
3 April 2025, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

Uncertainty-Driven Modeling of

Microporosity and Permeability in Clastic

Reservoirs Using Random Forest

Muhammad Risha1, Mohamed Elsaadany2, Paul Liu1

1. Marine, Earth and Atmospheric Sciences Department, North Carolina State University, United States; 2. Geoscience Department, Universiti

Teknologi Petronas, Malaysia

Predicting microporosity and permeability in clastic reservoirs is a challenge in reservoir quality

assessment, especially in formations where direct measurements are dif�cult or expensive. These

reservoir properties are fundamental in determining a reservoir's capacity for �uid storage and

transmission, yet conventional methods for evaluating them, such as Mercury Injection Capillary

Pressure (MICP) and Scanning Electron Microscopy (SEM), are resource-intensive. The aim of this

study is to develop a cost-effective machine learning model to predict complex reservoir properties

using readily available �eld data and basic laboratory analyses. A Random Forest classi�er was

employed, utilizing key geological parameters such as porosity, grain size distribution, and spectral

gamma-ray (SGR) measurements. An uncertainty analysis was applied to account for natural

variability, expanding the dataset, and enhancing the model's robustness. The model achieved a high

level of accuracy in predicting microporosity (93%) and permeability levels (88%). By using easily

obtainable data, this model reduces the reliance on expensive laboratory methods, making it a

valuable tool for early-stage exploration, especially in remote or offshore environments. The

integration of machine learning with uncertainty analysis provides a reliable and cost-effective

approach for evaluating key reservoir properties in siliciclastic formations. This model offers a

practical solution to improve reservoir quality assessments, enabling more informed decision-making

and optimizing exploration efforts.
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1. Introduction

Accurately predicting microporosity and permeability in clastic reservoirs can be crucial for assessing

reservoir quality, particularly in complex geological environments where these properties are dif�cult

and costly to measure directly[1][2]. By utilizing machine learning models, these predictions can be made

ef�ciently using readily available �eld data and inexpensive lab analyses, signi�cantly improving

decision-making in reservoir characterization. These parameters directly in�uence the capacity of a

reservoir to store and transmit �uids, making them critical for hydrocarbon exploration and

production[3]. The presence of clay minerals such as kaolinite, illite, and chlorite further complicates this

evaluation, as they can either preserve or reduce porosity and permeability through various diagenetic

processes[4]. Therefore, developing models that can predict these parameters under different geological

conditions is a key focus of current reservoir studies[5].

Machine learning models have become powerful tools for addressing this challenge, providing the ability

to process large datasets and capture complex relationships between geological, petrophysical, and

diagenetic variables[6]. By incorporating various inputs such as porosity, grain size distribution, and clay

content, these models can predict the quality of reservoirs in clastic formations with a higher degree of

accuracy[7]. Speci�cally, Random Forest algorithms have proven effective due to their robustness in

handling diverse data inputs and their ability to reduce over�tting, which is crucial when working with

heterogeneous geological data[8]. On top of that, Random Forest can handle missing values in predictor

variables through imputation techniques, ensuring that incomplete datasets do not hinder predictive

accuracy[9]. This �exibility is vital in geological applications, where complete datasets are often dif�cult

to obtain. The algorithm’s strength in dealing with high-dimensional data and missing information

makes it an ideal choice for predicting reservoir quality, even in data-limited scenarios[10].

However, geological data inherently carries uncertainty due to variability in measurements and sample

heterogeneity. For example, microporosity and permeability can vary signi�cantly across different facies,

complicating efforts to model these properties consistently[11][12] (Figure 1).
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Figure 1. Schematic representation of the main porosity types in clastic reservoirs. (A)

Intergranular porosity consists of primary pore spaces between detrital grains,

providing essential storage and �ow pathways. (B) Dissolution porosity forms when

carbonate cement is partially dissolved, creating additional pore spaces that enhance

reservoir quality. (C) Microporosity occurs within clay-rich matrices, where small pores

retain �uids but signi�cantly reduce permeability. (D) Fracture porosity develops when

fractures cut through a compacted grain framework, improving permeability in

otherwise low-porosity rocks. (G – Grains, P – Porosity, C – Clay, F – Fracture).

Addressing this variability is critical for creating models that not only predict the mean behavior of the

reservoir but also account for the range of possible outcomes[13]. To achieve this, uncertainty analysis can

be employed, allowing models to generate a broader set of predictions that better re�ect the true range of

geological conditions[14][15].
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The research process involved �eld data collection, sample preparation, and laboratory analyses, followed

by the integration of petrographic and petrophysical data to understand microporosity and permeability

in clastic reservoirs. While all stages were crucial to the overall study, the focus of this paper is on the

machine learning model development for predicting microporosity and permeability, based on the

collected data (Figure 2). One of the key advantages of this model is its ability to predict dif�cult-to-

obtain properties, such as microporosity and permeability, using basic �eld information and inexpensive

laboratory analyses. Traditionally, these properties are measured through methods like MICP and SEM,

which are both expensive and time-consuming. For example, laboratory-based permeability

measurements often require core sampling and specialized equipment, which can take weeks or months

to process and incur signi�cant costs[16]. Machine learning approaches offer a faster, more cost-effective

alternative[17] by leveraging widely available data such as porosity, grain size distribution, and gamma-

ray logs.

By integrating a robust uncertainty analysis, the model ensures that the variability in input data is

adequately captured, further improving the reliability of predictions. This method not only reduces the

need for expensive laboratory techniques but also enables the rapid prediction of reservoir properties

from �eld data that can be collected more easily and affordably[18]. Such an approach signi�cantly

reduces the cost and time required for reservoir characterization, making it particularly valuable in

exploration projects where access to advanced laboratory resources may be limited[19].

The machine learning model developed in this paper has the potential to signi�cantly reduce uncertainty

in reservoir quality assessment, leading to better decision-making in hydrocarbon exploration.

2. Methodology

This study utilized �eld data collection, and laboratory analysis, used with machine learning techniques

to predict microporosity and permeability in clastic reservoirs (Figure 2). The methodology involved

gathering data from clastic outcrops on Labuan Island, Malaysia, which provided the key inputs for the

machine learning model. The outcrops on Labuan Island, which form part of the larger Borneo geological

structure, represent a range of formations, including the Crocker, Temburong, and Belait Formations,

each characterized by unique depositional environments and diagenetic histories[20]. These formations

re�ect the regional tectonic and sedimentological processes of the Sabah Basin, making the island an

ideal location for collecting analog data applicable to offshore hydrocarbon exploration[21][22].
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Figure 2. Work�ow for data collection, preparation, and analysis leading to the development

of the microporosity and permeability prediction model. The process includes �eld data

collection, sample preparation, various laboratory analyses (e.g., MICP, SEM, XRD, and grain

size analysis), and the integration of petrographic and petrophysical data to create a machine

learning-based prediction model.
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2.1. Data Collection and Preparation

Field data was collected from 16 outcrops across Labuan Island in Malaysia, which were chosen for their

accessibility and representative nature of the region's stratigraphy[23]. The island is located off the

northwest coast of Borneo, forming part of the Brunei-Sabah Basin (Figure 3).

The geology of the island is mainly clastic formations that range from deep marine to shallow marine

environments, with signi�cant clay content that affects reservoir quality through diagenetic

processes[24]. The data collection process was carried out with the aim of measuring the fundamental

petrophysical properties of the rocks, including thin section total porosity, air permeability, and grain

size distribution, which are essential for predicting reservoir quality in clastic formations.

Porosity was measured using multiple techniques to ensure comprehensive analysis. Thin section

analysis was conducted on rock samples to visually estimate porosity under a polarized microscope using

blue impregnated epoxy which is helpful in identifying pore spaces. Additionally, Helium porosimetry

was employed as well to measure porosity, providing a more accurate estimation of the interconnected

pore spaces within the rock samples[25]. MICP analysis was another key method used to quantify

microporosity[26]. It has provided critical insights into the pore sizes distribution, particularly in

identifying pore sizes smaller than 2 μm in this research.

Permeability was measured using two approaches. First, air permeability was assessed in both horizontal

and vertical orientations using the TinyPerm II Air-permeameter. This �eld-based method provided a

quick, cost-effective and non-destructive estimation for permeability directly at the outcrop. Horizontal

and vertical measurements were taken to account for anisotropy in permeability due to layering and

sedimentary structures within the rock. Second, laboratory-based MICP analysis was conducted to obtain

more detailed permeability data, particularly in tight rock samples where microporosity dominates[13].

Clay, sand, and silt content were quanti�ed using a combination of sieve analysis for the coarser fractions

and hydrometer analysis for the �ner particles as an assessment of the grain size distribution within

each sample. SGR analysis was also performed on the outcrops to provide estimates of the clay content in

terms of type, with speci�c attention to clay minerals like kaolinite, illite, and chlorite, which are known

to in�uence porosity and permeability[5]. XRD and SEM were also used for few samples to identify the

speci�c types of clay minerals and their spatial distribution within the pore spaces[27].

The data collected from these various �eld and laboratory methods formed the foundation for developing

the machine learning model. Each measurement including porosity, permeability, or clay content was
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carefully chosen to re�ect the primary factors in�uencing reservoir quality in clastic rocks. The

integration of these diverse datasets ensures a comprehensive understanding of the factors controlling

microporosity and permeability in the formations studied.

Figure 3. Regional and geological context of the study area. The maps show study area, and selected outcrop

locations across Labuan Island, highlighted within a regional context. The stratigraphic column illustrates the relative

chronostratigraphic succession of geological formations on the island, ranging from the Upper Eocene to the Late

Pliocene, providing insights into its depositional history[28][29].

2.2. Uncertainty Analysis

To enhance the machine learning model's robustness and its ability to generalize similar geological

conditions, an uncertainty analysis was applied. Model Generalization allows the model to perform

better on unseen datasets. This process allowed for a broader representation of feature variability,

ensuring the model could better capture the natural heterogeneity of clastic formations[30].

This uncertainty analysis played a crucial role in preparing the machine learning model to handle real-

world variability. By training the model on a broader and more representative dataset, the analysis

ensured that the model was better equipped to predict microporosity and permeability under similar

range of geological conditions without the necessity of data from the same outcrops. Incorporating these

uncertainty ranges minimized the risk of over�tting, enabling the model to produce more reliable and

accurate predictions for reservoir quality[31][32].
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Key input parameters subject to uncertainty included total porosity, air permeability, sand, silt, and clay

content, the thorium-potassium (ThK) ratio, the sand-to-mud (SM) ratio, mean grain size, standard

deviation, skewness, permeability, and microporosity (<2µm). These parameters were chosen due to their

signi�cant in�uence on reservoir quality and their role in controlling �uid �ow and storage capacity.

Uncertainty ranges were applied to each parameter to simulate natural geological variability. Porosity was

varied by ±4%, air permeability by ±10 millidarcies, and clay, sand, and silt contents by ±2% while the

ThK ratio was adjusted by ±0.5, while the SM ratio, mean grain size, standard deviation and skewness we

recalculated based on the new generated values. Target values (permeability and microporosity (<2µm))

were varied by ±10 millidarcies and ±5%, respectively. These ranges were based on observed �eld

variability, ensuring realistic adjustments within the natural geological ranges (Table 1).

The study used 41 samples collected from the study area. Multiple �eld and lab measurements were taken

to general a total of 308 measurements. The resampling process generated 200 new datasets, resulting in

a �nal dataset of 61,600 data points. For each sample and measurement, random values we resampled

within the speci�ed uncertainty ranges of the original measurements. This process simulated the natural

variability of geological formations as well as human error.

The resampled dataset thus provided a comprehensive representation of possible input combinations,

improving the model's ability to generalize across different reservoir conditions.
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Parameter Range Unit Remarks

Porosity ±4% Percentage (%) Based on average variability

Air Permeability ±10
Millidarcies

(mD)
Based on average variability

Clay Content ±2% Percentage (%)

Adjusted to simulate error of sieve and hydrometer tests.

Their total has to be 100%
Sand Content ±2% Percentage (%)

Silt Content ±2% Percentage (%)

ThK Ratio ±0.5 Ratio Based on average variability

SM Ratio Recalculated N/A Recalculated from updated values

Mean Grain Size Recalculated
Millimeters

(mm)
Based on human estimation error

Standard

Deviation
Recalculated N/A Based on human estimation error

Skewness Recalculated N/A Based on human estimation error

Target

Permeability
±10

Millidarcies

(mD)
Based on average variability

Target

Microporosity
±5% Percentage (%) Based on average variability

Table 1. Prede�ned Uncertainty Ranges in the Uncertainty resampling Model.

2.3. Machine Learning Model Development

This study employed a Random Forest classi�er to predict microporosity and permeability levels in

clastic reservoirs. Random Forest was selected because of its ability to handle complex, multi-

dimensional geological data with both continuous and categorical variables[33]. By aggregating the

results of multiple decision trees, Random Forest reduces the likelihood of over�tting and enhances

prediction accuracy, especially when dealing with noisy geological data[34].

qeios.com doi.org/10.32388/C2XXKZ 9

https://www.qeios.com/
https://doi.org/10.32388/C2XXKZ


The model utilized input variables that are crucial to reservoir quality assessment, including porosity, air

permeability, clay content, grain size distribution, ThK ratio, sand-to-mud (SM) ratio, and the graphic

sedimentary parameters. The model’s target variables were permeability categories and microporosity

domination (Figure 4). Permeability was classi�ed into three categories: (Poor to Fair), (Moderate), and

(Good to Very Good) (Table 2)[20]. This classi�cation helps in distinguishing between different

production potentials of the reservoir. Additionally, microporosity domination was used to classify

samples as either macroporosity or microporosity-dominated, a critical distinction that affects the �uid

�ow within the reservoir. Porosity and permeability were key variables as they directly in�uence the

reservoir's ability to store and transmit �uids. The ThK ratio is a proxy for clay content, and the grain size

distribution, which includes sand, silt, and clay for the rock's texture.

Permeability Range Qualitative Description

Poor to Fair <15

Moderate 16-50

Good to V. Good <50

Table 2. Qualitative evaluation for permeability ranges

The Random Forest model was con�gured with 100 decision trees, each limited to a maximum of �ve

leaves. A decision tree works by splitting the dataset into subsets based on feature values, which can be

thought of as a sequence of "if-then" rules. Each branch of the tree represents a decision, and the leaves

are the �nal predictions. By limiting the maximum number of leaves to �ve, it was ensured that the

model can avoid over�tting. With a large number of shallow trees (100 trees with 5 leaves each), the

model captures the key relationships between input variables while avoiding learning noise or irrelevant

patterns[35][36].

The �nal training process used 90% of the dataset for training the Random Forest model, while the

remaining 10% was reserved for evaluation. Training refers to the phase in which the model learns from

the data by identifying patterns between the input features (such as porosity, permeability, and clay

content) and the target variables (permeability and microporosity categories). By exposing the model to
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this portion of the data, it can "learn" relationships and develop the ability to make predictions on unseen

data. Another testing phase was done by applying the model on a completely separate holdout dataset to

evaluate how well the trained model performs on unseen data to check the model’s ability to generalize

to real-world cases.

To validate the model during the training phase and prevent over�tting, 5-fold cross-validation was

applied. In this technique, the training data (90%) was divided into �ve equal parts, or (folds). The model

was then trained on four of these folds and validated on the remaining fold. This process was repeated

�ve times, with each fold serving as the validation set once. The average performance across all �ve

iterations was recorded. Cross-validation not only enhances the model's reliability but also reduces the

risk of over�tting, as each portion of the data is used for both training and validation at different

stages[37][38].

Figure 4. A schematic representation of the Random Forest model inputs and outputs. The inputs consist of Porosity,

Air Permeability, Th/K Ratio, Grain size data, and Graphic sedimentary parameters, while the outputs are descriptive

permeability level and microporosity domination (<2µm).

Before training the model, categorical variables, such as permeability and microporosity levels, were

converted into numeric representations. This process, called encoding, was necessary because the

machine learning algorithm operates on numerical data. Each categorical level was assigned a numerical
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code, allowing the Random Forest algorithm to process and learn from these features effectively. The

encoding ensured that the model could properly interpret permeability and microporosity levels, which

were crucial target variables for prediction[39].

To assess the performance of the Random Forest classi�er, the Receiver Operating Characteristic (ROC)

curve and Area Under the Curve (AUC) metrics were employed. The ROC curve provides a graphical

representation of the model's diagnostic ability by plotting the True Positive Rate (TPR) against the False

Positive Rate (FPR) at various threshold settings. Mathematically, the TPR (also known as sensitivity or

recall) is calculated as the ratio of correctly predicted positive observations to the total actual positives,

while the FPR is the ratio of incorrectly predicted positive observations to the total actual negatives[40].

The AUC value, which ranges from 0 to 1, serves as a scalar measure summarizing the model's overall

discriminatory ability, with values closer to 1 indicating the highest performance. In this study, the ROC

curve was calculated for each class within the target variables using the predicted probabilities produced

by the Random Forest model[41][42]. These probabilities, rather than binary classi�cations, allowed for a

more nuanced evaluation of the model's performance across a spectrum of thresholds. After completing

the training and cross-validation steps, the holdout set was evaluated using the model to ensure an

unbiased evaluation of the model's generalization capabilities.

3. Results

This section presents the results of the Random Forest model's performance in predicting permeability

and microporosity domination, evaluated through cross-validation, an internal 10% evaluation set, and

an independent holdout dataset. The model's accuracy was measured using confusion matrices, and the

impact of uncertainty in the input parameters was also analyzed.

3.1. Model Accuracy

The Random Forest model was trained to predict both permeability categories and microporosity

domination. The cross-validation error was 11.83% for permeability and 6.76% for microporosity,

re�ecting the model’s strong performance during the training process. To further validate the model, it

was tested on a 10% evaluation set, which was excluded from the training data. The evaluation accuracies

on this dataset were 87.82% for permeability and 92.69% for microporosity domination. These high

accuracy values indicate that the model was able to accurately capture the relationships between the

input features and the target variables (Figure 5).
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Figure 5. Confusion matrices for permeability and microporosity predictions (10%

Evaluation Set). (Top) The confusion matrix for microporosity indicates a high accuracy

(94.1%) for the "Microporosity dominated" class, with some misclassi�cation between
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"Macroporosity dominated" and "Microporosity dominated." (Bottom) The confusion

matrix for permeability categories shows high accuracy in predicting “Poor to Fair” and

"Good to Very Good" of (92.8%) and (98.0%) respectively, with performance in the

"Moderate" category of (72.5%). Misclassi�cations mainly occurred between adjacent

classes, such as "Poor to Fair" and "Moderate".

3.2. Uncertainty Impact

Uncertainty in the input parameters had a measurable impact on the model's predictions. To assess the

effect of incorporating uncertainty in the input data, the accuracy of predictions with and without

uncertainty analysis was compared.

The model's accuracy for permeability and microporosity was higher when uncertainty was incorporated

into the training process, as it allowed the model to capture the natural variability in the input features.

This broader range of input values ensured that the model was not overly sensitive to small changes in

the training data, resulting in more stable predictions on the evaluation and holdout datasets.

The uncertainty analysis had a signi�cant impact on improving the model's accuracy by taking into

account the natural variability present in geological data. By expanding the dataset to include this range

of variability, the model was exposed to a broader spectrum of conditions during training. This approach

helped mitigate the effects of measurement variability and reduced the likelihood of over�tting,

enhancing the model’s ability to generalize to new, unseen data. As a result, the prediction error

decreased considerably, from 19.51% to 11.83% for permeability and from 9.87% to 6.76% for

microporosity. These improvements highlight the critical role of uncertainty analysis in re�ning model

performance and achieving more reliable predictions in complex geological contexts.

3.3. Holdout Set Evaluation

The model’s generalization capability was further tested using an independent holdout dataset that was

not used during training or internal evaluation. The evaluation accuracies on this independent holdout

dataset were 90.91% for permeability and 81.82% for microporosity domination.

Permeability type showed perfect 100% accuracy predicting (Poor to Fair) and (Moderate) permeability,

while misclassifying only one sample of (Good to V. Good) as (moderate) permeability calculated as 80%

accuracy. For porosity type domination, the confusion matrix shows that the model correctly predicted
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90.3% of the macroporosity-dominated samples, with 9.7% misclassi�ed as microporosity-dominated.

For the microporosity-dominated samples, 94.1% were correctly predicted, with 5.9% incorrectly

predicted as macroporosity-dominated (Figure 6).
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Figure 6. Confusion matrices for permeability and microporosity predictions using the

Random Forest model (Holdout Set). (Left) The confusion matrix for permeability

shows 100% accuracy in predicting both "Poor to Fair" and "Moderate" permeability

categories, with slight misclassi�cation in the "Good to Very Good" category (80%

accuracy). The model performed very well on the holdout set, demonstrating strong

generalization. (Right) The confusion matrix for microporosity predictions displays

good accuracy, with 83.3% of "Microporosity dominated" cases correctly classi�ed,

though there was some misclassi�cation between "Macroporosity dominated" and

"Microporosity dominated" classes (80% and 16.7% misclassi�cation, respectively).

The model’s performance on the holdout set re�ects its capability to generalize

predictions to new, unseen data.

4. Discussion

This section provides an interpretation of the model’s results, focusing on the importance of the

uncertainty analysis, the implications of the model's accuracy, and potential areas for improvement in

future work.

4.1. Model Accuracy and Implications

The high accuracy of the model in predicting permeability and microporosity has signi�cant

implications for reservoir quality assessment. With cross-validation errors of 11.83% for permeability and

6.76% for microporosity, the model demonstrated strong predictive power. Evaluation on the holdout

dataset resulted in accuracies of 90.91% for permeability and 81.82% for microporosity domination,

con�rming the model's generalization capabilities.
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Figure 7. ROC curves illustrating the performance of the Random Forest classi�er for

predicting permeability categories and microporosity domination. The curves depict

the trade-off between the true positive rate and false positive rate at various threshold

levels. AUC values, displayed in the legend, provide an overall measure of the model's

accuracy in distinguishing between different classes.

The model demonstrates strong predictive performance in estimating permeability and microporosity

categories, as re�ected by the high AUC values. For permeability prediction, AUC scores of 0.97, 0.90, and

qeios.com doi.org/10.32388/C2XXKZ 18

https://www.qeios.com/
https://doi.org/10.32388/C2XXKZ


0.98 for the (Poor to Fair), (Moderate), and (Good to Very Good) categories, respectively, highlight the

model’s ability to distinguish between different reservoir quality levels with high accuracy. Similarly,

microporosity classi�cation achieves an AUC of 0.95 for both macroporosity- and microporosity-

dominated samples, reinforcing the reliability of the model in differentiating pore types. The consistently

high AUC values suggest robust classi�cation performance across varying thresholds, making the model

a valuable tool for reservoir characterization and predictive analysis (Figure 7).

Table 3 shows how well the model predicted both permeability and microporosity domination for an

independent holdout dataset. Most of the predictions align with the actual values, indicating the model's

strong performance. For instance, samples C2-4 and C2-6 were correctly identi�ed as (Poor to Fair) in

terms of permeability, while samples like T3-2 and B6C-4 were accurately classi�ed as (Good to V. Good).

When it comes to microporosity domination, the model also did well, correctly predicting samples such

as C2-4, C2-6, and T9-1 as (Microporosity dominated). However, there were a few cases of

misclassi�cation. For example, sample B13-1 was predicted as (Good to V. Good) when it was actually

(Moderate), and sample B6C-7, which was (Microporosity dominated), was incorrectly predicted as

(Macroporosity dominated).

These misclassi�cations point out some of the model's limitations. It seems to struggle with certain

subtleties in distinguishing between the classes, possibly due to complex overlaps in the dataset's

features. Despite this, the majority of predictions were spot-on, showing that the model can be a reliable

tool for assessing reservoir quality. It offers a solid foundation for future improvements, such as adding

more detailed features or re�ning the model to better capture the nuances of microporosity and

permeability.
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Table 3. MICP Actual vs Predicted Values for the independent holdout dataset. Green cells show the correct

predictions while red cells show wrong predictions.

The uncertainty ranges played an important role in boosting the model's accuracy by incorporating the

natural variability found in geological data. By training the model on a dataset that included this

variability, it was exposed to a broader range of conditions, which helped to reduce the impact of

measurement inconsistencies and prevent over�tting. This approach enabled the model to better adapt

to new, unseen data. The inclusion of uncertainty analysis resulted in a signi�cant reduction in

prediction error, with approximately a 40% improvement for permeability and about a 30%

improvement for microporosity. These �ndings underscore the importance of considering data

variability in modeling, leading to more robust and reliable predictions, particularly in complex

geological contexts. This demonstrates that incorporating such analysis is not merely an optional step

but a crucial component in re�ning model performance for practical applications.

When compared to both simpler and more complex machine learning methods, the Random Forest

model demonstrated superior performance in this study. Its ensemble learning approach provides greater

stability and accuracy in predictions, which simpler models like linear regression or decision trees may

struggle to achieve, particularly in the presence of non-linear geological data[35]. While more complex

models like neural networks can sometimes offer higher accuracy, they often require signi�cantly larger

datasets and more computational resources. Random Forest strikes an effective balance, reducing the

risk of over�tting while still handling heterogeneous datasets and missing data with robustness[10].
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4.2. Limitations and Future Improvements

While the Random Forest model demonstrated strong performance, there are several limitations that

should be addressed in future work. One key limitation is the model’s sensitivity to the quality of input

data. For example, misclassi�cations of microporosity domination in samples B6C-7 and T8-2 were likely

due to the model's dif�culty in handling laminated and interbedded sandstone facies. These facies were

not directly included in the model as numerical features, which led to misclassi�cations. Incorporating

more detailed sedimentological information into the model could improve its accuracy in these cases.

Sedimentological properties such as facies type have a signi�cant impact on reservoir characteristics, but

they are dif�cult to quantify numerically. Developing methods to integrate facies data into machine

learning models, either through the use of numerical facies codes or by incorporating more detailed

geological parameters, could enhance model accuracy and reduce misclassi�cations.

Future work could also explore the use of other machine learning algorithms, such as gradient boosting

machines or neural networks, which may offer improvements in handling more complex relationships

between variables. Additionally, increasing the diversity of the training dataset by including more

geological formations and a wider range of sedimentological properties could further enhance the

model’s generalization capabilities.

The integration of uncertainty analysis with advanced machine learning techniques, combined with

more detailed geological data, could lead to the development of even more accurate models for predicting

reservoir quality. This would provide a valuable tool for both academic research and practical applications

in the oil and gas industry.

5. Conclusion

The Random Forest machine learning model developed in this study successfully predicted permeability

and microporosity domination (<2 µm) with high accuracy, achieving 90.91% for permeability and 81.82%

for microporosity. By using key geological parameters such as total porosity, SGR data, and grain size

distribution, the model proved to be a reliable tool for predicting reservoir quality in siliciclastic

formations.

A major bene�t of the model is its ability to predict complex properties like microporosity and

permeability, which typically require expensive, time-consuming methods. Instead, the model leverages
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basic, cost-effective data such as porosity and grain size analysis, making it ideal for early-stage

exploration and reducing both cost and uncertainty.

Incorporating uncertainty analysis enhanced the model's robustness, allowing it to generalize well across

different formations. This approach is particularly useful in remote or offshore settings, where access to

advanced laboratory testing is limited. The ability to generate accurate predictions using affordable data

improves decision-making in exploration projects.

For future improvements, incorporating geological parameters like facies could increase prediction

accuracy, and advanced imaging techniques such as backscattered SEM or microCT may provide more

detailed insights into microporosity. Exploring different microporosity thresholds and expanding the

dataset with more well logs could further enhance the model’s performance and generalizability across

different formations.

In conclusion, the Random Forest model, combined with uncertainty analysis, provides a cost-effective

and powerful framework for predicting permeability and microporosity in clastic formations. By

applying this model to similar geological contexts, reservoir quality predictions can be signi�cantly

improved, reducing uncertainty and optimizing exploration efforts, particularly when resources for

expensive laboratory analyses are limited.

Statements and Declarations

Author Contributions

Conceptualization: MR; Literature Review: MR; Methodology: Lab Analysis MR; MR; Software

Development and Validation: MR; Writing – original draft: MR; Writing – review & editing: MR, ME, and

PL. The authors have read and approved the �nal manuscript.

Funding

This research was funded by the YUTP grant (015LC0-060).

Data Availability

The data supporting the �ndings of this study are available on reasonable request from the

corresponding author.

qeios.com doi.org/10.32388/C2XXKZ 22

https://www.qeios.com/
https://doi.org/10.32388/C2XXKZ


Acknowledgments

The author acknowledges the �nancial support from the Institute of Hydrocarbon Recovery, Universiti

Teknologi PETRONAS.

Con�icts of Interest

The author declares no relevant �nancial or non-�nancial competing interests that could have

in�uenced the research �ndings.

Ethical Compliance Statement

Not applicable.

References

�. ^Joseph J, Gunda NSK, Mitra SK (2013). "On-chip porous media: Porosity and permeability measurements".

Chemical Engineering Science. 99: 274–283.

�. ^Van Geet M, Lagrou D, Swennen R (2003). "Porosity measurements of sedimentary rocks by means of micr

ofocus X-ray computed tomography (μCT)". Geological Society, London, Special Publications. 215 (1): 51–60.

�. ^Nelson PH (2011). "Pore-throat sizes in sandstones, siltstones, and shales: Reply". AAPG Bulletin. 95 (8): 144

8–1453. doi:10.1306/12141010159.

�. ^Kjølstad, C. (2014). Reservoir quality, diagenesis and depositional environments of Early Jurassic sandston

e reservoirs located in the northern North Sea, Knarr area (p. 135).

�. a, bAlansari A, Salim AMA, Janjuhah HT, Bin Abd Rahman AH, Fello NM (2019). "Quanti�cation of clay min

eral microporosity and its application to water saturation and effective porosity estimation: A case study fr

om Upper Ordovician reservoir, Libya". Journal of Natural Gas Geoscience. 4 (3): 139–150. doi:10.1016/j.jnggs.

2019.04.005.

�. ^Tariq Z, Aljawad MS, Hasan A, Murtaza M, Mohammed E, El-Husseiny A, Alari� SA, Mahmoud M, Abdulra

heem A (2021). "A systematic review of data science and machine learning applications to the oil and gas in

dustry". Journal of Petroleum Exploration and Production Technology. 11 (12): 4339–4374. doi:10.1007/s1320

2-021-01302-2.

�. ^Ajdukiewicz JM, Lander RH (2010). "Sandstone reservoir quality prediction: The state of the art". AAPG Bu

lletin. 94 (8): 1083–1091. doi:10.1306/intro060110.

qeios.com doi.org/10.32388/C2XXKZ 23

https://www.qeios.com/
https://doi.org/10.32388/C2XXKZ


�. ^Xi K, Cao Y, Jahren J, Zhu R, Bjørlykke K, Haile BG, Zheng L, Hellevang H (2015). "Diagenesis and reservoir q

uality of the Lower Cretaceous Quantou Formation tight sandstones in the southern Songliao Basin, China".

Sedimentary Geology. 330: 90–107. doi:10.1016/j.sedgeo.2015.10.007.

�. ^Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using r

andom forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25, 35–50.

��. a, bRodriguez-Galiano V, Sanchez-Castillo M, Chica-Olmo M, Chica-Rivas M (2015). "Machine learning pred

ictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees a

nd support vector machines". Ore Geology Reviews. 71: 804–818.

��. ^Merletti GD, Spain DR, Melick J, Armitage P, Hamman J, Shabro V, Gramin P (2016). "Integration of depositi

onal, petrophysical, and petrographic facies for predicting permeability in tight gas reservoirs". Interpretati

on. 5 (2): SE29–SE41. doi:10.1190/INT-2016-0112.1.

��. ^Worden RH, Burley SD (2003). "Sandstone Diagenesis: The Evolution of Sand to Stone". Sandstone Diagene

sis. 1–44. doi:10.1002/9781444304459.ch.

��. a, bTaylor TR, Giles MR, Hathon LA, Diggs TN, Braunsdorf NR, Birbiglia GV, Kittridge MG, MacAulay CI, Espe

jo IS (2010). "Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality". AAPG Bull

etin. 94 (8): 1093–1132. doi:10.1306/04211009123.

��. ^Wellmann F, Caumon G (2018). "3-D Structural geological models: Concepts, methods, and uncertainties". I

n Advances in geophysics (Vol. 59, pp. 1–121). Elsevier.

��. ^Yong H, Wenxiang H, Yanli Z, Bincheng G, Zhaopu G (2021). "Uncertainty, sensitivity analysis and optimiza

tion of a reservoir geological model". Marine Georesources & Geotechnology. 39 (2): 129–139.

��. ^Zhong Z, Carr TR, Wu X, Wang G (2019). "Application of a convolutional neural network in permeability pr

ediction: A case study in the Jacksonburg-Stringtown oil �eld, West Virginia, USA". Geophysics. 84 (6): B363–

B373.

��. ^Xu C, Fu L, Lin T, Li W, Ma S (2022). "Machine learning in petrophysics: Advantages and limitations". Arti�

cial Intelligence in Geosciences. 3: 157–161. doi:10.1016/j.aiig.2022.11.004.

��. ^Risha, M. (2024). Coastal Evolution of the Nile, Indus, and Yellow River Deltas: Historical Analysis, and Ma

chine Learning Prediction for Future Shoreline. [NC State University]. https://www.lib.ncsu.edu/resolver/184

0.20/44266

��. ^Arigbe OD, Oyeneyin MB, Arana I, Ghazi MD (2019). "Real-time relative permeability prediction using dee

p learning". Journal of Petroleum Exploration and Production Technology. 9 (2): 1271–1284. doi:10.1007/s132

02-018-0578-5.

qeios.com doi.org/10.32388/C2XXKZ 24

https://www.qeios.com/
https://doi.org/10.32388/C2XXKZ


��. a, bRisha, M. (2025b). The Effect of Clay Minerals and Microporosity on Siliciclastic Reservoirs: A Case Study

from Labuan, Malaysia [UNIVERSITI TEKNOLOGI PETRONAS]. https://utpedia.utp.edu.my/id/eprint/31239/

��. ^Madon M (1994). "The stratigraphy of northern Labuan, NW Sabah Basin, East Malaysia". Bulletin of the

Geological Society of Malaysia. 36: 19–30.

��. ^Nazaruddin DA, Mansor HE, Wali SSA (2016). "Geoheritage of labuan island". Bulletin of the Geological So

ciety of Malaysia. 62: 117–129. doi:10.7186/bgsm62201613.

��. ^Risha M, Douraghi J (2021). "Impact of Clay mineral type on sandstone permeability based on �eld investi

gations: Case study on Labuan island, Malaysia". Journal of Physics: Conference Series. 1818 (1): 12091. doi:1

0.1088/1742-6596/1818/1/012091.

��. ^Madon M (1997). "Sedimentological aspects of the Temburong and Belait Formations, Labuan (offshore w

est Sabah, Malaysia)". Bulletin of the Geological Society of Malaysia. 41: 61–84. doi:10.7186/bgsm41199707.

��. ^Chastre C, Ludovico-Marques M (2018). "Nondestructive testing methodology to assess the conservation o

f historic stone buildings and monuments". In: Makhlouf ASH, Aliofkhazraei MB (Eds.), Handbook of Materi

als Failure Analysis With Case Studies from the Construction Industries. Butterworth-Heinemann. pp. 255–

294. doi:10.1016/B978-0-08-101928-3.00013-6.

��. ^Risha, M. (2025a). AI-Assisted Thin Section Image Processing for Pore-Throat Characterization in Tight Cl

astic Rocks. ArXiv Preprint ArXiv:2502.11523. doi:10.48550/arXiv.2502.11523.

��. ^Wilson MD, Pittman ED (1977). "Authigenic clays in sandstones; recognition and in�uence on reservoir pro

perties and paleoenvironmental analysis". Journal of Sedimentary Research. 47 (1): 3–31.

��. ^Hennig-Breitfeld J, Breitfeld HT, Hall R, BouDagher-Fadel M, Thirlwall M (2019). "A new upper Paleogene t

o Neogene stratigraphy for Sarawak and Labuan in northwestern Borneo: Paleogeography of the eastern S

undaland margin". Earth-Science Reviews. 190: 1–32. doi:10.1016/j.earscirev.2018.12.006.

��. ^Risha M, Tsegab H, Rahmani O, Douraghi J (2023). "The Impact of Clay Minerals on the Porosity Distributi

on of Clastic Reservoirs: A Case Study from the Labuan Island, Malaysia". Applied Sciences (Switzerland). 13

(6): 3427. doi:10.3390/app13063427.

��. ^Stracuzzi, D. J., Darling, M. C., Peterson, M. G., & Chen, M. G. (2018). Quantifying Uncertainty to Improve De

cision Making in Machine Learning. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). htt

ps://www.osti.gov/biblio/1481629%0A https://www.osti.gov/servlets/purl/1481629

��. ^Janjuhah HT, Alansari A, Vintaned JAG (2019). "Quanti�cation of microporosity and its effect on permeabil

ity and acoustic velocity in Miocene carbonates, Central Luconia, offshore Sarawak, Malaysia". Journal of P

etroleum Science and Engineering. 175: 108–119.

qeios.com doi.org/10.32388/C2XXKZ 25

https://www.qeios.com/
https://doi.org/10.32388/C2XXKZ


��. ^Valdez AR, Rocha BM, Chapiro G, dos Santos RW (2020). "Uncertainty quanti�cation and sensitivity analy

sis for relative permeability models of two-phase �ow in porous media". Journal of Petroleum Science and

Engineering. 192: 107297.

��. ^Risha M, Liu P (2025). Shoreline Prediction Models: A Review of the Evolution from Empirical to AI Machi

ne Learning Approaches. doi:10.22541/essoar.174231482.27711801/v1.

��. ^Zou C, Zhao L, Xu M, Chen Y, Geng J (2021). "Porosity prediction with uncertainty quanti�cation from mult

iple seismic attributes using random forest". Journal of Geophysical Research: Solid Earth. 126 (7): e2021JB0

21826.

��. a, bBreiman, L. (2001). Random forests. Random Forests, 1–122. Machine Learning, 45(45), 5–32. https://link.

springer.com/article/10.1023/A:1010933404324

��. ^Salles T, Goncalves M, Rodrigues V, Rocha L (2015). "BROOF: Exploiting out-of-bag errors, Boosting and Ra

ndom Forests for effective automated classi�cation". SIGIR 2015 - Proceedings of the 38th International AC

M SIGIR Conference on Research and Development in Information Retrieval. 353–362. doi:10.1145/2766462.

2767747.

��. ^Gorriz, J. M., Segovia, F., Ramirez, J., Ortiz, A., & Suckling, J. (2024). Is K-fold cross validation the best model

selection method for Machine Learning? ArXiv Preprint ArXiv:2401.16407.

��. ^Kärkkäinen, T. (2014). On cross-validation for MLP model evaluation. Structural, Syntactic, and Statistical

Pattern Recognition: Joint IAPR International Workshop, S+ SSPR 2014, Joensuu, Finland, August 20-22, 201

4. Proceedings, 291–300.

��. ^Smith HL, Biggs PJ, French NP, Smith ANH, Marshall JC (2024). "Lost in the Forest: Encoding categorical va

riables and the absent levels problem". Data Mining and Knowledge Discovery. 38 (4): 1889–1908. doi:10.100

7/s10618-024-01019-w.

��. ^Walter SD (2005). "The partial area under the summary ROC curve". Statistics in Medicine. 24 (13): 2025–2

040. doi:10.1002/sim.2103.

��. ^Jadhav, A. S. (2020). A novel weighted TPR-TNR measure to assess performance of the classi�ers. Expert Sy

stems with Applications, 152, 113391.

��. ^Prati RC, Batista GE, Monard MC (2011). "A survey on graphical methods for classi�cation predictive perfor

mance evaluation". IEEE Transactions on Knowledge and Data Engineering. 23 (11): 1601–1618.

Declarations

qeios.com doi.org/10.32388/C2XXKZ 26

https://www.qeios.com/
https://doi.org/10.32388/C2XXKZ


Funding: This research was funded by the YUTP grant (015LC0-060).

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/C2XXKZ 27

https://www.qeios.com/
https://doi.org/10.32388/C2XXKZ

