokenize videos into

patches or �xed-length clips, inherited from MLLMs’ visual encoders, which limits their ability to handle

the non-realistic, dynamic patterns common in synthetic videos.
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2. Hallucination in synthetic video understanding stems from language priors, which makes

detecting synthetic visual abnormalities worse.

We observe severe hallucinations in the reasoning processes of synthetic video understanding. SoTA

models struggle at reasoning-oriented QA tasks, and RFT only on real-world data even worsens

performance (Table  1). This stems from current MLLMs’ strong language priors, learned from datasets

dominated by real-world videos with explicitly represented contexts, where commonsense and physical

laws are typically implicit. Despite seeing annotated synthetic examples during training, models assume

these principles as default truths without truly learning from visual cues. As a result, when faced with

generated videos that contain content con�icting with real-world phenomena, models struggle to

reconcile the visual input with their prior knowledge. Furthermore, reasoning built on these �awed

understandings leads to even more severe hallucinations, as shown in Video-R1-cot and VideoChat-R1-

think (Table  1). We propose that future MLLMs for synthetic or physical-reasoning video tasks should

focus on re�ning reasoning abilities to better leverage language priors while actively correcting

hallucinated vidual understandings.

3. Both high-quality negative examples and RFT matter.

In Section 4.2, we show that RFT-enhanced models like Video-R1 and VideoChat-R1 do not outperform

their base models (Qwen2.5-VL-7B) on synthetic video understanding tasks. However, in Section 4.3, we

demonstrate that reinforcement �ne-tuning methods like GRPO, when combined with a curated dataset

covering both general and physics-speci�c video understanding across real and synthetic videos can

improve model performance. Our results reveal that it is the quality and coverage of the data—not just

the �ne-tuning method—that drive improvements. With both positive and negative examples, clearly

annotated reasoning procedures, and reasoning-stimulating post-training like GRPO, even small-scale

models like Qwen2.5-VL-7B achieve QA accuracy gains on validation sets. We show the importance of

combining high-quality data and reasoning-focused �ne-tuning to enhance synthetic video

understanding in future models, encouraging models to fundamentally grasp commonsense and physics

knowledge and apply them in reasoning about more advanced concepts.

5. Conclusion

We introduce VideoHallu, a novel benchmark targeting hallucination probing and mitigation in synthetic

video understanding. We curate expert-annotated, diverse, reasoning-heavy QA pairs covering

qeios.com doi.org/10.32388/BXC6X1 22

https://www.qeios.com/
https://doi.org/10.32388/BXC6X1


alignment, spatial-temporal consistency, commonsense, and physics reasoning to probe hallucinations

induced by real-world training priors in MLLMs that are not generalized to synthetic generated videos.

Evaluation on SoTA MLLMs show hallucination and poor performance on synthetic videos. We �ne-tune

MLLMs using GRPO with real-world video data, physics reasoning tasks, and VideoHallu synthetic videos

organized via curriculum learning, achieving accuracy improvements. Our results show the importance

of incorporating physics and commonsense reasoning data when re�ning MLLMs for synthetic video

tasks. However, scalability remains a limitation, as producing high-quality annotations is costly. Future

work will focus on expanding the dataset from synthetic videos and enhancing reinforcement �ne-

tuning to foster stronger and more robust reasoning in MLLMs, ultimately advancing solid physical-

world understanding in video tasks.

Role Content

System
You are a helpful assistant for video understanding. Answer questions based only on the visual

content.

User
Given the video and the following question, select the most accurate answer choice. Explain your

reasoning step by step before selecting the �nal answer.

Video

Description
A feather and a rock are dropped from the same height on Earth. Both fall to the ground.

Question Which object hits the ground �rst?

Options A. The feather  B. The rock  C. Both hit the ground at the same time

Answer [LLM will complete this section with reasoning and answer]

Table 3. Example prompt structure used for querying the LLM in our benchmark.

Appendix A Hallucination Showcases

We present selected cases from SoTA MLLM evaluations across each VideoHallu sub-categories.

Hallucinations in model answers, common sense or physics violations in videos, and other notable cues

in the video, questions, or ground truth are highlighted to assist the reader’s understanding.
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Figure 6. Hallucination Case from Alignment – Entity Counting (A-EC). We show hallucination examples

from SoTA MLLM evaluations under the A-EC category. Each case includes the video generation prompt

(Gray), key frames from synthetic videos (Gray), questions (Orange), ground truth (Green), and model answers

from GPT-4o (Black), Qwen2.5-VL (Purple), and Gemini-2.5-Pro (Blue), with hallucinations and critical

context highlighted in Red.
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Figure 7. Hallucination Case from Alignment – Entity Properties (A-EP). We show hallucination examples

from SoTA MLLM evaluations under the A-EP category. Each case includes the video generation prompt

(Gray), key frames from synthetic videos (Gray), questions (Orange), ground truth (Green), and model answers

from GPT-4o (Black), Qwen2.5-VL (Purple), and Gemini-2.5-Pro (Blue), with hallucinations and critical

context highlighted in Red.
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Figure 8. Hallucination Case from Alignment – Entity Recognition and Classi�cation (A-ERAC). We show

hallucination examples from SoTA MLLM evaluations under the A-ERAC category. Each case includes the

video generation prompt (Gray), key frames from synthetic videos (Gray), questions (Orange), ground truth

(Green), and model answers from GPT-4o (Black), Qwen2.5-VL (Purple), and Gemini-2.5-Pro (Blue), with

hallucinations and critical context highlighted in Red.
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Figure 9.Hallucination Case from Alignment – Spatial Relationships (A-SR). We show hallucination

examples from SoTA MLLM evaluations under the A-SR category. Each case includes the video generation

prompt (Gray), key frames from synthetic videos (Gray), questions (Orange), ground truth (Green), and model

answers from GPT-4o (Black), Qwen2.5-VL (Purple), and Gemini-2.5-Pro (Blue), with hallucinations and

critical context highlighted in Red.
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Figure 10. Hallucination Case from Spatial-temporal Consistency – Camera Dynamics (SC-CD). We show

hallucination examples from SoTA MLLM evaluations under the SC-TD category. Each case includes the video

generation prompt (Gray), key frames from synthetic videos (Gray), questions (Orange), ground truth (Green),

and model answers from GPT-4o (Black), Qwen2.5-VL (Purple), and Gemini-2.5-Pro (Blue), with

hallucinations and critical context highlighted in Red.
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Figure 11. Hallucination Case from Spatial-temporal Consistency – Spatial Dynamics (SC-SD). We show

hallucination examples from SoTA MLLM evaluations under the SC-SD category. Each case includes the video

generation prompt (Gray), key frames from synthetic videos (Gray), questions (Orange), ground truth (Green),

and model answers from GPT-4o (Black), Qwen2.5-VL (Purple), and Gemini-2.5-Pro (Blue), with

hallucinations and critical context highlighted in Red.
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Figure 12. Hallucination Case from Spatial-temporal Consistency – Temporal Dynamics (SC-TD). We show

hallucination examples from SoTA MLLM evaluations under the SC-TD category. Each case includes the video

generation prompt (Gray), key frames from synthetic videos (Gray), questions (Orange), ground truth (Green),

and model answers from GPT-4o (Black), Qwen2.5-VL (Purple), and Gemini-2.5-Pro (Blue), with

hallucinations and critical context highlighted in Red.
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Figure 13. Hallucination Case from Common Sense Reasoning - Knowledge (CS-K). We show hallucination

examples from SoTA MLLM evaluations under the CS-K category. Each case includes the video generation

prompt (Gray), key frames from synthetic videos (Gray), questions (Orange), ground truth (Green), and model

answers from GPT-4o (Black), Qwen2.5-VL (Purple), and Gemini-2.5-Pro (Blue), with hallucinations and

critical context highlighted in Red.
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Figure 14. Hallucination Case from Common Sense Reasoning - Reasoning (CS-R). We show hallucination

examples from SoTA MLLM evaluations under the CS-R category. Each case includes the video generation

prompt (Gray), key frames from synthetic videos (Gray), questions (Orange), ground truth (Green), and model

answers from GPT-4o (Black), Qwen2.5-VL (Purple), and Gemini-2.5-Pro (Blue), with hallucinations and

critical context highlighted in Red.
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Figure 15. Hallucination Case from Physics - Conservation (P-C). We show hallucination examples from

SoTA MLLM evaluations under the P-C category. Each case includes the video generation prompt (Gray), key

frames from synthetic videos (Gray), questions (Orange), ground truth (Green), and model answers from GPT-

4o (Black), Qwen2.5-VL (Purple), and Gemini-2.5-Pro (Blue), with hallucinations and critical context

highlighted in Red.
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Figure 16. Hallucination Case from Physics - Constraints and Properties (P-CAP). We show hallucination

examples from SoTA MLLM evaluations under the P-CAP category. Each case includes the video generation

prompt (Gray), key frames from synthetic videos (Gray), questions (Orange), ground truth (Green), and model

answers from GPT-4o (Black), Qwen2.5-VL (Purple), and Gemini-2.5-Pro (Blue), with hallucinations and

critical context highlighted in Red.
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Figure 17. Hallucination Case from Physics - Motion (P-M). We show hallucination examples from SoTA

MLLM evaluations under the P-M category. Each case includes the video generation prompt (Gray), key

frames from synthetic videos (Gray), questions (Orange), ground truth (Green), and model answers from GPT-

4o (Black), Qwen2.5-VL (Purple), and Gemini-2.5-Pro (Blue), with hallucinations and critical context

highlighted in Red.
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Figure 18. Hallucination Case from Physics - State Transition (P-ST). We show hallucination examples from

SoTA MLLM evaluations under the P-ST category. Each case includes the video generation prompt (Gray), key

frames from synthetic videos (Gray), questions (Orange), ground truth (Green), and model answers from GPT-

4o (Black), Qwen2.5-VL (Purple), and Gemini-2.5-Pro (Blue), with hallucinations and critical context

highlighted in Red.

Footnotes

1 We then do a train/test split on our data with 800 train QA pairs and 1,525 test pairs. We ensure that our

train/test split do not have video overlaps.
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