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This study uses �nite power series as the basis function and interpolation and collocation

techniques to study a class of implicit block methods of a seventh-derivative type. Discrete

schemes are implicit two-point block methods that are obtained by selecting collocation points

carefully and unevenly in order to improve the stability of the methods through testing.

Nevertheless, in contrast to other current numerical equations, these methods require seventh-

derivative functions. The novel techniques are identi�ed, examined, and shown to be A-stable

and convergent. Newton Raphson’s approach is used to accomplish method implementation.

Trials demonstrated the effectiveness and precision of the derived equations in terms of

computational time and absolute errors on a variety of �rst-order initial value issues, such as

�rst-order, second-order linear differential systems, and the SIR model. When compared to

similar methods that are currently in the literature, the suggested methods produce better

numerical results.
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1. Introduction

Over the years, stiff differential equations have been explored in an effort to create suitable and

reliable numerical methods. It is important to remember that  [1]  was the �rst to study the most

effective numerical strategy for solving stiff ODEs. Diverse academics de�ne this fascinating �eld

of study in different ways. As such, it can be described as ill-conditioned equations. First-order

initial value problems of the form of Equation (1) should be examined in order to reveal the nature

of the ill-conditioning’s stiffness and to highlight the necessity of developing effective numerical

techniques for stiff differential equations: 

where the step size is denoted by   and  . According to [2], the initial value problems

with stiff ordinary differential equations occur in many �elds of engineering science, particularly

in the studies of electrical circuits, vibrations, chemical reactions, and so on. Stiff differential

equations are ubiquitous in astrochemical kinetics and many non-industrial areas like weather

prediction and biology. A set of differential equations is ’stiff’ when an excessively small step is

needed to obtain correct integration.

Furthermore, a stiff system of equations is one for which    (where    is the eigenvalues) is

enormous, meaning that only unreasonable restrictions on   (that is, an excessively small    that

necessitates an excessive number of steps to solve the initial value problem) can guarantee stability,

the error bound, or both. In this context, enormous refers to a scale of  . Thus, an equation with 

, may also be viewed as stiff if we must solve it for great values of time, where 

 in (1) is continuous and differentiable; so that,   is assumed to satisfy the

existence and uniqueness theorem within the interval of  ; while stability is clearly necessary, it

is not suf�cient to acquire precise solutions to stiff ordinary differential equation systems. One

frequently noticed occurrence is that many implicit methods appear to fall short of the predicted

= f(x,y), a ≤ x ≤ b, y(0) = ,y ′ y0 (1)
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accuracy order when used in stiff situations. We refer to this process as order reduction. Runge-

Kutta techniques undoubtedly result in order reduction, while backward differentiation formula

techniques do not. Furthermore, because the step size is limited to preserve the methods’ potential

accuracy, explicit methods are unable to solve stiff ODEs. Using proper implicit methods solves this

problem (see  [3]). Nonetheless, a few well-known numerical techniques are the Runge-Kutta

methods in [4], the Euler method by [5], and linear multistep approaches in [6]. Furthermore, many

research and engineering domains face challenging problems of a rigid character that are outside

the scope of the aforementioned approaches. Thus, there is a need to create more practical

approximation techniques. Furthermore, for stiff IVPs,  [7]  developed a diagonally implicit block

backward differentiation formula. Implicit linear block multistep algorithms for �rst-order stiff

and non-stiff IVPs have been devised and implemented, respectively, in  [8][9][10][11][12][13][14].

Remarkably, [15][16] also created and applied an implicit four-point hybrid block integrator on stiff

models connected to speci�c real-world scenarios, using a technique that was almost as good as

other approaches already in use. In [17][18], an additional implicit block technique has been explored

for utilizing the Chebyshev polynomial to solve stiff IVPs. Nevertheless, their techniques rely on

the approximation of perturbed collocation.

Among other places,  [19][20][21][22]  have proposed applications of multi-derivatives block

approaches to �rst-order stiff initial-value problems. Higher derivative approaches, however,

generally have the drawback of requiring the provision and evaluation of derivative functions,

leading to a greater number of function evaluations. Therefore, if numerical methods are not

suf�ciently stable, that is, if the numerical errors are not checked by the zero-stability and

consistency properties—this shortcoming can lead to round-off errors in the global iterations.

As a result, using collocation and interpolation techniques,  [23]  developed and used the fourth

derivative  point block formula on �rst-order stiff IVPs. Similarly, for solving (1), [24] suggested a

third derivative trigonometrically �tted block technique of a low order  . Equation (1) was solved

by  [25]  using second-derivative methods. Furthermore,  [26]  considered a seventh-order second-

derivative block technique for solving (1) directly, with numerical results better than those in [27].

The work in  [28], developed a continuous implicit seventh-eight approach of uniform order    for

the direct solution of (1) by using a power series basis function using collocation and interpolation

techniques. But the previously mentioned also took into account relevant issues such as the

Prothero-Robinson oscillatory problem, the growth, and SIR models. In  [16], an optimal family of

block techniques is applied to solve models of infectious diseases using �xed and adaptive

strategies. The approaches did not only take into account numerical accuracy but also the precision

factor, among others, which is the negative logarithm of the absolute errors of the methods.

Summarily, in contrast to conventional approaches, the idea behind the inclusion of the seventh

derivative is to investigate the effect of the non-uniform distribution of collocation points on the

stability of numerical methods with higher-order accuracy for the direct solution of (1). The

proposed methods are a group of discrete schemes of functions of �rst order with type seventh-

derivative, which makes them signi�cant. In contrast to other existing approaches that have a

constant  points of collocation, they also have a strategic non-uniform distribution and

positioning of collocation points with a higher order of accuracy. Although providing the

previously indicated total derivative functions in the proposed approaches is a burden imposed by

these techniques, the signi�cance of the derived methods is demonstrated by their ef�ciency and

correctness. Second, the point collocation strategy used cannot be generalized because it has not

been veri�ed in the formulation of higher-order numerical methods. Thirdly, the new methods

become cumbersome correspondingly to the complexity of differential equation systems, as the

derivative functions have to be provided. Tests on numerical examples, however, show that our

obtained formulae are workable on �rst-order, second-order IVPs, and application dif�culty in

biology (SIR model).

For that reason, the present study is structured as follows: The proposed methods are derived in

section two, the analysis of the numerical properties is shown in section three, the implementation

strategy is presented in section four, the numerical experiment is shown in section �ve, the

methods are applied in real-world scenarios in section six, and the conclusion and future research

are presented in section seven.

2. Derivation of the seventh-derivative methods

Consider the following power series polynomial: 

k−
2

8

−kth
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with its derivatives given as: 

with the following as seventh-derivative: 

Note that:

Where   in (2)–(7) are found using the Gaussian elimination method. Therefore, (2) and (2)–

(7) are then interpolated and collocated at   and   (where   is the step number and 

) to give the following block �gures:

Figure 1. Seventh-derivative non-uniform two-step block �gure for 7D2PIB1

Which yields the following equation system: 

Figure 2. Seventh-derivative non-uniform two-step block �gure for 7D2PIB2

Where,

y(x) = ,∑
j=0

k+8

ajx
j (2)

(x) = j = f(x,y),y ′ ∑
j=0

k+8

ajx
j−1 (3)

(x) = j(j − 1) = g(x,y),y ′′ ∑
j=0

k+8

ajx
j−2 (4)

(x) = j(j − 1)(j − 2) = u(x,y),y ′′′ ∑
j=0

k+8

ajx
j−3 (5)

(x) = j(j − 1)(j − 2)(j − 3) = v(x,y),y ′′′′ ∑
j=0

k+8

ajx
j−4 (6)

⋮

(x) = j(j − 1)(j − 2)(j − 3)(j − 4)(j − 5)(j − 6) = q(x,y).y (7) ∑
j=0

k+8

ajx
j−7 (7)

= , i = 0(1)k, = , i = 1, …k, = , i = k, = , i = k, =y ′
n+i fn+i y ′′

n+i gn+i y ′′′
n+i un+i y

(4)
n+i vn+i y

(5)
n+i

, i = k, = , i = k, = , i = k(1).wn+i y
(6)
n+i mn+i y

(7)
n+i qn+i

∈ Ra sj′

xn , l = 0(1)kxn+l k

k = 2

PX = Q, (8)
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After (8) is solved for    by multiplying the inverse of matrix    with    and

substitution is made into (2), it gives the LMM below using the Maple   software environment: 

Therefore, the parameters   and   are obtained for  , so that the coef�cients of 

 and   are normalized. Therefore, 

X = ,( ), , , , , , , , , ,a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
⊤

Q = .( ), , , , , , , , , ,yn fn fn+1 fn+2 f ′
n+k

f
(2)
n+k

f
(3)
n+k

f
(4)
n+k

f
(5)
n+k

f
(6)
n+1 f

(6)
n+k

⊤

∈ R, j = 0(1)10a sj′ P Q

18

y( ) = (ξ) + h (ξ) + (ξ) + (ξ)xn+ξ α0 yn ∑
j=0

k

βj fn+j h2∑
j=3

βj gn+k h3∑
j=4

βj un+k

+ (ξ) + (ξ) + (ξ) + (ξ) ,h4∑
j=5

βj vn+k h5∑
j=6

βj wn+k h6∑
j=7

βj mn+k h7∑
j=8

9

βj ∑
i=1

k

qn+i

(9)

(ξ)α0 (ξ)βj ξ = x − xn
yn+1 yn+2

= 1,α0 (10)

= ξ − + + − + − + − + ,β0
3
2
ξ2

h

2
3

ξ3

h2

7 ξ4

8 h3

63 ξ5

40 h4
7
6

ξ6

h5
1
2

ξ7

h6

33 ξ8

256 h7

43 ξ9

2304 h8

3 ξ10

2560 h9
(11)

= − 112 + − + 40 − + − ,β1
128 ξ3

3 h2

ξ4

h3

672 ξ5

5 h4

280 ξ6

3 h5

ξ7

h6
21
2

ξ8

h7

14 ξ9

9 h8
1

10
ξ10

h9
(12)

= − + − + − + − + ,β2
3
2
ξ2

h

130 ξ3

3 h2

889 ξ4

8 h3

5313 ξ5

40 h4

553 ξ6

6 h5

79 ξ7

2 h6

2655 ξ8

256 h7

3541 ξ9

2304 h8

253 ξ10

2560 h9
(13)

= + 44 − + − 91 + 39 − + − ,β3
−5
2
ξ2 ξ3

h

441 ξ4

4 h2

525 ξ5

4 h3

ξ6

h4

ξ7

h5

1311 ξ8

128 h6

583 ξ9

384 h7

25 ξ10

256 h8
(14)

= 2 h − + − + − 19 + − + ,β4 ξ2 45 ξ3

2
217 ξ4

4 h
1281 ξ5

20 h2

133 ξ6

3 h3

ξ7

h4

639 ξ8

128 h5

853 ξ9

1152 h6

61 ξ10

1280 h7
(15)

= − + − + − 14 + 6 − + − ,β5 ξ2h2 23 hξ3

3
419 ξ4

24
203 ξ5

10 h
ξ6

h2

ξ7

h3

101 ξ8

64 h4

15 ξ9

64 h5

29 ξ10

1920 h6
(16)

= − + 4 h − + − + − + ,β6
1
3
ξ2h3 17 ξ3h2

9
ξ4 109 ξ5

24
28 ξ6

9 h
4
3

ξ7

h
2

45 ξ8

128 h3

181 ξ9

3456 h4

13 ξ10

3840 h5
(17)

= + − + − + − + − ,β7
−1
15
ξ2h4 14 ξ3h3

45
37 ξ4h2

60
41 hξ5

60
67 ξ6

144
1
5
ξ7

h

17 ξ8

320 h2

23 ξ9

2880 h3

ξ10

1920 h4
(18)

= − + − + − + − + − ,β8
2 h5ξ2

315
2 h4ξ3

105
1

36
h3ξ4 11 h2ξ5

450
hξ6

72
13 ξ7

2520
7 ξ8

5760 h
ξ9

6048 h2

ξ10

100800 h3
(19)

= − + − + h − + − + .β9
2 h5ξ2

315
5 h4ξ3

189
1

20 h
3ξ4 49 h2ξ5

900
1

27 ξ6 9 ξ7

560
5 ξ8

1152 h
121 ξ9

181440 h2

ξ10

22400 h3
(20)
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At    and  , evaluate (11) – (20), and substitute into (9) to obtain the newly developed

seventh-derivative implicit block methods, abbreviated as “7D2PIB1 and 7D2PIB2"

correspondingly. 

In a similar manner, 7D2PIB2, the second formula, is obtained and given as follows: 

3. The stability analysis of the methods

With the proposed numerical techniques, this section provides the numerical properties and

theorems (without proofs).

Theorem 1. Convergence [4]: The necessary and suf�cient conditions for the linear multistep

method (LMM) of (21)–(24) to be convergent are that it must be consistent and zero-stable.

Theorem 2. The necessary and suf�cient condition for the method given by (21)–(24) to be zero-

stable is that it satis�es the root condition (See [4]).

De�nition 1. Zero-stability [29]

The numerical methods in (21) – (24) are said to be zero-stable if no root of the �rst characteristic

polynomial has a modulus greater than one and if every root with modulus one is simple.

De�nition 2. A-stability: A numerical method is said to be A-stable if the whole of the left-half

plane   is contained in the region  . Where   is the stability polynomial

of the proposed method. (See [4]).

De�nition 3. A( )-stability: A numerical algorithm is said to be A( )-stable for some   if

the wedge    is contained in its region of absolute stability.

(See, [30]).

De�nition 4. Linear Multistep Method (LMM): A linear multi-step method is a computational

method for determining the numerical solution of initial value problems of ODEs which form a

linear relation between   and   This is a method that requires starting values from several

previous steps for the approximation of the solution at the current step. For instance, in the

method  step, the values of    computed at the previous  step, that is, 

 are used to calculate   (see [31]).

De�nition 5. Interpolation and collocation: Collocation is the evaluation of the differential system of

the basis or trial function at some selected grid points, while interpolation is the evaluation of the

approximate solution also at some selected grid points. This collocation method is widely

considered as a means of providing a numerical solution to ordinary differential equations

(see [31]).

De�nition 6. Block method: A block method can be seen as a set of linear multistep methods

simultaneously applied to initial value problems and then combined to yield a better

approximation. In other words, the set of new values derived by each application of the method is

known as a block. That is, at each iteration of the algorithm, the values of   are

computed simultaneously (see [4]).

ξ = h ξ = 2h

= + h + h − h + −yn+1 yn
5639
23040

fn
121
45

fn+1
44551
23040

fn+2
1289
768

h2gn+2
7687
11520

h3un+2

+ − + − + ,287
1920

h4vn+2
583

34560
h5wn+2

1
5760

h6mn+2
257

604800
h7qn+1

121
907200

h7qn+2

(21)

= + h + h − h + − +yn+2 yn
11
45

fn
128
45

fn+1
49
45

fn+2
4
3
h2gn+2

26
45

h3un+2
2

15
h4vn+2

− − + .
2

135
h5wn+2

2
4725

h7qn+1
2

14175
h7qn+2

(22)

= + h + h − h + −yn+1 yn
1663
11520

fn
121
45

fn+1
21119
11520

fn+2
2837
1920

h2gn+2
2687
5760

h3un+2

− + − − + ,257
5040

h4vn+1
1343
20160

h4vn+2
113

120960
h5wn+2

37
33600

h6mn+2
121

907200
h7qn+2

(23)

= + h + h − h + − −yn+2 yn
13
90

fn
128
45

fn+1
89
90

fn+2
17
15

h2gn+2
17
45

h3un+2
16
315

h4vn+1

+ + − + .
16
315

h4vn+2
h5wn+2

945
2

1575
h6mn+2

2
14175

h7qn+2

(24)

z : R(z) ≤ 0 z : R(z) ≤ 1 R(z)

α α α ∈ [0, ]π

2
= {z : |Arg(−z)| < α, z ≠ 0}Sα

yn+j .fn+j

k− y− k−

= + jh, j = 1(0)k − 1xn+j xn yn+k

, . . . ,yn+1 yn+2 yn+k
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3.1. The Order of the 7D2PIB1 and 7D2PIB2

To determine the order of the derived methods, (21) – (24) are rewritten in block form to give the

linear operator: 

Where, =10mu 

Recall that   are the �rst-order derivative functions in  .

By comparing coef�cients in powers of   and  , using the Taylor series expansion of (25), gives: 

In the form of (27), (21) and (22) are equivalent to:

L(y(x);h) = − − h ( − ) − −A(1)Ym A(0)Ym−1 B(0)Fm−1 B(1)Fm h2C1Gm h3C2Um

− − − − ,h4C3Vm h5C4Wm h6C5Mm h7C6Qm

(25)

= ( ) , = ( ) , = ( ) , = ( ) ,A(1) 1
0

0
1

A(0) 0
0

1
1

B(0)
0

0

5639
23040

11
45

B(1)
121
45

− 44551
23040

128
45

− 49
45

= ( ) , = ( ) , = ( ) ,C(1)
0

0

1289
768

4
3

C(2)
0

0

− 7687
11520

− 26
45

C(3)
0

0

287
1920

2
15

= ( ) ,C(4)
0

0

− 583
34560

− 2
135

= ( ) = ( ) , = ( ) ,C(5)
0

0

− 1
5760

− 2
135

C(6)
− 257

604800

− 2
4725

121
907200

2
14175

Ym
yn+1

yn+2

= ( ) ,Ym−1
yn−(k−1)

yn

F( ) = ( ) , F( ) = ( ) , = ( ) , = ( ) ,Ym
fn+1

fn+k

Ym−1
fn−(k−1)

fn
Gm

f ′
n+1

f ′
n+k

Um

f
(2)
n+1

f
(2)
n+k

= ( ) ,Vm
f

(3)
n+1

f
(3)
n+k

= ( ) , = ( ) , = ( ) .Wm

f
(4)
n+1

f
(4)
n+k

Mm

f
(5)
n+1

f
(5)
n+k

Qm

f
(6)
n+1

f
(6)
n+2

, l = 0(1)kfn+l x,y
h y

L(y(x);h) = y(x) + h (x) + (x) + … + (x) + …q0 q1 y ′ q2h
2y ′′ qph

pyp

+ (x) + … ,qp+1h
p+1yp+1

(27)
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Similarly, the 7D2PIB2 order is as follows:
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Note that  , considering the initial terms in 

 correspondingly.

Thus, if   and  , then the linear operator   in (25) and

the associated continuous linear multistep methods in (21)–(24) are said to be of order  . Given

that   is the error constant, the local truncation error is given by: 

Consequently, with    above, the order and error constants for “7D2PIB1 and 7D2PIB2” are

examined as follows:

Method Order, p Error constant 

7D2PIB1

7D2PIB2

Table 1. Order and error constants

3.2. Zero-Stability

The block methods in (21)–(24) have a zero-stability polynomial that may be stated by evaluating: 

= = = = = = = 0, i = 0(1)6q0 q1 q2 q3 q4 q5 q6

qi
= = = … = = 0q0 q1 q2 qp ≠ 0qp+1 L(y(x);h)

p

qp+1

= ( ) + 0( ).tn+k qp+1h
(p+1)y (p+1) xn hp+2 (28)

qi

( )qp+1

10 − (y) (x) + O ( )5881
7185024000 D

(11) h11 h12

10 − (y) (x) + O ( )23
28066500 D

(11) h11 h12

10 − (y) (x) + O ( )3931
12573792000 D

(11) h11 h12

10 − (y) (x) + O ( )31
98232750 D

(11) h11 h12

R(t) = ( t − ) ,∣∣ A(0) A(1) ∣∣ (29)
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The characteristic roots for 7D2PIB1 and 7D2PIB2 are thus obtained by equating (29) to zero and

solving for   to give:

 As a result, 7D2PIB1 and 7D2PIB2 in (21)–(24) are zero-stable according to De�nition 3.1.

3.3. Consistency

Lemma 1. The new linear multistep methods in (9) are said to be consistent if and only if:

�. ,

�. 

�. 

�.  (See [6]).

Let  ,  ,    and 

where   and   are the second and �rst characteristic polynomials, since a �rst-order ODE is

considered.

Remark:

�. Condition (i) is certainly satis�ed, since the order   of the methods is   each.

�. It is clear also that condition (ii) is satis�ed with the developed methods.

�. Again,   upon evaluation of condition (iii), i.e., for the �rst scheme,

�. When   is substituted into condition (iv), it is also veri�ed.

Hence, the methods in (21)–(24) are found to be consistent.

Remark: The above conditions are also veri�ed and satis�ed by the second 7D2PIB2 method.

3.4. Convergency

In line with Theorem 3.1, since the newly derived block methods are consistent and zero-stable,

they converge.

Let   and   be the approximate and exact solutions of (1), respectively, then the absolute error

is evaluated by using the formula:

, 

where   is the total number of steps.

3.5. Linear stability

The absolute stability polynomials are presented below in the light of [32], using the test equations:

  with    assumed to go through the negative eigenvalues of the Jacobian matrix. So that

substituting the above into (21)–(24) yields: 

Where   and   is the difference equation shift operator. From this, we

have the following expression as the stability polynomial: 

The following stability functions for 7D2PIB1 and 7D2PIB2, respectively, are produced by

evaluating (31) to determine the absolute stability regions: 

t

t = 0, 1.

p ≥ 1

= 0,∑
j=0

k

αj

j∑
j=0

1
=αj ∑

j=0

k

βj

(t) = β(t).η ′

= −1, = 1, = , = , = −α0 α1 β0
5639
23040 β1

121
45 β2

44551
23040

η(t) = t − 1 (t) = 1η ′

σ(t) = + t − ,5639
23040

121
45

44551
23040

t2

σ(t) η(t)

p 10

j = = 1,∑
j=0

1
αj ∑

j=0

k

βj

t = 1,

yi y( )xi

AbsErr = |( − (y( ) |yi)t xi )t 1 ≤ t ≤ NS,
NS

= λh,y ′ λ

M(w, z) = − w + + z + z w + w + w + w + wA1 A0 B0 B1 z2B2 z3B3 z4B4 z5B5

+ w + w,z6B6 z7B7
(30)

z = λh w( ) = , j = 1(1)7yn y
j
n+j

(w, z) = |M(w, z)|, i = 1, 2.πi (31)

(w, z) = − + − + −π1
w2

285768000
z14 w2

13608000
z13 23 w2

27216000
z12 w2

151200
z11 67 w2

1814400
z10

+ + (− − ) + (− − ) +29 w2

201600
z9 1291 w2

3628800
w

3628800
z8 127 w2

604800
w

604800
z7 11 w2

1350
z6

− + − + ( − ) + (− − w)z + − w,7 w2

135
z5 19 w2

90
z4 11 w2
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z3 223 w2

180
7 w
180

z2 8
5
w2 2

5
w2

(32)
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From this,   and   in (32) and (33) are then coded in a MATLAB R2023a software environment,

and the region of absolute stability for each derived method is as shown in Figures 3 and 4 below.

Figure 3. Absolute Stability Region of 7D2PIB1

Figure 4. Absolute Stability Region of 7D2PIB2

(w, z) = − + − + − +π2
w2

2381400
z11 w2

113400
z10 23 w2

226800
z9 w2

1260
z8 367 w2

75600
z7 1817 w2

75600
z6

+(− − ) + ( − ) − + ( − )2923 w2

30240
w

30240
z5 523 w2

1680
w

5040
z4 7 w2

9
z3 64 w2

45
w

45
z2

+(− − w)z + − w.17 w2

10
3

10
w2

(33)

π1 π2
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Figure 5. Compared absolute stability region of methods

Figures 3 and 4 indicate the region of absolute stability of the methods. The �rst method, 7D2PIB1,

whose unstable region is the closed region, is larger than the second method, 7D2PIB2, as precisely

shown in Figure 5; implying that 7D2PIB2 has an open region of larger stability than 7D2PIB1.

However, both methods have regions of absolute stability that are left symmetric. Hence, both

developed formulae are A-stable in line with De�nition 3.2.

4. Implementation of the methods

The simultaneous approximation of    in the new methods was done using Newton Raphson’s

techniques on the MATLAB (R2015a) software environment using: HP 655, Windows    Pro,

processor: AMD E1-1200 APU with Radeon(tm) HD graphics  GHz, Installed memory (RAM): 

GB,  bits operating system, x   based processor. Therefore, let    be the 

 iterations for approximating   and  , 

So that (35) can be rewritten as: 

From which we get: 

where,

,

and

yn+l

8.1
1.40

6.00 64− 64− y
(i+1)
n+l

(i + 1)th yn+l = −e
j+1
n+1 y

(i+1)
n+l

y
(i)
n+l

= − , l = 1(1)k.y
(i+1)
n+l

y
(i)
n+l

f( )y
(i)
n+l

( )f ′ y
(i)
n+l

(34)

− = −[f( )][ ( ) ,y
(i+1)
n+l

y
(i)
n+l

y
(i)
n+l

f ′ y
(i)
n+l

]−1 (35)

= −[f( )][ ( ) ,e
j+1
n+1 y

(i)
n+l

f ′ y
(i)
n+l

]−1 (36)

f( ) =y
(i)
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⎛

⎝
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5639
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26
45
h3un+2
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Hence, the approximations:  , as in step   of the algorithm below; while   is a

system of equations and    is a    Jacobian matrix,    are the second, third,

fourth, �fth, sixth, and seventh derivatives, respectively.

Since the new block is self-starting, it does not require a starting formula to incorporate all the

initial values for the �rst-order IVPs. Therefore, approximate solutions    are simultaneously

generated.

5. Numerical Experiment

The performance of the new methods is tested on the following �rst-order initial-value problems,

and where possible, comparisons are performed with a few chosen current methods of close or

higher orders. The following notations are used:

SIR model   Susceptible, infected, and recovered model.

LMM   Linear multistep method.

ODEs   Ordinary differential equations.

IVPs   Initial value problems.

EINM   Error in new method [33].

1 SHBM   New one-step hybrid block method [34].

2 SHBM   New two-step hybrid block method [34].

7D2PIB1 and 7D2PIB2   Seventh-derivative two-point implicit block   and   (derived methods),

 Absolute error computed at the end of the mesh point over the chosen interval of

integration.

Problem 1. Consider the �rst-order system of stiff initial-value problems:

A

=

⎛

⎝

⎜
⎜⎜
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⎜
⎜
⎜
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⟶
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Exact Solution:

Source: [35]

Error in [35], p = 10 7D2PIB1, p = 10 7D2PIB2, p = 10

0.1 1.32e-06 8.10e-02 4.36e-03 2.62e-02 6.31e-04 3.79e-02

0.2 1.90e-08 5.50e-04 7.78e-05 4.67e-04 8.11e-06 4.870e-05

0.3 4.00e-09 3.70e-06 1.06e-06 6.37e-06 7.82e-08 4.69e-07

0.4 4.00e-09 2.10e-08 1.31e-08 7.88e-08 6.71e-10 4.02e-09

0.5 2.00e-09 3.00e-09 1.55e-10 9.28e-10 5.39e-12 3.24e-11

0.6 3.00e-09 2.00e-09 1.73e-12 1.07e-11 3.78e-14 2.55e-13

0.7 4.50e-09 2.90e-09 2.37e-14 1.68e-13 4.33e-15 6.77e-15

0.8 4.10e-09 3.70e-09 3.88e-14 4.44e-14 4.00e-15 4.11e-15

0.9 4.60e-09 4.00e-09 3.49e-14 3.81e-14 3.55e-15 3.78e-15

1.0 4.80e-09 4.60e-09 3.24e-14 3.59e-14 2.55e-15 2.44e-15

Table 2. Comparison of Absolute Error for Problem 1 with 

Problem 2. Consider the �rst-order system of stiff initial-value problem:

Exact Solution:

Source: [35]

(t) = 2 −y1 e−x e−50x

(t) = 2 + 6 .y2 e−x e−50x

x

y1 y2 y1 y2 y1 y2

h = 0.1

= −9 + 95 , (0) = 1, h = 0.1,y ′
1 y1 y2 y1

= − − 97 , (0) = 1,y ′
2 y1 y2 y2

(t) = −y1
95
47

e−2x 48
47

e−96x

(t) = − ,y2
48
47

e−96x 1
47

e−2x
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Error in [35], p = 10 7D2PIB1, p = 10 7D2PIB2, p = 10

0.1 1.74e-04 1.74e-04 3.70e-04 3.70e-04 9.22e-04 9.22e-04

0.2 5.40e-08 5.30e-08 1.84e-07 1.84e-07 7.07e-07 7.07e-07

0.3 1.00e-09 4.00e-11 8.01e-11 8.07e-11 5.94e-10 5.94e-10

0.4 2.30e-09 3.50e-11 4.27e-13 2.99e-14 4.46e-13 4.95e-13

0.5 2.20e-09 3.10e-11 3.69e-13 3.88e-15 3.71e-14 7.95e-16

0.6 1.80e-09 2.70e-11 2.92e-13 3.08e-15 2.81e-14 2.93e-16

0.7 1.60e-09 2.20e-11 2.34e-13 2.47e-15 1.93e-14 2.04e-16

0.8 1.40e-09 2.00e-11 1.85e-13 1.95e-15 1.44e-14 1.49e-16

0.9 1.20e-09 1.60e-11 1.45e-13 1.53e-15 9.44e-15 9.98e-17

1.0 9.10e-10 1.40e-11 1.16e-13 1.22e-15 6.50e-15 6.68e-17

Table 3. Comparison of Absolute Error for Problem 2 with 

Problem 3. Consider the second-order initial-value problem:

Exact Solution:

,

Source: [33]

EINM [33],  7D2PIB1,  7D2PIB2, 

0.1 4.462679e-11 0.000000e+00 2.220446e-16

0.2 9.864032e-11 1.387779e-16 0.000000e+00

0.3 1.635218e-10 5.551115e-17 1.110223e-16

0.4 2.409591e-10 1.110223e-16 2.220446e-16

0.5 3.328765e-10 0.000000e+00 2.220446e-16

0.6 4.414623e-10 0.000000e+00 2.220446e-16

0.7 5.692067e-10 1.110223e-16 4.440892e-16

0.8 7.189380e-10 0.000000e+00 4.440892e-16

0.9 8.938681e-10 0.000000e+00 6.661338e-16

1.0 1.097642e-09 0.000000e+00 8.881784e-16

Table 4. Comparison of Absolute Error for Problem 3 with 

Problem 4. Consider the �rst-order initial-value problem:

Exact Solution:

,

Source: [34]

x

y1 y2 y1 y2 y1 y2

h = 0.1

= , y(0) = 0, (0) = −1, 0 ≤ x ≤ 1, h = 0.1,y ′′ y ′ y ′

y(x) = 1 − ex

x p = 10 p = 10 p = 10

h = 0.1

= −y, y(0) = 1, 0 ≤ x ≤ 1, h = 0.1,y ′

y(x) = e−x

qeios.com doi.org/10.32388/C5IA9C.2 14

https://www.qeios.com/
https://doi.org/10.32388/C5IA9C.2


1 SHBM [34] 2 SHBM [34] EINM [33] 7D2PIB1,

0.1 0.00e+00 4.10e-20 3.98e-11 0.00e+00

0.2 1.10e-20 6.10e-20 7.20e-11 0.00e+00

0.3 2.10e-20 8.10e-20 9.77e-11 1.11e-16

0.4 1.10e-20 1.11e-20 1.18e-10 0.00e+00

0.5 1.10e-20 1.21e-19 1.33e-10 2.22e-16

0.6 2.10e-20 1.31e-19 1.46e-10 2.22e-16

0.7 1.10e-20 1.41e-19 1.53e-10 1.67e-16

0.8 2.10e-20 1.41e-19 1.58e-10 0.00e+00

0.9 2.10e-20 1.51e-19 1.61e-10 5.55e-17

1.0 3.10e-20 1.41e-20 1.62e-10 0.00e+00

Table 5. Comparison of Absolute Error for Problem 4 with 

6. Application problem

Problem 5.

The SIR model is an epidemiological model that calculates the theoretical number of individuals

infected with an infectious disease in a closed population over time, as detailed in [28]. The fact that

these models incorporate coupled equations linking the number of susceptible individuals S(t), the

number of infected individuals I(t), and the number of recovered individuals R(t) is where the name

of this class of models originates. For many infectious diseases, this is an effective and

straightforward paradigm; encompassing rubella, mumps, and measles. The model’s �ow chart is

displayed as follows:

Figure 6. The �ow chart of the SIR model

The nonlinear differential system describing the SIR model �ow chart is given by three coupled

equations below: 

 Where  ,   and   are positive parameters to be determined. Therefore, let   be given by: 

 By taking the derivative of (38) and summing (37) and (38) to give the SIR model of the form: 

Whose exact solution is: 

.

x

p = 10 p = 18 p = 10 p = 10

h = 0.1

,

dS

dt

dI

dt

dR

dt

=

=

=

μ(1 − S) − βIS

−μI − γI + βIS

−μR + γI

⎫

⎭
⎬

⎪⎪⎪

⎪⎪⎪

(37)

μ γ β y

y = S + I + R, (38)

= μ(1 − y), 0 ≤ x ≤ 1, h = 0.1,y ′ (39)

y(x) = 1 − 0.5e−0.5x

qeios.com doi.org/10.32388/C5IA9C.2 15

https://www.qeios.com/
https://doi.org/10.32388/C5IA9C.2


Source: [33]

Error in [33] 7D2PIB1,  7D2PIB2, 

0.1 3.198553e-13 0.000000e-00 0.000000e-00

0.2 6.086243e-13 0.000000e-00 0.000000e-00

0.3 8.685275e-13 0.000000e-00 0.000000e-00

0.4 1.101452e-12 1.1102230e-16 1.1102230e-16

0.5 1.309841e-12 0.000000e-00 3.330669e-16

0.6 1.495026e-12 1.1102230e-16 2.220446e-16

0.7 1.659228e-12 1.1102230e-16 2.220446e-16

Table 6. Comparison of Absolute Error for Problem 5 in Equation (39) (SIR Model) with 

Figure 7. Ef�ciency curves for   in Table 2

x p = 10 p = 10

h = 0.1

y1
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Figure 8. Ef�ciency curves for   in Table 2

Figure 9. Ef�ciency curves for   in Table 3

y2

y1
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Figure 10. Ef�ciency curves for   in Table 3

Figure 11. Ef�ciency curves of Table 4

y2
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Figure 12. Ef�ciency curves for Table 5

Figure 13. Ef�ciency curves of Table 6 (SIR Model)

7. Discussion of Results

The solutions to Problem 1 are displayed in Table 2, and their ef�ciency curves are shown in

Figures 7 and 8. The �gures demonstrate that the suggested approaches exhibit better accuracy

than the method in  [35]  at several grid and approximate points of iterations. It is clear that the

suggested methods show enhanced accuracy at  . The accuracy of the derived methods

suggests that they could have reduced absolute scale errors at smaller step sizes, which can lead to

an approximate solution that approaches the genuine answer.

Similarly,  [35]  used an implicit block technique of uniform order    to solve Problem 2. The

suggested formulae are used to solve the same. The ef�ciency curves for the results are displayed in

Figures 9 and 10, and the results are given in Table 3. It is evident that the suggested approaches

perform more accurately with 7D2PIB2 than with 7D2PIB1 and similar methods in  [35]. The data

h = 0.1

10
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demonstrate that, as iterations go on, the suggested approaches exhibit decreasing scale absolute

errors at numerous grid points, indicating consistency in terms of numerical attributes.

In  [33], Problem 3 was examined using a uniform block order of  . Their approach was used

straight away without any starting values. With the ef�ciency curves displayed in Figure 11, the

outcomes of the obtained formulas are illustrated in Table 4. A straightforward comparison of our

derived approaches shows that 7D2PIB1 outperformed such a method of order    in  [33], while

outperforming 7D2PIB2 of the same order  , although with minor equivalent performance in

accuracy. The competitive performances of 7D2PIB1, 7D2PIB2, and such a current approach

in  [33]  are shown in Figure 10. It is evident that at many grid points of the iterations, 7D2PIB1

exhibits convergence.

For Problem 4 in  [33], a half-step numerical model has been derived for solving �rst and second

orders, respectively. The proposed approaches are implemented with a step size of 

 Numerical results, as shown in Table 5, indicate how well the proposed formulae (7D2PIB1

and 7D2PIB2) perform in comparison to that in [33] whose methods are of uniform order  . The

convergence at average grid points of the iterations in 7D2PIB1 is shown in Figure 11, which

outperforms, especially, EINM of uniform order 

In  [34], one-step and two-step hybrid block approaches of uniform order    and  , respectively,

were used to solve Problem 3. The suggested techniques are implemented using a step size of 

. Application results, as displayed in Table 5, demonstrate how well our initial formula,

7D2PIB1, performs in comparison to those in [34], speci�cally, 2 SHBM of order  , as well as EINM

of order  , in [33]. The convergence at average grid points of the iterations in 7D2PIB1 is shown in

Figure 12, which outperforms, especially for 1 SHBM and 2 SHBM of uniform order    and 

 respectively.

Using the suggested techniques, Problem 5 in (39) is resolved. The outcomes, as shown in Table 6,

show the absolute errors and the discretized points over the integration interval. Figure 13 displays

the ef�ciency curves, which are also the graph of the logarithm of the absolute errors against the

logarithm of grid points. Figure 13 illustrates how the stiff nature of the modeled problem causes

scale absolute errors inaccuracies, especially in the 7D2PIB2 inter-nodes. In contrast to 7D2PBI2,

Table 6 also illustrates the convergence of 7D2PBI1 at most grid points. Reasonably, 7D2PBI1 offers

better results over 7D2PBI2 for this speci�c Problem 5 in (39). Lastly, as Table 6 illustrates, the

suggested methods offer increased accuracy over the compared method in [28].

8. Summary

In this research, a novel class of computational methods of uniform order    with a seventh-

derivative type, though of a �rst-order function, has been designed using an interpolation and

collocation approach. The methods utilized the advantages of non-uniform points of collocation to

improve effective time cost and accuracy in numerical method iterations. Again, the new methods

use a seventh-derivative type, which is unique compared to other existing numerical methods and

has proven to be computationally stable on an ample number of test examples, including an

application problem. It is noted from the results that the non-uniformity and positioning of

collocation points in�uence the accuracy of any given numerical method(s). Finally, since all

problems solved used a large step size,    and results indicate ef�ciency and improved

accuracy, it follows that smaller scale absolute errors are certainly possible with smaller step sizes,

indicating close convergence or convergence of the methods.

9. Conclusion and future research

A new family of computational techniques, with a seventh-derivative type of implicit two-point

block, for the direct approximation of �rst-order initial-value problems of uniform order   each,

has been developed. Formulae were derived through interpolation and collocation techniques. The

new methods considered uneven points of collocation. They require a seventh-derivative type,

though of a �rst-order function. It is established that uneven points of collocation affect the

accuracy of numerical schemes, in terms of absolute errors. The new methods are found to be A-

stable and convergent. The convergence is shown through test problems on �rst-order and second-

order IVPs, including a real-life problem such as the SIR model, and with comparison to such other

existing methods. Results indicate that the new approaches showed different numerical behaviors

on different problems solved, while outperforming such existing methods in the literature.

Summarily, 7D2PIB2 displayed better accuracy for Problems 1 and 2 than 7D2PIB1. While for

Problems 4, 3, and 5, 7D2PIB1 displayed improved accuracy compared to 7D2PIB2. This indicates

10

10
10

h = 0.1.

10

10.

10 18

h = 0.1

18

10
10

18

10

h = 0.1
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that the non-uniform points of collocation in 7D2PIB1 give better accuracy than in 7D2PIB2. Our

next future research will focus on developing and implementing ef�cient and robust numerical

methods with uneven collocation points for real-life problems in chemical reactions in chemical

engineering, models on drug magnetic nano-particle transport, population growth models, tumor

immune interaction models, biomass transfer, nutrient �ow in an aquarium, etc., and application

to higher-order stiff IVPs may also be considered.
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