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Abstract

In classical mechanics, when a body freely moves or is externally
forced to move in a conservative force field, such as a planet moving
away from a star or a weight lifted from the floor, its kinetic energy
or the work done on it is converted and stored as potential energy.
The concept of potential energy was developed to uphold the funda-
mental principle of conservation of energy. According to the widely
accepted interpretation of mass-energy equivalence, every form of en-
ergy has mass. This leads to the natural questions: does potential
energy have mass? And if so, where is that mass located? We will
start by briefly reviewing the issue through an examination of some
key literature on the topic. The current consensus is that potential
energy gets stored in the field energy of the interacting system. As a
result of mass-energy equivalence, the equivalent mass is distributed
throughout the entire space in some manner. However, this presents
some difficulties. Here, like some other scholars in the past, we show
that it contradicts the principles of special relativity and argue that
potential energy does increase the mass of the bodies composing the
system. We present an accessible thought experiment that heuristi-
cally corroborates that view specifically for the gravitational potential
energy. We finally speculate on how that mass increase is distributed
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among the interacting bodies.

Keywords: special relativity; mass-energy equivalence; gravitational
potential energy; conservation of energy; conservation of linear mo-
mentum; Planck-Einstein relation

1 Introduction

Consider the simple experiment illustrated in Fig. 1. A mass m at rest at
pointA in a uniform gravitational field g is slowly lifted to point B at a height
h above point A. According to classical mechanics, whoever lifts the body
performs work on m equal to the force to counteract the gravitational field,
mg, times the displacement h. The performed work mgh is, in fact, energy
transferred from the lifter to the system. Again, according to classical me-
chanics, and in order to ensure energy conservation, we say that that energy
has not disappeared, but it went in the increase of the gravitational potential
energy of m, namely ∆U = mgh. Recall that (gravitational) potential energy
is defined up to an additive constant and that we can only physically measure
its variation. For the sake of simplicity, throughout this paper, when we refer
to potential energy, we, in fact, mean variation of potential energy.

Because Einstein’s relation E = mc2 prescribes an equivalence between
energy and (rest) mass [1], c notoriously being the speed of light in a vacuum,
the following questions naturally arise: does gravitational potential energy
have mass? And where is that mass located?

As far as this author is aware, the above questions date back to at least
1965, when Brillouin published a series of two papers [2, 3]. In the first one
[2], he introduced the matter with the following direct and neat words:

“Einstein’s relation between mass and energy is universally known.
Every scientist writes

E = Mc2 (1)

but almost everybody forgets to use this relation for potential
energy. The founders of Relativity seemed to ignore the ques-
tion, although they specified that relation (1) must apply to all
kinds of energy, mechanical, chemical, etc. When it comes to
mechanical problems, the formulas usually written contain the
mass of kinetic energy, but they keep silent about the mass of
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Figure 1: Mass m at rest at point A in a uniform gravitational field g gets
lifted to point B at height h above point A. The work externally performed
on the mass ismgh, which is also equal to the variation of mass’s gravitational
potential energy.

potential energy.” “[...] For instance, let us consider a system of
two particles interacting together: shall we state that potential
energy is located on the first particle? Should it be attributed to
the second one? Or split between them? If energy means mass,
where shall we locate the mass? This is a fundamental question
which we have to discuss. The question has very often been ig-
nored, or evaded, because it does not always appear clearly in all
problems.” [emphasis in the original]

It is quite suggestive that, even 60 years after the seminal paper by Ein-
stein on mass-energy equivalence [1], the question of the mass of potential
energy remained poorly investigated. We briefly addressed the topic in [4],
but it was not the main subject of that paper.

The common wisdom today agrees with the explanatory framework pro-
posed by Brillouin in 1965. In [2] and the subsequent paper [3], Brillouin
explicitly studied the case of electric potential energy between two charges,
but by analogy, his results can be extended to every force field and potential
energy. According to him, the potential energy is retained in the field, and
since energy is equivalent to mass, the new mass distribution is primarily
located on the field in the whole space. Although in some calculations [2]
Brillouin assumes as a first approximation that the mass of potential energy
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can be considered as localized in the two interacting bodies and split 50/50
between them, he stresses that [2]:

“The assumption that the new mass distribution is primarily lo-
cated on the electric field in the whole space satisfies the obliga-
tion for relativistic transformations just as for the electromagnetic
field itself. The simplified model with additional mass localized
on the particle must be considered only as a simplifying approx-
imation.”

The view that potential energy is, in fact, field energy distributed all over
space is widely and tacitly agreed today (see, for instance, [5, 6]). However,
dissonant voices do not come short. For instance, Hecht [7, 8] criticizes the
concept of field energy as “a purely theoretical concept” with no possibility
of being experimentally proved/measured. He argues that “to be rigorous,
it cannot be said definitively whether energy is stored in the static field or
not”, adducing, among other arguments, the following agreeable reason:

“If a property of matter can be measured, we take it to be an
empirical quantity having an objective reality; if a property can-
not be measured, we take it to be a theoretical quantity, which
remains hypothetical. As of now, static field energy is not mea-
surable and should be considered hypothetical.”

He also reminds that the concept of potential energy stored in the field
energy is at odds with the basic tenets of special relativity (more on that
later). In conclusion, Hecht’s position is that not only potential energy, al-
though useful, is a purely theoretical concept and does not have objective
reality, but when one says that energy is stored as potential energy, as in
the example in Fig 1, that energy is not retained in the field energy (another
useful but purely theoretical concept) but in the increased masses of the ma-
terial components of the system. Unfortunately, Hecht does not say exactly
how that mass is shared among the components of system. For instance, in
Fig 1, does the mass of the body m increase by mgh/c2 (i.e., gravitational
potential energy divided by c2)? Or is the mass of the source of the gravita-
tional field to increase? Or do they increase both? But, in the last case, in
what proportion?

The present paper aims to humbly revive the topic and provide our rea-
soned answers to the questions at the beginning of this section: does gravi-
tational potential energy have mass? And where is that mass located? It will
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be clear that our view on the matter is closer to Hecht’s. We choose not
to engage in the debate about whether potential energy is purely a theoret-
ical concept with no objective reality. Instead, we consider it a convenient
method for explaining the energy that is unaccounted for after external work
is done against a conservative force field or for the kinetic energy that is
missing from a body moving in that field. We concur with Hecht’s viewpoint
that the storage of potential energy in the field poses issues from the stand-
point of special relativity. It is more reasonable to assume that the energy
gets stored as mass in the material bodies that make up the interacting sys-
tem (Section 2). In Section 3, we present an accessible thought experiment
that heuristically corroborates that view specifically for the gravitational po-
tential energy. In the concluding section, we speculate on how the mass
resulting from potential energy is distributed among the material bodies in
an interacting system. That is the most speculative part of the paper.

2 Some issues with the field energy explana-

tion

Here, we present two examples supporting that the field energy explanation
is somehow problematic.

As already noted by several distinguished scholars (e.g, Brillouin [3],
Mills [9], Landau and Lifshitz [10], Hecht [7, 8]), potential energy, as it is
defined, depends only on the positions of the interacting bodies at a given
instant (and is not expressed as a function of time) and requires that a change
in the position of any particle instantaneously affects all the other particles.
That is clearly in conflict with special relativity, which maintains that inter-
actions propagate at finite speeds. However, Brillouin [2, 3] insists that the
storing of potential energy (and its equivalent mass) in the field energy is
special relativity compliant.

Nevertheless, the first example presented here still shows a clear conflict
between special relativity and the idea that potential energy and its equiv-
alent mass are stored and primarily located on the field in the whole space.
A similar remark has been made by Hecht [7].

Suppose that when the body m in Fig. 1 is raised at the height h, the
potential energy mgh and its corresponding mass mgh/c2 are, in fact, lo-
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Figure 2: Suppose gravitational potential energy gets stored in the field all
over space. Given any gravitational field g and any downward displacement
h, we can always choose a finite distance d from the body’s center of mass
such that the transfer of energy from the field to the body (namely, potential
energy mgh going into kinetic energy) cannot involve the field beyond d since
the light distance rc in the time of the downward displacement is lower than
d

cated on the field in the whole space. Now, if, after some time1, we let the
body return to its initial position, its potential energy transforms back (by
definition of potential energy) into, say, the kinetic energy of the body. In
the approximation of classical mechanics (all velocities much less than the
speed of light c), the time taken by the body to get (free-fall back) to its
original position and to retrieve the whole potential energy in the form of
kinetic energy is

∆t =

√
2h

g
, (1)

and, therefore, owing to special relativity, during that time, the body is
causally connected to and could receive energy only from a sphere centered
in the body of radius (see, Fig. 2)

1Possibly, greater than the time needed by the body to free-fall back to its initial
position.
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rc = c∆t = c

√
2h

g
. (2)

In principle, if the magnitude of the uniform gravitational field g is suit-
ably high and the height h suitably small, the radius rc could be smaller than
any arbitrarily chosen finite distance d from the body’s center of mass

c

√
2h

g
< d. (3)

Condition (3) is not in conflict with the non-relativistic approximation of
the above calculation, v ≪ c. The final velocity v of the body coming back to
its initial position is v = g∆t =

√
2gh. Hence, we must have

√
2gh ≪ c. By

multiplying both members of that inequality by
√

2h
g
and using equation (3),

we have √
2h

g

√
2gh ≪ c

√
2h

g
→ 2h ≪ d, (4)

namely, the displacement of the body has to be much smaller than the phys-
ical dimension of the body. That condition is not a physical impossibility.

Therefore, since d is arbitrary and finite, how can the potential energy
mgh (and its related mass) be located on the field in the whole space if it
cannot be completely retrieved in time without violating special relativity?
The fraction of the energy mgh stored in the field beyond d, no matter how
much it is, would not be retrieved in time.

Although some recent theoretical and experimental studies seem to indi-
cate non-local properties of force fields (e.g., [11] and references therein), it
would make much more sense to imagine that the potential energy of a body
is stored locally in the form of mass inside the body itself.

Incidentally, wanting to insist on the idea that the potential energy gets
stored in the force field, one could imagine that when a body is raised at a
given height, h, the potential energymgh ends up stored in a sort of spherical
‘field halo’ of radius c

√
2h/g centered on the body’s center of mass. That

would be compliant with condition (3) and special relativity. However, this
solution is uselessly complicated and hardly justifiable from a physical point
of view. The lifting of an object to the height h can be thought of as a series of
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N individual lifts, each by an amount of h/N , with N being arbitrarily large.
For each of these smaller lifts, the radius of the halo would be arbitrarily
small, c

√
2h/Ng, with each halo having the same radius. Therefore, for any

given height h, all the potential energy would be stored in N superimposed
halos, each with a radius of c

√
2h/Ng. However, since N can be any value,

the dimension of the halo is also arbitrary, making this solution meaningless
from a physical perspective.

Now, let’s get to our second example. Consider the dihydrogen molecule
H2 and its mass mH2 . To separate the molecule into two neutral hydrogen
atoms we need to provide some energy (binding energy Eb) and thus perform
work on the molecule. Therefore, owing to mass-energy equivalence, no one
would be surprised if one says that the mass of two separate hydrogen atoms
is greater than the mass of a dihydrogen molecule, 2mH > mH2 , the difference
being precisely equal to (2mH −mH2) = Eb/c

2.
Given the smallness of the energies involved in chemical reactions, that

mass defect would be immeasurable (of the order of 10−37 kg [12]). However,
for the more intense nuclear binding energies, we have solid experimental
proofs that, for instance, when a nucleus captures a neutron and emits a γ-
ray, the mass difference ∆m between the initial (including unbound neutron)
and final nuclear states, multiplied by c2, should equal the energy of the
emitted γ-ray(s) [13]. That also verifies Einstein’s mass-energy equivalence
formula with a very high degree of confidence.

Therefore, we must assume that the same holds for the much less ener-
getic case of the dihydrogen molecule (chemical bond). Now, in that simple
case, we clearly see that the energy of the work done on the dihydrogen
molecule goes directly into the two hydrogen atoms as increased mass. No
field energy is involved here since, before with H2 and after with 2H, there
are, in principle, no detectable fields and field energy. In that case, the fact
that potential (binding) energy is transformed into mass localized in the par-
ticles is theoretically unquestioned and taken for granted by anyone. It is
even potentially measurable.
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3 The gravitational potential energy of a body

increases its mass

Here, we provide heuristic proof that the gravitational potential energy of a
body contributes to the total mass of the body. Therefore, in the example
presented in Fig 1, the total mass of the body after being raised to height h
would become m+mgh/c2.

Consider the following ideal experiment. A closed wagon of mass M
moves horizontally without friction in a vertical uniform gravitational field g
at a constant velocity v (see Fig. 3). Inside the wagon, attached to floor B,
there is a particle of mass mB. At a certain point, mass mB annihilates into
a photon2 of energy

hνB = mBc
2 (5)

(owing to the Planck-Einstein relation E = hν, where h is the Planck con-
stant).

Then, the photon travels upward toward ceiling A at a height h and
is absorbed and converted by a suitable apparatus into another particle of
mass mA. A similar idealized process has been used by Misner, Thorne,
and Wheeler in a though experiment on gravitational redshift [14]. The new
particle also ends up stuck to the wagon frame. The whole process happens
exclusively inside the closed wagon. Owing to the conservation of energy, we
must have that

hνB = mAc
2 +mAgh, (6)

namely, the initial energy is equal to the rest energy of the new particle,mAc
2,

plus the potential energy of that particle at the height h in the gravitational
field g relative to floor B.

2In particle physics, when a single neutral particle decays into photons, momentum
conservation dictates that it decays into two photons with equal and opposite momenta.
The reference to particle annihilation into a single photon is used loosely here for the sake
of derivation, as done, for instance, in [14, 15]. The energy balance analysis, horizontal
momentum conservation, and the conclusions of the thought experiment remain unchanged
if we imagine the annihilation resulting in two photons, both of which are then deflected
upward toward the ceiling. In any scenario, there will be a vertical recoil of the massive
coach, which can be made arbitrarily small and can be rigidly absorbed by the railways in
accordance with the conservation of vertical linear momentum. The same principle applies
in the classical case of a person throwing a ball upward in a moving railway coach.
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Figure 3: Pictorial representation of the thought experiment described in
Section 3.

According to the common understanding today (e.g., [16]), the mass of
the generated particle at point A does not include the equivalent mass of its
gravitational potential energy mAgh/c

2 and then mA < mB.
In reality, we shall show that the total mass of the particle generated at

point A, mtotA, must be equal to mB, namely, using equations (5) and (6),

mtotA = mB =
hνB
c2

= mA +
mAgh

c2
, (7)

and therefore, the total mass of the particle generated at pointAmust include
the equivalent mass of its gravitational potential energy mAgh/c

2.
Any different scenario seems to violate the conservation of (the horizon-

tal) linear momentum of the closed system wagon+particle. No horizontal
external forces act upon the system, and no mass is ejected. Therefore, the
total velocity v must be the same before and after the whole process. How-
ever, if the mass at point A is less than the mass at point B, mA < mB,
before the annihilation, the total horizontal linear momentum is

Pi = (M +mB)v (8)

while, after the conversion of the photon energy into mass, the total horizon-
tal linear momentum becomes
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Pf = (M +mA)v < Pi. (9)

That is quite bizarre. On the other hand, by imposing the conservation
of the horizontal linear momentum even with mA < mB, we would have an
equally strange consequence. Without any horizontal external force acting
upon the wagon and without any mass ejection, we would see the wagon
increase its velocity by itself at the end of the whole process.

At this point, it is possible to derive the exact expressions of the total
mass and energy of the body in the uniform gravitational field g of Fig. 1 after
external work is done on that body. When an agent, external to the system
body-gravitational field, raises mass m by a distance dh, the infinitesimal
work performed on the body is mgdh. Then, according to the result of this
section, that energy is stored in the mass of the body, which increases by

dm =
mgdh

c2
. (10)

Integrating the differential equation (10) by imposing suitable boundary con-

ditions, the mass mh of the body at height h is mh = me
gh

c2 , where m is the
proper mass at height taken as zero. The total energy Etot, proper mass plus
gravitational potential energy, at height h is then given by Etot = mhc

2 =

mc2e
gh

c2 . For small distances h, we have mh ≃ m+mgh
c2

and Etot ≃ mc2+mgh.
Therefore, we recover the classical (and special-relativistic) expressions of the
total energy and mass of the (stationary) body, the latter being that given
at the beginning of this section.

4 Concluding remarks

In the previous two sections, we believe to have provided some reasonable
arguments to support the nowadays less popular (and probably considered
wrong by the majority) standpoint that the potential energy of a body in a
force field (such as gravitational, electric, magnetic, etc.) increases the mass
of the material body, and the energy does not get stored in the field energy. In
section 3, we have made a point of corroborating that standpoint specifically
for the gravitational potential energy. It should be noted that this particular
derivation has been made using the weak gravitational field approximation
(near Minkowski flat spacetime). Therefore, any attempt to invalidate the
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result by claiming that our thought experiment was not formulated within
the realm of general relativity is misleading and pointless.

Obviously, even our explanation is not spared from puzzling issues. The
first and most important one is how the mass of the potential energy is shared
between the interacting bodies. We are back to the previous questions: in
the example of Fig 1, is just the mass of the body m to increase by mgh/c2?
Or is the mass of the source of the gravitational field to increase? Or do they
increase both? But, in that case, in what proportion?

On this, we are not able to offer a definitive answer. We can only rely
on the examples presented in sections 2 and 3 and proceed heuristically. In
the thought experiment in section 3, we have shown that the equivalent mass
mgh/c2 of the gravitational potential energy mgh must end up completely
in the body inside the wagon. Nothing goes into the mass generating the
gravitational field. We must find the reason in the approximation tacitly
made in the thought experiment. In that experiment, we implicitly assumed
that the source of the uniform gravitational field g has a mass MS much
greater than that of the body mB, MS ≫ mB. Here, we are ignoring the
mass of the wagon, M , since it is only auxiliary to the thought experiment,
but we clearly also have MS ≫ M .

That means that the center of mass of the system MS + [M + mB] is
practically located on the source of the gravitational field MS, and the only
displacement relative to the center of mass in the described process is that
of mass mB.

Likewise, in the example of the dihydrogen molecule in section 2, when
we perform work on both hydrogen atoms to break the molecule apart, they
equally move apart relative to the common center of mass. In that case,
the equivalent mass of the potential energy equally splits between the two
hydrogen atoms, the mass of all free hydrogen atoms being the same in
nature.

Therefore, here we see a possible path to answering the question of how
the mass of the potential energy is shared between the interacting bodies.
We suggest that when energy gets stored as potential energy in the classical
sense, the equivalent mass of the potential energy ends up on the body in
proportion to its displacement relative to the center of mass of the interacting
system, namely

∆m ∝ |∆r|, (11)
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where ∆r is the displacement vector relative to the center of mass of the
system.

Consider the case of a bound system of two bodies, M and m, with
M ≥ m, orbiting one around the other under a mutual central force. Namely,
consider a system with no external work performed on any of the bodies of
the system. In that specific case, the kinetic and potential energies of each
body periodically transform into one other (partly or totally). Owing to the
conservation of linear momentum, we always have that |MV| = |mv|, where
V and v are the instantaneous velocities of the bodies relative to the inertial
frame of the center of mass of the system. Therefore, after some algebra, the
kinetic energy of body M , EKM , is related to the kinetic energy of body m,
EKm, as follows

EKM =
m

M
EKm. (12)

If, during the motion of the bodies, part or all the kinetic energy of
the bodies transforms into potential energy (of the interacting system), we
suggest (conjecture) that the equivalent mass of the potential energy ends
up in the mass increase of the material bodies according to the same quota

∆M = ∆EKM/c2 =
m

M
∆EKm/c

2 =
m

M
∆m. (13)

This last relation can, in fact, be retrieved directly from equation (11).
In the case of two isolated and interacting bodies, m and M , the following
relation always holds

mr+MR = 0, (14)

where r and R are the distance vectors of the bodies from their common
center of mass (which is the origin of the inertial reference frame). Therefore,
for the displacement vectors, we have

M∆R = −m∆r, (15)

and by using equation (11), we have

∆M =
m

M
∆m. (16)

If, like in the examples in sections 1 and 3, M ≫ m, then we have
∆M ≃ 0 and ∆m ̸= 0. If, like in the example of the dihydrogen molecule,
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the masses of the bodies (hydrogen atoms) are the same, m1 = m2, then we
have ∆m1 = ∆m2.

Funding

This research received no external funding.

Data Availability Statement

No new data were created or analysed in this study.

Conflicts of Interest

The author declares no conflict of interest.

References

[1] Einstein A. Does the inertia of a body depends upon its energy con-
tent? Ann. Phys. 1905, 18 639-641. English translation at https:

//einsteinpapers.press.princeton.edu/vol2-trans/186

[2] Brillouin L. The actual mass of potential energy, a correction to clas-
sical relativity. Proc. Natl. Acad. Sci. 1965, 53(3) 475

[3] Brillouin L. The actual mass of potential energy: II
Proc. Natl. Acad. Sci. 1965, 53(6) 1280

[4] D’Abramo G. Einstein’s 1905 derivation of the mass-energy equiva-
lence: is it valid? Is energy always equal to mass and vice versa?
Phys. Part. Nuclei 2023, 54(5) 966-971

[5] Bomark N.-E. How can the nucleus be lighter than its constituents?
Eur. J. Phys. 2021, 42 035403

[6] Hilborn R.C. What should be the role of field energy in introductory
physics courses? Am. J. Phys. 2014, 82 66

14



[7] Hecht E. Relativity, potential energy, and mass. Eur. J. Phys. 2016,
37 065804

[8] Hecht E. Reply to Comment on ‘Relativity, potential energy, and mass’.
Eur. J. Phys. 2019, 40 028002

[9] Mills R. Space, Time and Quanta; W H Freeman: New York, 1994;
pag. 151.

[10] Landau L. D. and Lifshitz E. M. Mechanics; Pergamon: Oxford, 1960;
pag. 7

[11] D’Abramo, G. On apparent faster-than-light behavior of moving elec-
tric fields. Eur. Phys. J. Plus 2021, 136 301

[12] E = mc2: The mass defect and binding energies in the nucleus...
and in atoms and molecules. The University New South Wales, Syd-
ney, Australia. https://www.phys.unsw.edu.au/einsteinlight/

jw/module5_binding.htm (accessed on Jan. 27, 2024)

[13] Rainville A., Thompson J.K., Myerst E.G., Brown J.M., Dewey M.S.,
Kessler Jr E.G., Deslattes R.D., B oner H.G., Jentschel M., Mutti P.,
Pritchard D.E. A direct test of E = mc2. Nature 2005, 438 1096-1097

[14] Misner, C.W., Thorne, K.S., Wheeler, J.A. Gravitation; W.H. Free-
man: San Francisco, USA, 1973; Sec. 7.2, p. 187.

[15] Weinberg S. Gravitation and Cosmology; J.Wiley & Sons: New York,
USA, 1972; Sec. 3.6, pp. 84–85.

[16] Sandin T.R. In defence of relativistic mass. Am. J. Phys. 1991, 59
1032–6

15


